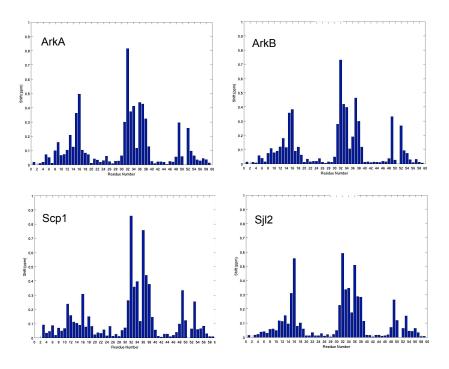


SUPPLEMENTAL DATA


Supplementary Figure 1. Stollar et al

(A) The ¹H-¹⁵N HSQC of the AbpSH3:ArkA complex. The end of the solid line indicates the position of the peak in the unbound state. The dashed lines indicate pairs of sidechain amide protons. **(B)** Superimposition of 20 lowest energy structures of the AbpSh3-ArkA complex. The SH3 domain is in silver with the peptide in green.

Supplementary Figure 2. Stollar et al

Chemical shift differences between unbound and peptide bound AbpSH3 complexes.

Supplementary table 1. Stollar et al

NOEs

Intermolecular NOEs Intramolecular NOEs (AbpSH3) Intramolecular NOEs (ArkA)	248 1930 317	
Dipolar coupling restraints (Q factor)		
HN-N CA-CB CA-HA CA-CO N-CO	$67 (0.15 \pm 0.013)$ $62 (0.16 \pm 0.013)$ $53 (0.14 \pm 0.010)$ $66 (0.24 \pm 0.017)$ $60 (0.30 \pm 0.022)$	
RMSD from ideal distances (Å)		
Bonds NOEs	$\begin{array}{c} 0.0038 \pm 0.0002 \\ 0.0280 \pm 0.0050 \end{array}$	
RMSD from ideal angles (degrees)		
Bond angles (°) Improper (°)	$\begin{array}{c} 0.59 \pm 0.013 \\ 0.57 \pm 0.036 \end{array}$	
RMSD from mean structure (Å)	Backbone Heavy Atoms	
AbpSH3 (1 to 59) Ark1 (3 to -10) Complex (1 to 59, 3 to -10)	$\begin{array}{ll} 0.30 \pm 0.1 & 0.90 \pm 0.1 \\ 0.41 \pm 0.3 & 1.41 \pm 0.5 \\ 0.37 \pm 0.2 & 1.05 \pm 0.2 \end{array}$	

suggesting that NOEs arising from these two states are constraining this position.

77.9%

17.9% 2.2% 1.9%*

Procheck ramachandran analysis for complex (1 to 59, 3 to -10)

Residues in most favored regions

Residues in additional allowed regions Residues in generously allowed regions Residues in disallowed regions

^{*}D15 is the major residue in the disallowed region. CPMG relaxation-dispersion experiments in the bound complex revealed the presence of millisecond to microsecond timescale exchange with a minor state for the D15 amide only (data not shown),

Supplementary Table 2. Stollar et al

Strain	Genotype	Source
BY263 ^a	MATa trp1Δ63 ura3-52 lys2-801 ade2-107 his3Δ200 leu2-Δ1	Measday et al (1994) Science 266:1391-5.
BY4741 ^b	MATa ura 3 Δ0 leu 2 Δ0 his 3 Δ1 met 15 Δ0	Brachmann et al (1998) Yeast 14:115-32.
ark1∆::kan	BY4741 ark1\Dark1\	Deletion consortium
BY4075 ^b	MATa ura3 leu2 his3 ark1-Δ608-626- 3xMyc::Hph prk1Δ::kan	Haynes et al (2007) Genetics 176: 193-208.
^a S288C deri	vative.	

^b Strains from the deletion consortium are isogenic to the parent strain, BY4741, also an S288C derivative.

Supplementary Table 3. Stollar et al

Plasmid	Description
Fiasilliu	Description
pARK1 WT	Contains a 2.8-kb fragment including 0.9-kb promoter region, and the 1.9-kb <i>ARK</i> 1 coding sequence (codons 1-638), fused to the N terminus of GFP
pΔArkB	pARK1 WT derivative containing ARK1 with the 622-629 amino acid deletion
pArkA_P(2)A	pARK1 WT derivative containing <i>ARK1</i> with the P ₆₀₉ A substitution and 622-629 amino acid deletion
pArkA_P(2)V	pARK1 WT derivative containing <i>ARK1</i> with the P ₆₀₉ V substitution and 622-629 amino acid deletion
pArkA_P(0)A	pARK1 WT derivative containing <i>ARK1</i> with the P ₆₁₁ A substitution and 622-629 amino acid deletion
pArkA_P(-1)A	pARK1 WT derivative containing <i>ARK1</i> with the P ₆₁₂ A substitution and 622-629 amino acid deletion
pArkA_K(-3)A	pARK1 WT derivative containing <i>ARK1</i> with the K ₆₁₄ A substitution and 622-629 amino acid deletion
pArkA_K(-3)R	pARK1 WT derivative containing <i>ARK1</i> with the K ₆₁₄ R substitution and 622-629 amino acid deletion
pArkA_H(-6)A	pARK1 WT derivative containing <i>ARK1</i> with the H ₆₁₇ A substitution and 622-629 amino acid deletion
pArkA_L(-7)A	pARK1 WT derivative containing <i>ARK1</i> with the L ₆₁₈ A substitution and 622-629 amino acid deletion
pArkB	pARK1 WT derivative containing ARK1 with the 605-615 amino acid deletion
pPrk	pARK1 WT derivative containing ARK1 with the 605-629 amino acid replacement for residues 746-762 from Prk1p
pScp	pARK1 WT derivative containing ARK1 with the 605-629 amino acid replacement for residues 154-170 from Scp1p
pSrv	pARK1 WT derivative containing ARK1 with the 605-629 amino acid replacement for residues 350-367 from Srv2p
pSjl	pARK1 WT derivative containing ARK1 with the 605-629 amino acid replacement for residues 1111-1127 from Sjl2p