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1. Introduction

The goal of this note is to formulate and address the seeming paradox that 
emerges in the studies of the distribution of synaptic strengths in the cortex and 
the distribution of spontaneous rates. The basic findings can be summarized as 
follows.

(1) The synaptic weights between pairs of cells chosen randomly are 
described by the log-normal distribution (LND, defined below) (Song et 
al., 2005). 

(2) The spontaneous rates of cells are also distributed log-normally (LN) 
(Hromadka et al., 2008). 

Simplistically, these two facts contradict to each other, because the spontaneous 
rates in a large network with LN weights distributed randomly and with no 
correlation are expected to have well-defined values, distributed narrowly, 
according to the Gaussian distribution. This statement will be addressed below 
in detail. Thus, if this statement were true, the experimental fact #2 appears to be 
in conflict with the fact #1. Since the random LN matrix with no correlations 
between elements appears to contradict these finding, correlations between 
network weights are expected. We address possible class of correlations that can 
make these experimental observations consistent with each other. Finally, we
propose a non-linear multiplicative learning rule that can yield the proposed
correlations.

The note is organized as follows. In Section 2 we describe the properties of the 
LND that will be useful in the further analysis. In Section 3 we describe the 
connection between the spontaneous firing rates and the principal eigenvector 
problem for synaptic weight matrix. In Section 4 we define the random matrices 
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with uncorrelated elements that we call regular. In Section 5 we describe the 
properties of the principal eigenvectors of regular matrices.  In this section we 
formulate the contradiction between two experimental finding listed above. In 
Section 6 we describe the properties of weight matrices that do have correlations 
between their elements of the type that yields LND for both synaptic weights 
and spontaneous rates. This section therefore resolves the paradox stated above. 
In Section 7 we introduce the type of Hebbian learning rules that yield 
correlations needed to resolve the paradox. Section 8 lists some motivations for 
the latter learning rule that make it biologically plausible. Finally in Section 9 we 
solve the equations of the learning rules.
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2. The log-normal distribution

Consider a variable  whose logarithm 0x ln x  has a normal distribution, i.e.

2 2
0( ) / 2

2

1
2

e , (1)

where  and 0  are the standard deviation and the mean respectively. The 
distribution function of x  is obtained by assuming ( ) ( )x dx d  that leads to

2 2
0[ln( / )] / 2

2

( ) 1( ) [ ( )]
2

x xd xx x e
dx x

, (2) 

where 0
0x e . The probability distribution (2) is called LND. By changing 

variables to  it is easy to calculate various moments of this distribution i.e.

2 2 / 2
0

0

( )n n n nx x x dx x e . (3)

Important for us will be the first and the second moments: 

2 / 2
0x x e (4)

and
22 2 2

0x x e . (5)

The variance of the distribution (also called dispersion) is 
2 222 2

0( ) 1D x x x x e e  (6) 

It grows exponentially with increasing .
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3. The spontaneous activity

We adopt here the simplest model for the network dynamics that is described by 
linear equations 

f t t Wf t i t (7)

Here f t  is the column-vector describing the firing rates of  neurons in the 
network at time t . The input vector  represents the external inputs. The 
square weight matrix W  describes the synaptic weights in the system.

N
( )i t

In the absence of synaptic inputs we obtain

( ) ( )f t t Wf t . (8)

Spontaneous firing rate is defined here as the average over time firing rate in the 
absence of external inputs: 

( )f f t (9)

Spontaneous firing rate is therefore a right eigenvector of the synaptic weight 
matrix with the eigenvalue equal to one 

f Wf (10)

It is therefore the eigenvector that does not decay over time. The other 
eigenvectors of W  are expected to decay as a function of time. They are expected 
to have the eigenvalues whose absolute values are less that one.

Using another method one can motivate taking the principal eigenvalue of the 
weight matrix as the representation of spontaneous activity even when the 
external inputs cannot be neglected. Indeed, let us average equation (7) over time

f Wf i . (11)
Here i  is the averaged input into the network. Consider the set of right 
eigenvectors of matrix W  that we denote  :

kn n k
n
W . (12)

Using this definition one can solve equation (11) for the vector of spontaneous
activities f :

1 *

1
n

n
k

k kf G i . (13) 

4



Here *
n n

n
G  is the Gram matrix.

Clearly if one of the eigenvalues, say , approaches one, the term in the sum 
(13) corresponding to this eigenvalue will dominate the solution thus yielding

nf C n , (14)
where C  is some constant. Thus in the case when recurrent connections have 
sufficient strength so that one of the eigenvalues of the weight matrix is close to 
unity, the corresponding eigenvector represents the spontaneous activities in the 
network.
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4. Regular matrices

Consider a square  by  matrix W . Consider an ensemble of matrices such 
that all matrix elements are random numbers that are produced from the same 
distribution. In addition assume that there are no correlations between different 
elements. This ensemble of matrices belongs to the class of regularmatrixes. A 
more accurate definition of this class is given below. Here we will mention that 
regular matrices have an eigenvalue that in the limit of large  is much larger 
than other eigenvalues. Also, the eigenvector corresponding to this eigenvalue 
has elements that are very close to a constant in the limit of large . This 
statement is true for an arbitrary distribution of the elements of the matrix. 
Regular matrices represent therefore the simplest class of random matrices with 
no correlations. They cannot yield a log-normal distribution of the eigenvector 
elements. Some other form of random matrices is therefore needed to satisfy both 
of the requirements postulated in the Introduction.

N N

N

N

Definition: Regular Matrices

Consider an ensemble of square matrices  of different sizes, from one by one 
to infinity.  This ensemble belongs to the class of regular matrices if the following 
four requirements are met 

ijW

(i) The distribution of the matrix elements ( )W  is the same for every position in the 
matrices of the same size (assumption of uniformity).

(ii) The distribution of matrix elements is the same for matrices of different sizes in 
the ensemble, up to maybe a scaling factor. More precisely, for every  and
describing two different sizes of matrices in the ensemble, there exists a positive
constant C  such that , where 

1N 2N

1 2
( ) ( )N NW C CW

1N
 and 

2N
 are the 

distributions of elements of matrices of sizes  and .1N 2N

(iii) Matrix elements in different columns are statistically independent. This implies
that for any i  and k

( , ) ( ) (ij km ij kmW W W W ) (15)

if j m , i.e. the matrix elements belong to different columns.

(iv) The matrix elements are positive on average, i.e.

0ijW (16)
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We define the in-degree of the matrix as 

i
j

d Wij . (17)

Define d  and  the average and the standard deviation of the in-degrees for the 
ensemble. Property (iv) in the definition of regular matrices leads immediately to

( )d

0d (18)

It can be also be shown easily that due to central limit theorem and 
independence of elements in columns the coefficient of variation of in-degrees 
becomes infinitely small for an increasing size of the matrix, i.e. when N

2( ) 1 ( )i
i

d d d
dNd

0  (19) 

Smallness of the coefficient of variation is at the basis of perturbation theory used
in this supplement.

Example 1: Binary Matrices

0ijW  or 1. Assume that ( 1)ijp W s . The number 1s  is therefore the 
sparseness of the matrix. Assume that no correlations are present among matrix 
elements. For the average in-degree and the standard deviation we obtain after 
simple calculation 

d sN (20)

and
2 ( ) (1 )d Ns s . (21)

Parameter  defined in (19) is then 

1/ 2

1 1 0s
Ns N

(22)

when . Since the CV of in-degrees vanishes for large , the ensemble of 
such matrices belongs to the class of regular matrices.

N N

Example 2: White-Noise Matrices.

Consider random matrices with uncorrelated matrix elements. We will assume 
that all elements have the same distribution. We call this type of matrices white-
noise. Let us consider sparse matrices for which ( )w  is the conditional
probability distribution for non-zero matrix elements. This distribution can be for 
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example LN. The probability to have a non-zero element (sparseness) is defined 
by  as in the previous example. The CV of the in-degree for these matrices iss

2 2( ) 1d w
d wNs

sw , (23) 

where w  and 2w  are the average and average square of the non-zero matrix 
elements. Since  goes to zero in the limit of increasing matrix size this ensemble 
of matrices also belongs to the class of regular matrices. Equation (22) is a specific 
case of a more general expression (23). If for example the distribution of non-zero 
elements  is LN, such as (2), the CV of in-degree is( )w

2

e
Ns
s , (24)

as follows from equations (4) and (5).
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5. Principal eigenvector of the regular matrices

Here we will show that the principal eigenvector of the regular matrices has 
elements that are normally distributed. The CV of this distribution is equal to the 
parameter  introduced by us in the previous section. Since 0  for large 
matrices [equation (19)], the elements of the eigenvector that represent the 
individual firing rates of neurons have Gaussian distribution with vanishing
variance. This claim is valid even if the distribution of the matrix elements is LN, 
since it is true for any regular matrix (see example 2 above). Thus LN distribution
of matrix elements in the absence of correlations yields the eigenvector with 
small variance in the individual elements (firing rates). Thus, experimental 
observation (2) (LN spontaneous firing rates) cannot follow from observation (1) 
(LN weights) in the absence of correlations. In the end of this section we discuss 
what type of correlations can resolve the paradox.

Consider a square  by  regular matrix W . That the matrix is regular, 
according to (16) requires that the average of the matrix element 

N N
W  is positive. 

Note that here by W  we mean the average of all matrix elements: positive, 
negative, and equal to zero; whereas above we used the notation w  for the 
average non-zero matrix element of a sparse matrix. It is instructive to first 
approximate W  by the constant matrix, i.e. the one that contains the same value 
W  at each position. Let us denote such a matrix by :(0)W

(0)
ijW W  for any  and i j . (25) 

The principal eigenvalue and eigenvector of this matrix are easy to guess. 
Indeed, if  for any , its easy to verify that 1if i

(0)
ij j j

j
W f NWf . (26)

Thus a constant vector is an eigenvector of  with the eigenvalue equal to (0)
ijW

NW . The other eigenvectors are orthogonal to it because  is symmetric. 
Therefore the sum of the elements of these other eigenvectors is zero. Hence their 
eigenvalues are also zeros. The constant vector is therefore a principal 
eigenvector of , i.e. its corresponding eigenvalue has a maximum absolute 
value.

(0)
ijW

(0)
ijW

We then calculated the principal eigenvector of W  using  as the starting 
point. We used the perturbation theory that is described in section 10.  The result 
that we got for the eigenvector and the eigenvalue are: 

(0)W
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1 i
i

d df
d

(27)

and

1 ( i
i

d d
N

)d (28)

Here  is the in-degree defined by (17). The correction to the eigenvector in (27) 
is of the order of 

id
( ) / 1d d  for large regular matrices. Similar statement can 

be made about the correction to the principal eigenvalue in (28). CV of the in-
degrees serves therefore as the 'smallness' parameter in the perturbation theory.

The paradox formulated

Our results show that two experimental constraints listed in the introduction
cannot be simultaneously satisfied. The distribution of the elements of the 
eigenvector (27) is normal due to the central limit theorem, as a distribution of 
sums of independent random variables. The CV of the distribution is equal to the 
parameter  for the regular matrices. This result holds even if distribution of 
the individual matrix elements is LN, since such matrices are also regular (24). 
Thus it is impossible for regular matrices to have both their matrix elements and 
the elements of the principal eigenvector to be LN. The latter will be distributed
normally, with a small CV. We arrive at the conclusion that cortical connectivity 
must contain correlations of the type that makes them not regular.

1

Example 3: Suffix (Column) Matrices 

Consider a set of matrices that are formed by products of white-noise matrix 
and the white-noise random vector .

ijA

jv

ij ij jB A v (29)
We will assume that all of the elements of the vector are drawn from the same 
distribution and that they are not correlated with elements of matrix . The 
ensemble of matrices 

ijA

ijB  is regular because the matrix elements located in 
different columns are not correlated. This is despite the presence of correlations 
between matrix elements in the same column induced by the common 
multipliers. We will also show that the distribution of the elements of the 
principal eigenvector is sharper that that of matrix with no correlations.

Consider the in-degree of matrix ijB
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i
j

d ijB (30)

The white-noise correlations between elements of  andjv ijA  can be described as 
follows:

2 ( )i j ijv v v v 2 (31)

2 ( )ij km ik jmA A A A2 (32)

These relationships lead to the expression for the cross-correlations between 
matrix elements of ijB .

2 2 2 2 2 2 2( ) ( ) ( ) ( )ij km ik jm ik jm jm
2B B A v A v A v A v  (33) 

Our argument will hinge on the following equation describing correlations 
between in-degrees which is an immediate consequence of Eq. (33).

2 2 2 2 2 2 2 2( ) ( ) ( ) ( )i k ik ikd d N A v N A v NA v N A v 2  (34) 
Because the average in-degree is 

d NAv (35)
the coefficient of variation (CV) for the in-degrees is 

2 2 2 2 2 2 2 2
2

2 2 2

( ) ( ) ( ) ( ) 1d d A v A v A v
d A v N

 (36) 

Since 0  when ,N B  is a regular matrix. We also note that
2 2 2

2 2

( ) ( ) ( )
2

B A v
B A v

(37)

For this reason the expression for  can also be rewritten as follows
2 2 2

2
2

( ) ( ) ( ) 1A v B
B N

, (38) 

CV for a white noise matrix can be obtained from (38) by assuming that 
.2 ( ) 0v

2
2

2

( ) 1W
W N

(39)

Therefore CV for a prefix matrix (38) is larger or equal than that of a white noise 
matrix with the same distribution of individual elements. Because both types of 
matrices are regular, their principal eigenvector has the elements given by Eq. 
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(27). Therefore the CVs of eigenvector elements and in-degrees are the same. 
Thus expressions (38) and (39) can be understood as the CVs of the eigenvector 
elements for these two types of matrices. The conclusion about larger CV of the 
prefix matrix than that of the white-noise matrix is misleading however because
in the case of the prefix matrix there is substantial correlation between
eigenvector elements. Because (38) describes variability when averaging includes 
different matrices it does not reflect these correlations. For example, imagine that 

 is a constant matrix. In this case the in-degrees will still have some variability 
when considering an ensemble of matrices of the same size. This variability is 
described accurately by (38).  However is this case all of the in-degrees are the 
same for a single matrix which implies, according to (27), that all of the elements 
of the principal eigenvector are the same. This means that eigenvector elements 
have no difference for a single matrix.

A

To describe the distribution of the principal eigenvector elements in individual 
matrices we introduce the following measure:

2

2 1
i

j
d d

N i (40)

that describes the variance of in-degrees with respect to the mean in-degree 
calculated for the same matrix. Opening the brackets and using (34) we obtain

2 2( 1) ( )N A 2v . (41)
Therefore this measure of variance goes to zero when elements of matrix A  are 
all the same yielding no difference between elements of the eigenvector as 
suggested in the end of the last paragraph. The coefficient of variation for  is 

2 2 2 2 2

2 2 2 2 2 2 22

( ) ( ) ( ) 1 1
( ) ( ) ( ) ( )

A v A v N
A v A v A v Nd d

. (42) 

That this ratio is below one explains our observation made in the main paper that 
the distribution of spontaneous firing rates (elements of the principal 
eigenvector) for prefix matrix is narrower than for a white-noise matrix with the 
same distribution of individual matrix elements.
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6. Irregular matrices

Consider a regular matrix ijA . Consider then another matrix ijB  that is produced 
by multiplying all rows of ijA  by the elements of random vector whose mean 
value is larger than zero:

iv

ij i ijB v A (43)

These matrices can also be called prefix or row matrices. We assume here that 
and  are not correlated. The matrix 

ijA

iv ijB  may or may not belong to the class of 
regular. Indeed, the in-degrees of ijB  are 

i ij
j

b B vi id , (44)

where  is the in-degree of  the regular matrix id A . Since the latter are distributed 
with low CV [cf. (19)] the distribution of  is dependent upon the distribution of 
the elements of vector  that we denote 

ib

iv ( )v . If the CV of ( )v  is small, matrix 
B  is regular. If, on the other hand, the CV of ( )v  does not vanish in the limit of 
large matrices ( ) matrix N B  is not regular. It remains to be seen or proven
that any irregular matrix can be decomposed into the product of the form (43). 
We will not prove or disprove this statement in this note.

Eigenvectors of irregular matrices

Consider now the eigenvector problem for matrix (43). It is formulated as follows 

i ij j
j

v A f if (45)

If one introduces the notation 

/i iy f vi (46)

the eigenvector equation (45) can be rewritten as follows 

ij j j i
j
A v y y (47)

Thus  is the eigenvector of the matrix iy ij ij jC A v . Here ijA  is random regular 
while  is the random vector. In Example 3 above we showed that matrix  is 
regular. Since  is regular its principal eigenvector is approximately constant, 
as follows from (27) 

iv ijC

ijC

1iy (48)

and
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i if v (49)

This approximate equation becomes more and more precise in the limit ,
as follows from (27). We conclude that the distribution of the components of the 
principal eigenvector matches that of the outer product vector .

N

iv

Example 4: Lognormal Irregular Matrices 

Consider a matrix whose element have log-normal distribution. For simplicity 
we will represent the matrix elements in the exponential form 

ij
ijA e (50)

where  has a normal distribution. If we assume that all ij ij  are taken from the 
same distribution and are uncorrelated, matrix  is regular. We will now 
consider a vector , whose components are also LN distributed i.e.

A
iv

i
iv e (51)

where  are normally distributed and are not correlated with each other. They 
are also not correlated with the elements of the matrix 

i

ij . Let us now construct 
an irregular matrix ijB  using the (43) as a prescription:

i ij
ij i ijB v A e . (52)

Because each element of B  is an exponential of the sum of two normally 
distributed quantities, it is LN. Also, according to (49) the principal eigenvector 
of B  is LN distributed: 

i
i if v e (53)

The approximate equality here becomes asymptotically exact in the limit 
as commented earlier. Thus we arrive at the matrix for which two statements are 
true, at least, in the limit 

N

N

(1) The elements of matrix B  are LN 

(2) The components of its principal eigenvector are LN 

Since we have suggested a relation between the eigenvector problem and the 
spontaneous rates in Section 3, these two features may match the corresponding 
experimental observations listed in the Introduction. Thus, it is possible that 
cortical networks and the spontaneous activity are produced by irregular 
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matrices, for example, having strong correlations between the outgoing 
connections, as suggested here.
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7. The learning rule

Here we propose the learning rule that can yield the irregular matrices in the 
final stable state. We propose the non-linear multiplicative learning rule for the 
recurrent synaptic matrix ijW

. (54) 1( ) ( ) (1 ) (ij i ij j ijW t t f W t f W t2 )

Here we introduced three exponents , , and  that describe the non-linearity. 
It is reasonable to assume that these exponents are positive. The two constants 
that describe the rates of modification of the components of the weight matrix are 

 and . The former parameter describes the rate of acquiring the new values, 
while the latter determines the rate of 'forgetting' of the current values of 
synaptic strengths. The spontaneous rates of the neurons are contained in the 
components of the vector 

1 2

if , which is given by the principal eigenvector of the 
weight matrix 

( )ij j j
j
W t f f . (55)

We assume that the average value for the spontaneous rates is determined by e.g. 
metabolic constraints

/i
i
f N f (56)

The average spontaneous rate f  is assumed to be constant and independent on 
time.

Before providing biological motivation for the learning rule (54) in the next 
section we will show that this rule will yield the irregular matrix of the form (52). 
To this end we consider the final stationary state described by the condition

( ) ( )ij ij ijW t t W t W (57)

Putting this condition into (54) we obtain for the stationary value  the 
following equation

ijW

2 1ij i ij iW f W f (58)

This equation has two solutions: 

0ijW (59)

and
1/(1 ) /(1 ) /(1 )

1 2( / )ij i jW f f . (60) 
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Which one of the solutions has to be chosen? From the form of the equation (54) 
it follows that a weight cannot become zero if originally it was above zero. 
Conversely a synaptic weight that is zero will remain equal to it forever. Thus, 
the connectivity matrix is preserved during the process described by (54). An 
element of connectivity matrix  is equal to one if there is a synapse from cell ijC j
to cell i  and zero otherwise. It is thus equal to the transposed adjacency matrix 
as defined in the graph theory. Two solutions (59) and (60) can be combined into 
one formula using the connectivity matrix: 

 (61) 1/(1 ) /(1 ) /(1 )
1 2( / )ij i j ijW f f C

The synaptic matrix itself depends on the spontaneous rates in the stationary 
state, which complicates the solution. From the formulation of the eigenvector 
problem

ij j j
j
W f f (62)

we obtain the following equation for f
1

1
11

2

1
M

i M
j

f ij jC f  (63) 

Here

1
1

M (64)

Matrix 1
ij jC f  is regular. Because of this, the sums in (63) are normally 

distributed with a low CV. If the in-degree of this matrix is id

1
i ij j

j
d C f d i (65)

 The random variable  is normally distributed and i ( ) / 1i d . For the 
logarithm of the spontaneous rates we can write 

ln ln 1 i
if C M

d
(66)

Here C  is some constants. Due to the smallness of parameter ( ) /i d  we can
expand the logarithm and write 

ln i
if C M

d
(67)
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The logarithm of the spontaneous rate is therefore normally distributed. Of 
course the standard deviation of this distribution may be small: 

(ln )f M (68)

because . However with 1 1  the exponent M  may become large so 
that the distribution of f  becomes LN. Note that the distribution of the non-zero 
synaptic weights is also LN as the distribution of the product of LN variables (61)
.
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8. Motivation for the learning rule. 

The standard Hebbian learning rule would look like this: 

 (69) 1 2( ) (1 ) (ij i j ijW t t f f W t)

There are several ways in which our rule (54) is more biologically plausible than 
(69).

(1) The learning rule that we postulated (54) preserves connectivity matrix. This 
means that the sparse matrix of synaptic weight will remain sparse, with the 
same connectivity. The learning rule (69) produces a full matrix. Since cortical 
connectivity is sparse (Song et al., 2005), our rule is more biologically plausible. 

(2) Our learning rule suggests that the uptake of proteins controlling the synaptic 
strength occurs at the rate dependent of the number of existing proteins. This is 
consistent with the models in which the uptake occurs into spatially localized
clusters in PSD, which would make the rate of synapse growth larger for a larger 
synapse (Shouval, 2005).
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9. Variance of the log-normal distribution. 

Eq. (68) for the variance of the logarithm of the firing rates 2 (ln )f  can be 
rewritten as follows 

2 (ln )f M 2 2 (70)

where
2 (ln )f (71)

is the CV of the in-degrees of matrix 1
ij jC f . Because the matrix itself depends on 

f  the CV of in-degrees is determined by the distribution of the components if ,
which is emphasized by the last equation. The exact form of dependence in (71) 
is easy to derive using (24) 

2
2 1(ln )

2

f
e

Ns
s (72)

where  is the sparseness of the connectivity matrix , which is by definition s ijC

2

1
ij

ij
s
N

C (73)

i.e. the fraction of its non-zero elements. The full form of the equation which 
determines 2 (ln )f  is 

2
2 12 (ln )

2 (ln )
fMf e

Ns
s  (74) 

This equation should be solved iteratively to find the variance of the logarithm of 
the firing rates. The solution becomes large when (1 ) /(1 )M , i.e. 
when .1

The variance of the logarithm of non-zero weight matrix elements is then given
by

2 2
2 2

2(ln ) (ln )
(1 )

W f (75)

The latter relationship is found from (61).
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10. Perturbation theory solution for the principal eigenvector of the regular 
matrix.

Here we will prove equations (27) and (28) that are used to demonstrate the 
smallness in the variation of the components of the principal eigenvector of the 
regular matrices. To this end we represent a regular matrix  as a sum of a 
constant matrix

ijW
(0) 0ijW W , whose elements are all the same, and the correction 

ijW

(0)
ij ij ijW W W (76)

This equation may be understood as the definition of the correction matrix .
Despite the fact that the individual elements of 

ijW

ijW  are large, we will assume 
that the effects of adding this correction on the eigenvector and eigenvalue are 
small. We will show that this actually is true in the end of calculation. This may 
be viewed as a circular argument. Indeed, to obtain smallness of the correction 
we assume that the correction is small. However, we know that there is only one 
solution. The uniqueness of the solution is provided by the Perron-Frobenius 
theorem for non-negative matrices. Therefore, obtaining solution that is self-
consistent, i.e. does not contradict to itself, is sufficient.

To perform the perturbation theory analysis we will represent the principal 
eigenvector of the matrix  as a sum of the solution of the 'unperturbed' 
problem

ijW
(0)
if and the correction 

(0)
i if f i (77)

where (0)
if const  as we argued before, and the small correction (0)

i if . The 
correction can always be made perpendicular to (0)

if  by including the non-
perpendicular component of i  into (0)

if .  Since (0)
if const  we conclude that

0j
j

(78)

The vector (0)
if  is the solution to the 'unperturbed' eigenvector problem 

(0) (0) (0) (0)
ij j i

j
W f f , (79)

where, according to (26)
(0) NW . (80)

The vector if  is the solution to the full problem
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ij j i
j
W f f (81)

where
(0) (82)

Equations (77), (81), and (82) can be combined as follows

 (83) (0) (0) (0) (0)( )( ) ( )(ij ij j j i i
j
W W f f )

In the expanded form this reads:

 (84) 
(0) (0) (0) (0)

(0) (0) (0) (0)

ij j ij j ij j ij j
j j j j

i i i i

W f W W f W

f f
The first term in the l.h.s. cancels with the first term in the r.h.s. because of (79). The 
second term in the l.h.s. is zero, because  is a constant matrix and  satisfies (78). 
The forth term in l.h.s. is much smaller than the third, and, therefore can be neglected.
The same is true about the fourth term in the r.h.s. in comparison with the third term
there. We therefore arrive at a much shorter equation: 

(0)
ijW j

(85)(0) (0) (0)
ij j i i

j
W f f

This equation is approximate. However, it is asymptotically correct, when (0)
i if .

We will now multiply both sides of the equation by (0)
if  and sum over .

Because
i

(0)
i if  the first term in the r.h.s. gives no contribution. We obtain for 

the correction to the eigenvalue 
(0) (0)2(0) (0) (0)

(0) 2

ˆ
/

| |

T

i ij j i
ij i

f Wff W f f
f

 (86) 

Let us estimate this correction. Because the elements of vector (0)f  are all the same, we 
can write

1 ( i
i
d d

N
) (87)

where

i
j

d Wij (88)

are the in-degrees of matrix . The average over the ensemble value of the correction is
zero. The variance of the correction is

Ŵ

222 1
i

dd d
N N

( ) (89)

The relative correction to the eigenvalue can be estimated to be
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(0)

( ) 1 1d
d N N

(90)

i.e. is small because both the CV of the in-degrees of the regular matrix  is small and 
the matrix is large.

We will now use the result (90) to find the correction to the eigenvector.  Let us 
estimate various terms in equation (85) that we will recite here for convenience

(91)(0) (0) (0)
ij j i i

j
W f f

The first term is of the order of  while the last term in the r.h.s. is equal to(0)( ) jd f

(0) (0) (0) (0)( ) 1 ( )
i i

d
i

df d f
dN N

f
N

 (92) 

The last term in (91) therefore can be neglected. For the correction to the eigenvector we 
obtain

(0) (0)
(0)

1
i i ij i i

j

1f W f d d
d

, (93) 

which is the same as equation (27). Equation (93) also implies that

(0)

( )~ ~i

i

d
f d

1 (94)

i.e. correction to the eigenvector is small.

We now have to show that the neglected term in equation (84), i.e. the fourth 
term in the l.h.s. is much smaller than the third term in the limit of large matrices 

 (95) (0)
3 4ij j ij j

j j
s W f s W

Because the expectation value for  is zero while  may be positive on average 
we will compare their squares. We obtain

3s 4s

2
3 ( ) ~ij ik

jk
s W W N W2 N  (96) 

In deriving this we used property (iii) in the definition of regular matrices 
(statistical independence of elements in different columns) which leads to

2 ( )ij ik jkW W W (97)

We also assumed that (0) 1 ~ ( )jf W  for simplicity.

Estimation of  requires somewhat larger effort. Using (93) we can write 4s
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2

2
4 2

1
ij j ij jk il lm

j jklm
s W W W W

d
W . (98) 

Because 0ijW  and elements in different columns (with different second 
indices) are independent, the sum in this equation breaks into the sum of 
products of pairs:

2
4 2

1
ij jj il ll ij jj jk jk

jl jk
j l j k

ij kj jk ik ij jj ij jj
kj j
j k

s W W W W W W W W
d

W W W W W W W W

 (99) 

Because the largest sums in this equation include  terms we can estimate 2N 2
4s

as follows 
2

2
4 2~ ~ 1 ~Ns s

d
2
3 N . (100)

Thus the forth term in equation (84) is much smaller than the third term on 
average for very large matrices.
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Supplementary material 2
to “Correlated connectivity and the distribution of firing 
rates in the neocortex” 

by Alexei Koulakov, Tomas Hromadka, and Anthony M. Zador 

The effects of exponential input-output 
relationship in the firing of neurons.
In this supplement we will consider a recurrent network of neurons for which 
the firing rate is an exponential function of the input current, i.e.

/
0
If f e (101)

Here 0f  and  are constants. A simple explanation of lognormal spontaneous 
firing rates would be that the input current I  for these neurons has a normal 
distribution as a result of uncorrelated synaptic strengths of many input 
synapses. As a result the firing rates, as exponentials of the input current, have 
lognormal distribution. Here we will show that the hypothesis of exponential 
input-output relationship cannot yield large variance in the logarithm of firing 
rates for the recurrent network of neurons. We will show that large variance in 
the logarithm will have to lead to instability in the recurrent network of such 
neurons. This is based on the extremely strong positive gain in the recurrent 
network provided by the exponential input-output relationship (101).

We will start by deriving the stability condition for the recurrent network. We 
will see below that the stability condition cannot be satisfied when the standard
deviation of the logarithm of the spontaneous firing rates is substantial, i.e. is 
close to 1 as required by experimental observations. To proceed with the analysis 
of stability we introduce the variables for firing rates and weights 

i
if e (102)

ij
ijw e (103)

Here indexes  and  label neurons in the networks. The stability condition can
especially easily be derived in the case when all neurons have essentially the 
same firing rates, i.e. 

i j

2 1 . Here 2 is the standard deviation of the logarithm 
of the firing rates. We will see from this stability condition that it is violated 
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when 2 ~ 1. The latter case is therefore not essential for the stability analysis. 
Later we will however derive the stability condition for 2 ~ 1 case for the sake 
of completeness.

1) The case of small deviations 2 1 .
For the recurrent current and the variance of the recurrent current we obtain 

0I wsNf I (104)

2 2 2I w sNf A (105)
Here , , ,w s N 0I , and  are the average synaptic strength, sparseness of the 
network, number of neurons, external offset current, and a numerical coefficient
of the order of one. For the lognormal distribution of synaptic weights it can be 
derived that

A

2

A e s (106)
Experimental evidence suggests that 2 1 for cortical networks. Equations 
(104) and (105) are typical for the sum of independent random variables in which 
case both the average and the variance are proportional to the number of terms 
in the sum, i.e. . The variance in the logarithm of the firing rates can be related 
to the variance of recurrent current through the input-output relationship (101)

N

2 2
2

2 2

I w Nsf A2 (107)

Stability condition for the recurrent network reads 

1
/rec

df f
dI dI df wsN

1  (108) 

Note that here one can disregard the difference between the current on the input 
of each neuron and the average current because of the condition 2 1 . The 
gain in the input-output relationship  can be excluded from the last equation 
using equation (107). After this substitution we arrive at the final result of this 
subsection, which expressed by the stability condition of the recurrent network
in terms of the parameters of the lognormal distribution 

2 A
Ns

. (109)

Therefore, for large networks ( ) stability condition is impossible to satisfy 
if the logarithm of the firing rates has substantial variance i.e. 

1N
2 ~ 1.

Experimental observations of large variance of the logarithm are therefore hard 
to reconcile with the exponential input-output relationship (101).
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2) The case of substantial variance 2 ~ 1.

We will argue here that condition similar to (109) has to be satisfied in this case 
as well. The exact form of the condition is

2 2

2 e
Ns

s (110)

It is possible to satisfy this inequality if 2 1  and if 2 ln 1Ns . We note 
however that the latter case is not consistent with experiments in which 2 1 is 
observed.

Our analysis is essentially based on the following equations that can be easily 
confirmed for lognormal variables 

2 / 2f e e . (111)
2 22 2 (f e e 1) (112)

The coupled dynamics of the network current and the variance of the firing rates 
can be described by the following equations

2 2 2 22 2 2 ( ) ( ) (
2( 1) ( )t t tNst e e e ) s  (113) 

2 2( ) / 2 ( ) / 2
0( 1) t tI t Nse e I  (114) 

Here we assumed that the network weights described by the variables  do not 
change with time and the weight matrix is uncorrelated. In the equilibrium we 
have

2 2 2 2
0 02 2 2

0 2 (Ns e e e s)  (115) 

Dividing (113) by (115) we obtain 
2 2

2 2
0

2 2
0

2 (
( )2 ( ) 2

2
0

( 1) t
ttt ee e

e s

) s  (116) 

Using the relationship

0( ) ( ) / lnt I t f (117)
and introducing small deviations from the equilibrium 

2 2
0( ) ( )t t (118)

( ) ( )I t I I t (119)
we obtain the following linear system of equations for the small deviations 
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( 1) ( ) ( )
2

I t I t t  (120) 

and
2 2

0

2 2
0

2 2
0 0

2 2( 1) ( ) ( )e st I t
e s

t . (121) 

Here the coefficient

2 2
0

2
0Ns

e s
. (122)

It can be shown that in the large-  limit the eigenvalues of the system (120) and 
(121) are below 1 in absolute value if 

N
1, i.e. when condition (110) is satisfied. 

Because 2 2
0 1  experimentally and  the condition1Ns 1 is difficult 

to satisfy. The hypothesis of exponential firing rates (101) is therefore not 
compatible with the lognormal distribution produced by the recurrent networks 
because of the lack of stability.
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