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SUPPORTING MATERIAL: METHODS 
 
Details of the computational methods for the case where doublet B is straight 
 
 Each doublet is modelled as a sequence of equal-length straight segments, connected by 
joints at which bending can occur. Joint 1 is at the distal end of segment 1. Computations were 
routinely performed with a segment length of 120 nm. Each segment has a local z,y coordinate 
system based at the basal end of the segment, with the segment on the z axis. There is a global 
Z,Y coordinate system at the base of the B doublet. Segment  1 of doublet B remains on the Z 
axis, at Y = 0. Segment 1 of doublet A remains parallel to the Z axis, with x = X and Y= 
doubletseparation,  usually 60 nm. (Note that the presentations in Figs. 1,5,6 are inverted relative 
to the scheme shown here.) The shape of each doublet is represented by an array of curvatures at 
each joint. For each time iteration, the first step is to use the array of curvatures at each joint to 
obtain the angular orientation of each segment and the positions of each joint, relative to the 
global coordinate system. For both doublets, the angle of segment 1 is 0 rad. For 10 equally 
spaced points on each segment of doublet A, this information is used to calculate the distance, 
perpendicular to the segment, to the B doublet. These distances are placed in an array ENY and 
are obtained by calling the following subroutine for each segment: 
 
//***************************************************************** 
bool CModel::getBjointForSeg(double* Bangles, double angle, int* Bsegs, ZYPoint* Apoints,  
 const int Aseg,ZYPoint* Bpoints, zypoint* bpointarray,  
  double& shear, double* ENY,const int lastseg, const double ds,  
  const double doubletseparation){ 
 int Bseg=2; 
 double bestdistance = 10000; 
 double trydistance; 
 zypoint bpoint; 
 bool goodContact = true; 
 
 for (int tryseg = 2; tryseg<=lastseg; tryseg++){ 
  trydistance = distance(Apoints[Aseg],Bpoints[tryseg]); 
  if (trydistance<bestdistance){ 
   bestdistance = trydistance; 
   Bseg = tryseg;} 
  } 
 // Bseg is now the segment with distal end closest to distal end of Aseg 
 Bsegs[Aseg] = Bseg;  
 //transpose Bpoints[Bseg] to local coordinates of Aseg: 
  //translation to 0,0 at Apoints[Aseg-1]: 
 bpoint.z = Bpoints[Bseg].Z - Apoints[Aseg-1].Z; 
 bpoint.y = Bpoints[Bseg].Y - Apoints[Aseg-1].Y; 
  // rotation by the angle of Aseg: 
 bpointarray[Aseg].z = cos(angle)*bpoint.z + sin(angle)*bpoint.y; 
 bpointarray[Aseg].y = -sin(angle)*bpoint.z + cos(angle)*bpoint.y; 
  



 

 

 if(bestdistance>separationLimit) // limit usually 300 nm 
  return false; 
  
 if(fabs(angle)>angleLimit) // limit usually 0.3 rad 
  return false; 
 
 double Ay = -(bpointarray[Aseg].y +doubletseparation); // normally close to 0 
 double Az = bpointarray[Aseg].z; 
  if(goodContact){//calculate separation 
   double tanangle = tan(angle); 
   double a = Ay - Az*tanangle;//separation at base of A seg 
   for(int i=0; i<10;i++) 
    ENY[i] = a + (0.05 + 0.1*i)*ds*tanangle; 
   }       
 return goodContact; 
 } 
**************************** 
The next step is to use each distance ENY[i] to calculate 10 values for the forces on each 
segment, resulting from dynein motor force (parallel to the segment) and adhesive force (normal 
to the segment). These 10 values are then averaged to obtain the mean forces on each segment. 
Because some of the forces change nonlinearly with distance, this averaging processs gives 
better results in some marginal cases. 
 These calculations are shown by the following code fragment which uses the constants 
C1,C2,C3,C4 as described in METHODS to obtain four variables: The dynein motor force 
density on a segment is activeF. The dynein adhesive force density on a segment is varEN. A 
viscosity-like term that reduces the dynein motor force in proportion to longitudinal velocity is 
activeCL. The stiffness of the adhesive elasticity is varstiffness, which is used to stabilize the 
computations, as described below. For simplicity, only the steadystate dynein force model is 
shown here, although a non-steadystate method, described previously (7, 8), was also used for 
most of the computations. These two methods produced similar results under most conditions. 
// active force control: 
  double factor = 0; 
  if(goodContact&&(C3>C2)){ 
   factor = 1.0;// default case for ENY near target  
   if(ENY<C1) 
    factor = 0;// no active force 
     else if(ENY>C3) 
    factor = 0;// no active force 
     else if (ENY>C2)// linear decrease to 0 at C3 
    factor = 1 -(ENY-C2)/(C3-C2); 
   } 
  double activeF=factor*fo; 
  double activeCL=factor*fo*ESCB/recoveryrate;     
//adhesive force density and stiffness in y direction: 
  double varEN = 0; 
  double varstiffness = 0.0; 



 

 

  double stf = 0.0; 
  if(goodContact &&(C3>C2)){ 
   if((ENY<C3) ){ 
    if(ENY<0) 
     stf = C4; 
    else{ 
     if(ENY<=C2) 
      stf = 1.0; 
     else 
      stf = 1 -(ENY-C2)/(C3-C2); 
     } 
    } 
   }    
  varEN=EN*ENY*stf; 
  varstiffness=EN*stf; 
 
Note that in these specifications, the stiffness is not equal to the spatial derivative of the force. 
Instead, the stiffness is based on the idea that the variations in force and stiffness in the region 
between C2 and C 3 result from a change in the number of force-producing dyneins, and that this 
number does not change significantly within one time step of the computations. This is a crude 
approximation, which should be replaced in future work by more realistic mocdelling of dynein 
attachment kinetics. 
 
 The methods for setting up the moment balance equation, including velocity-dependent 
moments resulting from viscous resistances, were originally described in (6, S1). To add the 
dynein adhesive force normal to the segment, the bending moment at each joint resulting from 
dynein forces that do not depend on velocity can be obtained by replacing Eqs. 4-6 in reference 
(6) with the following equations (in code form): 
 
 M[seg] = M[seg-1] +ds*cos(angle[seg])*(FY[seg-1])+0.5*ds*ds*varEN  
   -ds*sin(angle[seg])*(FZ[seg-1] ); 
 // transform local dF to global and sum:  
 FZ[seg]=FZ[seg-1] + ds*cos(angle[seg])*activeF-ds*sin(angle[seg])*varEN; 
 FY[seg]=FY[seg-1] + ds*sin(angle[seg])*activeF+ds*cos(angle[seg])*varEN;  
 
In these as in earlier computations (beginning with (7) ) it has been found necessary to stabilize 
the computations by using implicit forms for the moments resulting from the relatively stiff 
elastic resistances. For instance, for the elastic bending moment 
 
 ME(t+∆t) = EB(κ + ∆t ∂κ/∂t) .         
 
This is is accomplished by placing -∆t*EB into the M[j][j] terms of the coefficient matrix, where 
they will be multiplied by the unknown rate of bending of each joint. The elastic resistance 
responsible for the adhesive force, EN, is handled in a similar manner by adding ∆t*varstiffness 
to the normal viscous drag coefficient, CN. Stabilization for the elasticity of the dynein force 
production is provided by adding activeCL to the longitudinal viscous drag coefficient, CL. In the 



 

 

steadystate force model, activeCL is a larger effective viscosity, and has the additional effect of 
reducing the active force to match the steadystate velocity. In the non-steadystate model, 
activeCL becomes equivalent to ∆t*ESCB*f0. These devices are not fully satisfactory, because 
they effectively introduce artificial viscous resistances, which significantly affect the results, and 
result in sensitivity of the reults to the length of the computational time step, ∆t. Computations 
were routinely performed with 100 segments 120 nm in length, and ∆t = 0.025 ms. With 
Example A, no differences could be seen with 50nm, 100 nm or 150 nm segments, but a 4% 
increase in frequency was obtained with 200 nm segments. Increasing the time step size to 50 ms 
decreasedthe cycle frequency from 6.7 s-1 to6.5 s-1. Decreasing the time step size to 10 ms 
increased the cycle frquency to 7.0 s-1.   
 
Details of the computational methods for the case where doublet B is curved. 
 
 Curvature is introduced by initializing the curvature of doublet B with a constant value, 
C5. It is then assumed that the neutral position of the doublet pair corresponds to two concentric 
circular arcs that maintain a constant separation between the doublets (usually 60 nm). Only 
cases where doublet B is the inner arc are considered. The elastic neutral curvature of doublet A 
is then –1/(doubletseparation–1/C5). This value is subtracted from values of the curvature of the 
A doublet, before multiplying by EB to obtain values of elastic bending moment in doublet A. 
 The additional modification is the replacement of tan(angle) by tan(angle–
Bangles[Bseg]) in the getBjointForSeg method. This method is an approximation, justified by 
recognition that the method is only used when thedoublets are close together, and therefore 
nearly parallel, so that when an an A segment overlaps two B segments, the change in angle 
between the two B segments will be small. The test for goodContact also uses angle–
Bangles[Bseg] in this case. 
 This method for introducing curvature was also used to break the symmetry of the 
system, so that buckling can occur when the force is sufficient. A value of curvature of 10-8 rad 
µm-1 was routinely used. For testing conditions for buckling with curved doublets, the 
computation was started with f0 = 0. After doublet A moved to its equilibrium position with a 
constant separation from doublet B, the value of f0 was increased to the test value. 
 
The author will gladly supply more complete programming and/or a working program 
(Mac PPC) on request. 
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