

Biophysical Journal, Volume 97

Supporting Material

Simulation of cyclic dynein-driven sliding, splitting and reassociation in an outer doublet
pair

Charles J. Brokaw

SUPPORTING MATERIAL: METHODS

Details of the computational methods for the case where doublet B is straight

 Each doublet is modelled as a sequence of equal-length straight segments, connected by
joints at which bending can occur. Joint 1 is at the distal end of segment 1. Computations were
routinely performed with a segment length of 120 nm. Each segment has a local z,y coordinate
system based at the basal end of the segment, with the segment on the z axis. There is a global
Z,Y coordinate system at the base of the B doublet. Segment 1 of doublet B remains on the Z
axis, at Y = 0. Segment 1 of doublet A remains parallel to the Z axis, with x = X and Y=
doubletseparation, usually 60 nm. (Note that the presentations in Figs. 1,5,6 are inverted relative
to the scheme shown here.) The shape of each doublet is represented by an array of curvatures at
each joint. For each time iteration, the first step is to use the array of curvatures at each joint to
obtain the angular orientation of each segment and the positions of each joint, relative to the
global coordinate system. For both doublets, the angle of segment 1 is 0 rad. For 10 equally
spaced points on each segment of doublet A, this information is used to calculate the distance,
perpendicular to the segment, to the B doublet. These distances are placed in an array ENY and
are obtained by calling the following subroutine for each segment:

//***
bool CModel::getBjointForSeg(double* Bangles, double angle, int* Bsegs, ZYPoint* Apoints,
 const int Aseg,ZYPoint* Bpoints, zypoint* bpointarray,
 double& shear, double* ENY,const int lastseg, const double ds,
 const double doubletseparation){
 int Bseg=2;
 double bestdistance = 10000;
 double trydistance;
 zypoint bpoint;
 bool goodContact = true;

 for (int tryseg = 2; tryseg<=lastseg; tryseg++){
 trydistance = distance(Apoints[Aseg],Bpoints[tryseg]);
 if (trydistance<bestdistance){
 bestdistance = trydistance;
 Bseg = tryseg;}
 }
 // Bseg is now the segment with distal end closest to distal end of Aseg
 Bsegs[Aseg] = Bseg;
 //transpose Bpoints[Bseg] to local coordinates of Aseg:
 //translation to 0,0 at Apoints[Aseg-1]:
 bpoint.z = Bpoints[Bseg].Z - Apoints[Aseg-1].Z;
 bpoint.y = Bpoints[Bseg].Y - Apoints[Aseg-1].Y;
 // rotation by the angle of Aseg:
 bpointarray[Aseg].z = cos(angle)*bpoint.z + sin(angle)*bpoint.y;
 bpointarray[Aseg].y = -sin(angle)*bpoint.z + cos(angle)*bpoint.y;

 if(bestdistance>separationLimit) // limit usually 300 nm
 return false;

 if(fabs(angle)>angleLimit) // limit usually 0.3 rad
 return false;

 double Ay = -(bpointarray[Aseg].y +doubletseparation); // normally close to 0
 double Az = bpointarray[Aseg].z;
 if(goodContact){//calculate separation
 double tanangle = tan(angle);
 double a = Ay - Az*tanangle;//separation at base of A seg
 for(int i=0; i<10;i++)
 ENY[i] = a + (0.05 + 0.1*i)*ds*tanangle;
 }
 return goodContact;
 }

The next step is to use each distance ENY[i] to calculate 10 values for the forces on each
segment, resulting from dynein motor force (parallel to the segment) and adhesive force (normal
to the segment). These 10 values are then averaged to obtain the mean forces on each segment.
Because some of the forces change nonlinearly with distance, this averaging processs gives
better results in some marginal cases.
 These calculations are shown by the following code fragment which uses the constants
C1,C2,C3,C4 as described in METHODS to obtain four variables: The dynein motor force
density on a segment is activeF. The dynein adhesive force density on a segment is varEN. A
viscosity-like term that reduces the dynein motor force in proportion to longitudinal velocity is
activeCL. The stiffness of the adhesive elasticity is varstiffness, which is used to stabilize the
computations, as described below. For simplicity, only the steadystate dynein force model is
shown here, although a non-steadystate method, described previously (7, 8), was also used for
most of the computations. These two methods produced similar results under most conditions.
// active force control:
 double factor = 0;
 if(goodContact&&(C3>C2)){
 factor = 1.0;// default case for ENY near target
 if(ENY<C1)
 factor = 0;// no active force
 else if(ENY>C3)
 factor = 0;// no active force
 else if (ENY>C2)// linear decrease to 0 at C3
 factor = 1 -(ENY-C2)/(C3-C2);
 }
 double activeF=factor*fo;
 double activeCL=factor*fo*ESCB/recoveryrate;
//adhesive force density and stiffness in y direction:
 double varEN = 0;
 double varstiffness = 0.0;

 double stf = 0.0;
 if(goodContact &&(C3>C2)){
 if((ENY<C3)){
 if(ENY<0)
 stf = C4;
 else{
 if(ENY<=C2)
 stf = 1.0;
 else
 stf = 1 -(ENY-C2)/(C3-C2);
 }
 }
 }
 varEN=EN*ENY*stf;
 varstiffness=EN*stf;

Note that in these specifications, the stiffness is not equal to the spatial derivative of the force.
Instead, the stiffness is based on the idea that the variations in force and stiffness in the region
between C2 and C 3 result from a change in the number of force-producing dyneins, and that this
number does not change significantly within one time step of the computations. This is a crude
approximation, which should be replaced in future work by more realistic mocdelling of dynein
attachment kinetics.

 The methods for setting up the moment balance equation, including velocity-dependent
moments resulting from viscous resistances, were originally described in (6, S1). To add the
dynein adhesive force normal to the segment, the bending moment at each joint resulting from
dynein forces that do not depend on velocity can be obtained by replacing Eqs. 4-6 in reference
(6) with the following equations (in code form):

 M[seg] = M[seg-1] +ds*cos(angle[seg])*(FY[seg-1])+0.5*ds*ds*varEN
 -ds*sin(angle[seg])*(FZ[seg-1]);
 // transform local dF to global and sum:
 FZ[seg]=FZ[seg-1] + ds*cos(angle[seg])*activeF-ds*sin(angle[seg])*varEN;
 FY[seg]=FY[seg-1] + ds*sin(angle[seg])*activeF+ds*cos(angle[seg])*varEN;

In these as in earlier computations (beginning with (7)) it has been found necessary to stabilize
the computations by using implicit forms for the moments resulting from the relatively stiff
elastic resistances. For instance, for the elastic bending moment

 ME(t+∆t) = EB(κ + ∆t ∂κ/∂t) .

This is is accomplished by placing -∆t*EB into the M[j][j] terms of the coefficient matrix, where
they will be multiplied by the unknown rate of bending of each joint. The elastic resistance
responsible for the adhesive force, EN, is handled in a similar manner by adding ∆t*varstiffness
to the normal viscous drag coefficient, CN. Stabilization for the elasticity of the dynein force
production is provided by adding activeCL to the longitudinal viscous drag coefficient, CL. In the

steadystate force model, activeCL is a larger effective viscosity, and has the additional effect of
reducing the active force to match the steadystate velocity. In the non-steadystate model,
activeCL becomes equivalent to ∆t*ESCB*f0. These devices are not fully satisfactory, because
they effectively introduce artificial viscous resistances, which significantly affect the results, and
result in sensitivity of the reults to the length of the computational time step, ∆t. Computations
were routinely performed with 100 segments 120 nm in length, and ∆t = 0.025 ms. With
Example A, no differences could be seen with 50nm, 100 nm or 150 nm segments, but a 4%
increase in frequency was obtained with 200 nm segments. Increasing the time step size to 50 ms
decreasedthe cycle frequency from 6.7 s-1 to6.5 s-1. Decreasing the time step size to 10 ms
increased the cycle frquency to 7.0 s-1.

Details of the computational methods for the case where doublet B is curved.

 Curvature is introduced by initializing the curvature of doublet B with a constant value,
C5. It is then assumed that the neutral position of the doublet pair corresponds to two concentric
circular arcs that maintain a constant separation between the doublets (usually 60 nm). Only
cases where doublet B is the inner arc are considered. The elastic neutral curvature of doublet A
is then –1/(doubletseparation–1/C5). This value is subtracted from values of the curvature of the
A doublet, before multiplying by EB to obtain values of elastic bending moment in doublet A.
 The additional modification is the replacement of tan(angle) by tan(angle–
Bangles[Bseg]) in the getBjointForSeg method. This method is an approximation, justified by
recognition that the method is only used when thedoublets are close together, and therefore
nearly parallel, so that when an an A segment overlaps two B segments, the change in angle
between the two B segments will be small. The test for goodContact also uses angle–
Bangles[Bseg] in this case.
 This method for introducing curvature was also used to break the symmetry of the
system, so that buckling can occur when the force is sufficient. A value of curvature of 10-8 rad
µm-1 was routinely used. For testing conditions for buckling with curved doublets, the
computation was started with f0 = 0. After doublet A moved to its equilibrium position with a
constant separation from doublet B, the value of f0 was increased to the test value.

The author will gladly supply more complete programming and/or a working program
(Mac PPC) on request.

Supplementary reference:

S1 Brokaw CJ. 1972. Computer simulation of flagellar movement. I. Demonstration of stable
bend propagation and bend initiation by the sliding filament model. Biophys J 12: 564-586.

