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Supplementary Material 

 

S.1 Model Theory. 

 

FIGURE 1s (A) Energy profiles of two attached cross-bridge states 1 and 2. (B) Forward and backward rate 
constant for the two attached cross-bridges states as function of displacement. Dotted line indicates energy level 
at which cross-bridges detach. 

The model we used is formulated around that of Hill (1). The potential energy profiles and the rate 
constants assumed in the model are shown in Fig. 1s. Let n1(x) and n2(x) be the fractional 
occupancy of states 1 or 2 by actin-bound S1’s, respectively, at a given x. At equilibrium, 
occupancy is related to the potential energy, E(x), by the expression: 
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We now consider a region from x to x+ x. If a waveform defining the fractional occupancy 
of state 2, n2(x,t), is sliding along the x axis, then the change in n2(x,t) over the distance x is 
given by: 
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The first right hand term represents the change in n2(x,t) produced by translation of the 
waveform along the x-axis, the second being the change in n2(x,t) due to chemical reactions 
occurring during Δt, where Δt is the time required to traverse distance Δx, and αx is the rate of 
change in n2(x,t) with time at point x. If sliding occurs at a constant velocity, V, then dividing 
by Δt and letting Δx tend to its limit, dx, we have: 
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taking a convention that V is positive if motion is in the direction of increasing x, the 
translation produced by stretching the muscle. In the model used here, we assume that n1+n2 
is constant throughout an applied stretch, so n1(x,t) = 1-n2(x,t). If the rate constant for the 
transition from state 1 to state 2 is kf, for state 2 to state 1 kr, then the last term becomes  

kf (x)-(kf (x)+kr (x))n2(x,t).          (Eq.4) 

The rate constants kf (x) and kr (x) are, to some extent, arbitrary as long as kf (x) / kr (x) equals 
n2(x) / n1(x) at equilibrium. We chose to define kf (x) as 0.01975 x2-34.5 x+15,600 to provide a 
reasonable approximation to Fig. 4 of Eisenberg et al. (2) for x < 8 nm. For x ≥ 8 nm, we 
allowed kf (x) to decline exponentially with a decay constant of -0.033 nm-1. We then derived 
values for kr (x) from Eq. 1 using these values of kf (x). Equation 3 can be solved analytically 
for simple rate constant dependence on x, but since the expressions for kf (x) and kr (x) are 
complicated, we applied a numerical method solved by the method of characteristics (3). This 
consists of converting n(x,t) into n(ξ,t), where ξ = x-Vt, the position on the x axis occupied at 
zero time by a bridge currently positioned at x after time t. Applying this transformation to 
Eq. 2, we obtain: 
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since 
t∂

∂ξ  is –V and 
x∂

∂ξ  is unity, this equation simplifies to: 
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To generate the force transients accompanying a stretch, we solved the integral: 
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to obtain total force at a series of time intervals, where a and b are the values of ξ between 
which cross-bridge formation is permitted. We took these as 4 and 12nm along the 
displacement axis of fig. 1s. At each time point, we computed the change in n2(x,t) by 
numerical integration over time of Eq. 6 for x < lr, the rupture length (the x value at which 
rupture energy is reached for state 1 bridges) and derived n1(x,t) as 1-n2(x,t). For x ≥ lr, state 1 
bridges are assumed to detach very rapidly, so n1(x,t) becomes zero, and Eq. 6 reduces to:  
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We normalized tension to P0 by dividing P(t) by the integral evaluated at zero time. When a 
conditioning release was applied first, the release is assumed to occur as a step length change, 
and the n(x,t) distributions during the recovery from the release were obtained as: 
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where Δx is the displacement of the actin-bound S1 population by the release. The rate 
constant term in Eq. 6 and Eq. 6a must then be modified to kr (ξ+ Δx +Vt), where t is 
measured from the onset of the stretch. The integrals were evaluated by a fifth order Runge-
Kutta algorithm using adaptive step size control (4) written in Fortran 95, with an accuracy of 
0.1%.  
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