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SECTION I: DERIVATION OF PEEL-OFF RATE OF THE FOOT 
As proposed in the main text, the peel-off process of the foot can be represented by the 
following Markov chain: 
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The average peel-off rate equals the reciprocal of the mean first passage time (MFPT) to 
reach state 0 (all-off), starting from state Q (all-on). In the following derivation we use 
the probability transition matrix to calculate the vector of MFPT starting from each state. 
The first component of the vector gives the peel-off rate. Suppose the system stays at 
state i at the present time. In time dT, the system jumps to state j with probability rij ·dT 
(figure below), where rij is the transition rate from state i to state j.  

   
In the peel-off model discussed here, the transition rates are  
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Now the MFPT from state j is Tj, so the MFPT from state i is dT plus the sum of all Tj, 
weighted by the transition probability from i to j in dT. 

The above reasoning is expressed as 
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= + − + =∑ ∑     (S1)  

Rearranging the above equation and canceling the common factor dT yields 

1j ij i ij
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T r T r
≠ ≠
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Eq.S2 can be written in vector form as  

 TP T = -1          (S3) 

where T = {Ti}i=0,…,Q is the vector of MFPTs. Note that T0 ≡ 0, since it takes no time to 
reach state 0 if the system starts from state 0. The operating matrix in Eq.S3 happens to 
be the transpose of the probability transition matrix of the Markov chain, P.  
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P is singular because all columns sum to zero. But T0 ≡ 0 eliminates one unknown. Eq.S3 
is solvable when the first column and the first row of P are removed and vector T is 
shortened by the first element. The solution to Eq.S3 gives the MFPT from state Q to 
state 0. Its reciprocal, the peel-off rate, is given in Eq.2 in the main text. 

Solving Eq.S2 (i.e. Eq.S3 with the T0 dimension removed) is shown in the following. 
There are altogether Q equations and Q unknowns: 

1 1 ( ) 1, 1,..., 1off i on i on off ik T k T k k T i Q− ++ − + = − = −      (S5) 

1 1off Q off Qk T k T− − = −         (S6) 

Now let 1:i i iT T T+∆ = − , then Eq.S5 and Eq.S6 can be transformed into 
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, then Eq.S7 and Eq.S8 are equivalent to 
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Eq.S9 and Eq.S10 give 
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Thus, 
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The reciprocal of the above gives the peel-off rate Rp: 
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SECTION II: DERIVATION OF WEAKLY-FACILITATED AND 
SPONTANEOUS RELEASE RATE OF THE FOOT 
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A Markov chain model similar to the one described above gives the weakly-facilitated 
release rate and the spontaneous release rate of the foot. In this model, we also have Q+1 
states connected in a queue. But the transition rates between each pair of neighboring 
states change slightly, because the on/off event does not have to happen in a strictly 
sequential fashion. At state Q, any of the Q-i unbound sites can bind, and any of the i 
bound sites can unbind. The transition rates become 
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          (S13) 

and the transition matrix is 
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Because the foot can start from any state with corresponding residence probability, the 
reciprocal of the whole-foot rate is the weighted average MFPT. Solving Eq.S14 with 
similar procedures given in Section I gives Eq.4 in the main text. 

The following is a simpler derivation of the same result. For each binding site the mean 
residence times of the unbound and the bound state are, τu = 1/kon , τb = 1/koff , 
respectively. The probability of finding a site in the unbound state is 

u
u

b u

p τ
τ τ

=
+

         (S15) 

Suppose the Q states of the foot are categorized into two: the all-detached state {0}, and 
the compound state with at least one bound site {1,2,…,Q}. The two newly defined states 
of the foot obey the same law as Eq.S15. The probability of the all-detached state is Q

up , 
as computed in Eq.S15. Let Toff  be the mean residence time of the all-detached state, and 
Ton that of the compound state. Then we have 

Q
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Toff  is the reciprocal of the rate of having any one of the Q sites bind to the substrate, 
which is Q times kon. Substituting 1off on uT Qk Qτ= =  into Eq.S16 yields 
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       (S17) 

Then the reciprocal of Ton is the foot unbinding rate, same as Eq.4 in the main text. 
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SECTION III: DERIVATION OF THE LOAD-VELOCITY CURVE 
The following derivation takes into account of the weakly-facilitated foot release during 
the powerstroke and the spontaneous foot release during the re-stretching. The resultant 
load-velocity curve was shown in Figure 4A in the main text. Additional parameters and 
their values are listed in Table S1. 

Consider the ensemble of feet which bind and unbind with the substrate (top left panel of 
Figure S1). Each foot is characterized by one continuous state variable, its displacement, 
x, relative to the beginning of a powerstroke, as seen in the cell’s frame of reference. The 
important “checkpoints” are x = 0 (beginning of powerstroke), x = λ (end of powerstroke) 
and x = λ+L (unstressed backward position). When a foot completes a powerstroke 
crossing from x < λ to x > λ, we assume that the motor hydrolyzes ATP, and is set to the 
“open” configuration. 

In addition, we have three discrete states of the foot, one bound state and two unbound 
(thick horizontal bars, top left panel of Figure S1). The bound feet are stuck to the 
substrate, and in the cell’s frame of reference, translate at the gliding velocity V. The 
ensemble density of bound feet is denoted ρ0(x), in x ≥ 0. It is convenient to distinguish 
two states of unbound feet. Feet of the first state has unbounded during the powerstroke 
(0 < x < λ). They are rapidly pulled to x = λ at velocity fm/ζf, where fm is the motor force, 
and ζf the hydrodynamic drag coefficient of the foot. The ensemble density of these feet is 
denoted ρ1(x), in 0 ≤ x ≤ λ. The second unbound state accounts for the returning feet 
heading back to x = 0 at velocity -fr/ζf. Here, -fr is the weak restoring force that drives the 
kinking of the leg and returning of the feet. The density of the returning feet is denoted 
ρ2(x), in x ≥ 0. 

Now we write the steady state (time independent) transport equations for ρ0(x), ρ1(x) and 
ρ2(x). ρ0(x) satisfies the ODE: 

0
0( )dV R x

dx
ρ ρ= −          (S19) 

The LHS of Eq.S19 is the convective derivative (time derivative of ρ0(x(t)), at x(t) with 
x V= ). R(x) is the rate coefficient for foot unbinding. We expect a piecewise character in 
R(x): 

( ), 0
( ) ( ),
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s
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R x x
R x R x x L

R x x L

λ
λ λ
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 ≤ <
= ≤ < +
 ≥ +

        (S20) 

Here, Rwf denotes the weakly facilitated release during the powerstroke, Rs the 
spontaneous release rate and Rp the peel-off rate. According to the amount of force acting 
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on the foot in each case, the relative magnitude of the three rates should be Rp > Rwf > Rs. 

The transport ODE for ρ1(x) in 0 ≤ x ≤ λ is based on translational velocity m fx f ζ= , and 
the source due to foot release in 0 < x < λ. 

1
0( ) , 0m

f

f d R x x
dx
ρ ρ λ

ζ
= ≤ ≤       (S21) 

Since all feet at the beginning of the powerstroke are assumed to be bound, we have the 
boundary condition: 

1(0) 0ρ =          (S22) 

The transport equation for ρ2(x), the returning foot, is based on the translational 
velocity r fx f ζ= − and the sources indicating the spontaneous foot release and the peel-
off: 

2

0

0, 0
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      (S23) 

Finally, we have two flux balance boundary conditions: 

0 2(0) (0)r
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fV ρ ρ
ζ
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The LHS of Eq.S24 is the flux of the unbound feet returning to x = 0, and the RHS the 
flux of feet starting the powerstroke. The balance holds upon the assumption that the 
powerstroke starts as soon as a foot returns to x = 0. Eq.S25 represents the jump of foot 
density at x = λ contributed by the rebinding of the foot that have unbound during the 
powerstroke. This equation holds when we assume that the rebinding happens very fast 
compared to the time scales resolved in these equations. 

Eqs.S19-S25 determines ρ0(x), ρ1(x) and ρ2(x) up to a multiplicative constant. This 
constant can be determined by normalization: 

0 1 20 0 0
( ) ( ) ( ) 1x dx x dx x dx

λ
ρ ρ ρ

∞ ∞
+ + =∫ ∫ ∫      (S26) 

Assume all foot release rates are invariant with position. Then Eqs.S19-S26 can be solved 
analytically with solutions: 
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where T is the average duration of the whole cycle. 
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The first three terms in Eq.S28 correspond to the average time the bound foot spends 
during the powerstroke, re-stretching and peel-off respectively. The 4th term represents 
the time it takes for the free foot to reach the post-power-stroke position after its weakly 
facilitated release from the substrate. The last term represents the time that the free foot 
resets to the front position after either the spontaneous release or the peel-off. The load-
velocity relation is calculated with the force balance equation. The load force is balanced 
by the net force contributed by all feet. The bound feet provide positive force during the 
powerstroke, negative force during the peel-off process, and the weak resetting force 
during the re-stretching. The free foot in state 1 is dragged in the medium with the motor 
force; and the free foot in state 2 is dragged with the resetting force. Therefore, the force 
balance equation reads 
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Plugging in Eq.S27 gives 

( )
1 exp exp 1 expp fm f wf r fs s

L b
wf p s

R Vf V R f VR L R LNF V
T R V R V R V
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ζ
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           (S30) 

The impulse balance equations given in the main text (Eq.1 and Eq.3) are simplified 
version of Eq.S30. Eq.3 corresponds to the case where ζf, ζb, Rs, fr → 0. These 
assumptions have been elaborated in the main text before the introduction of the impulse 
balance equations. Eq.1 is the further simplification when Rwf << V/λ.  

The derivation of the V < 0 case is similar, as illustrated by the top right panels of Figure 
S1. There are again three states of the foot, albeit with different meanings for the states of 
the free foot. This is because the leg cycle in the negative regime is asymmetric to that in 
the positive regime. The major break-off of the foot from the substrate occurs during the 
powerstroke when the leg is overstretched. Since the force is exerted in the opposite 
direction of the tip of the foot, it does not create a peel effect. The break-off process is 
similar to the weakly-facilitated and spontaneous release, only with much stronger force 
facilitation. Therefore, we labeled the new rate as Rsf to stand for “strongly-facilitated”. 
The leg will be over-relaxed after the motor releases ADP and opens up. It re-stretches 
while the foot moves on towards the starting position for the next powerstroke. During 
the re-stretching the foot can also spontaneously release from the substrate with 
essentially the same rate used in the case V > 0. Now ρ1 represents the density of the foot 
that has been spontaneously released during re-stretching. ρ2 corresponds to the foot that 
has been snatched off the substrate during the powerstroke. The governing transport 
ODEs are given in Eqs.S31. 
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with the piecewise foot release rate 
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The meanings of each equation above are similar to those for positive velocities. The 
resulting load force as a function of velocity is 

2 1 expm f r f s
L b
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where the average cycle duration is 
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Similar to Eq.S28, the first two terms in Eq.S34 correspond to the average time the foot 
spends during the powerstroke and the re-stretching. The other two represent the average 
resetting time after the foot releases from the over-stretched position and the unstretched 
position. The duty ratio equals the sum of the first two terms divided by the cycle period. 

Typical foot density distributions of each state in the V > 0 and V < 0 cases are shown in 
Figure S1. ρ0 dominates over ρ1 and ρ2 in magnitude in both V > 0 and V < 0 cases 
because the unbound foot translocates very fast with a small hydrodynamic drag 
coefficient, leading to a small residence time. Furthermore, the magnitude of the density 
of each unbound state is determined by the corresponding driving force during the state 
and the foot release rate. For example, ρ1 at V > 0 is extremely small because the foot is 
released with the weakly facilitated rate Rwf, and then driven fast by the relatively large 
force fm. By contrast, ρ2 at V > 0 is much larger because the majority of the foot is 
released by the much larger peel-off rate Rp, and then driven by the much smaller 
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restoring force fr. 
 

 

Table S1: List of additional parameters used in the computation of the load-velocity 
curve. 

Parameters Value Physical meaning 

L 25 nm distance between the end of powerstroke and backward 
re-stressed position 

fr 0.005 pN weak resetting force 

ζf 200 pN·s/m hydrodynamic drag coefficient of the foot 

ζb 
2×104 
pN·s/m hydrodynamic drag coefficient of the cell body 

k”off
 1.7×103 s-1  

(16.8 kBT) 
spontaneous release rate of single site (and its Arrhenius 
factor) 
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Figure S1: Illustration of the transport equations and the resultant density 
distribution of the feet. The cartoons on the top illustrate Eqs.S19-S26 and 
Eqs.S31. Left: V > 0. The horizontal bars show the three different states of the 
foot, bound (ρ0), released during the powerstroke with weak facilitation (ρ1), and 
spontaneously released or peeled off after the powerstroke (ρ2). Corresponding 
foot conformations are labeled on the very top. The directions of foot transport in 
these states are shown with white arrows in the bar and velocities labeled on the 
right end, both in the frame of reference of the cell body. The thick solid arrows 
pointing upward illustrate the rebinding of the free foot. The dashed arrows 
pointing downward show different ways that the foot can release from the 
substrate, their thickness indicating the relative magnitude of the rates. The 
shadings illustrate the forces acting on the foot: motor force during the 
powerstroke (light even shade) and peel force after stretched (monotonically 
darker shade). Right: V < 0. All labels bear similar meanings. There are also three 
different states of the foot, bound (ρ0), spontaneously released during the post-
power-stroke relaxation (ρ1), and snatched off during the powerstroke (ρ2). The 
diagrams below the cartoons show examples of typical density distribution of the 
feet at different states at 22.5ºC. 
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