
Database analysis of simulated and recorded

electrophysiological datasets with

PANDORA's Toolbox

Cengiz Günay, Jeremy R. Edgerton, Su Li,

Thomas Sangrey, Astrid A. Prinz and Dieter Jaeger

April 14, 2009

1

*Response to Reviewer Comments

A Supplementary Materials

A.1 Supplementary Methods

A.1.1 Object-oriented software architecture

PANDORA works in Matlab, which provides a suitable environment for nu-

merical data processing and supports object-oriented (OO) programming.

PANDORA uses the object-oriented programming to separate each of its

major components in a class that holds functions and de�nes an internal

structure for its objects. An object stands out by the speci�c data it con-

tains, separating it from all other objects of that class. Matlab objects make

use of the structure data type for representing objects. Programs that are

placed under directories with a name such as @myclass/ become functions

of the class called myclass. The function that has the same name as the

class and directory name (e.g., @myclass/myclass.m) is called the construc-

tor, and it is responsible for creating a structure variable for the class and

register it as an object (Alg. 1).

Algorithm 1 Example constructor function @myclass/myclass.m that
builds a Matlab object.

1 s t r = s t r u c t ; % crea t e a s t r u c t u r e v a r i a b l e

s t r . name = 'my new in t e g e r ob j e c t ' ;

3 s t r . va lue = 5 ;

obj = c l a s s (obj , ' myclass ') ; % ob j e c t b e l ong s to ' myclass '

58

Algorithm 2 Creating a dataset object to construct and manipulate a
database.

>> my_dataset_obj =
2 my_dataset_class (' data /∗ . bin ' , arguments . . .)

>> my_database_obj =
4 param_tests_db (my_dataset_obj)

>> sorted_obj =
6 sor t rows (my_database_obj , 'AP_amplitude ')

A.1.2 Creating a dataset object

Creating a dataset object from a set of �les involves calling a dataset con-

structor (Alg. 2, line 1). This example demonstrates constructing the dataset

object from the description of the �les and other arguments specifying details

of loading those �les into Matlab. Together with the information from this

function call and from the class de�nition, the newly created my_dataset_obj

variable must have all the information that is required to create a database:

1. The location of the data �les (e.g., path and �le wildcard pattern),

2. The program used to load the data into Matlab (e.g., readgenesis),

3. The parameters required to correctly interpret the loaded data (units,

scaling factors, etc.),

4. The analysis function to extract measured characteristics from a trace

(e.g., getProfileAllSpikes),

5. The function to extract simulation or recording parameters associated

with a trace (e.g., parse �le name to read parameter values).

59

The extracted parameters and measurements must be uniform to �ll a database

such that the database object can be constructed automatically (Alg. 2, line

3). In this step, the params_tests_db function of the dataset creates the

database object by processing all dataset entries (e.g., �le names), and com-

putes measured characteristics for each entry. The resulting database table

has as many rows as the number of �les in the original dataset, and has as

many columns as the number of measurements that the analysis function

generated plus the number of associated parameters (Fig. 1).

Once all parameters and measurements are loaded into a database for-

mat, the database analysis functions can be used. The database can be

sorted, partitioned, queried and sifted. The example sorts the rows of the

database by the action potential (AP) amplitude measure and returns the

new database object, sorted_obj (Alg. 2, line 5).

A.1.3 List of input �le formats

As of the writing of this manuscript, NeuroShare supports �les acquired

with devices or programs of Alpha Omega, Cambridge Electronic Design,

NeuroExplorer, Plexon, R.C. Electronics Inc., Tucker-Davis Technologies,

and Cyberkinetics Inc. (formerly Bionic Technologies Inc). However, Neu-

roShare only allows �les to be loaded into Matlab in the Microsoft Win-

dows operating system. PANDORA can also load acquisition data �les from

pClamp (Molecular Devices Corporation, Inc., Sunnyvale, CA, U.S.A.) via

the Abf_atf_import �lter (Giugliano, 2002), and Spike2 (Cambridge Elec-

60

Algorithm 3 Querying is accomplished by allowing symbolic names for ad-
dressing rows and columns of the database matrix. The colon operator (:) in
Matlab is a wildcard indicating all elements (i.e., rows and columns respec-
tively in the example on line 3).

>> db_obj2 =
2 db_obj (1 : 1 0 , { ' neuron_index ' , ' f i r e_ r a t e ' })

>> db_obj2 =
4 db_obj (db_obj (: , ' neuron_index ') == 46 , :)

>> db_obj2 =
6 db_obj (anyRows (db_obj (: , ' neuron_index ') , [4 6 ; 56 ; 1 2]) , :)

>> db_obj2 =
8 db_obj (db_obj (: , ' neuron_index ') ~= 46 &

(db_obj (: , 'CIP ') > 100 |
10 db_obj (: , ' r a t e ') <= 50) , :) ,

>> db_obj2 =
12 model_db_obj (anyRows (model_db_obj (: , ' r a t e ') ,

neuron_db_obj (: , ' r a t e ')) , :)

tronic Design Limited, Cambridge, England) which includes a Matlab ex-

port function starting in version 6. In addition, some import �lters for cus-

tom stimulation, dynamic clamp and data acquisition programs are provided

(PCDX and NeuroSAGE, Jaeger Lab, Emory Univ., Atlanta, GA, U.S.A.).

A.1.4 Details of the querying capabilities

Querying is provided by re-de�ning (overloading) the Matlab parenthesis

operator (�()�) to accept selecting rows, columns and pages (the third di-

mension) with numerals or with text labels that match the table metadata

(Alg. 3, line 1). This query chooses the �rst ten rows and the two labeled

columns from my_db. The resulting selection is stored into a new variable,

61

new_db, creating a new database object.

Logical queries work by �nding matching row indices after �ltering all

rows of a database. As an example, an arbitrary �neuron_index� column is

matched against a scalar value (Alg. 3, line 3). This was achieved by over-

loading the function of the equality (==) comparison operator. The equality

operator did not allow �nding a match among several values disjunctively,

for which the anyRows function must be used (Alg. 3, line 5). Both queries

return a new_db that contains the rows of my_db which match the desired

neuron indices.

The querying system is similarly expressive to SQL when it comes to se-

lecting entries of a table by a combination of multiple logical expressions.

Conjunctive (&), disjunctive (|) or negative (~) Matlab expressions can be

formed from constants or from variables obtained from other tables (Alg. 3,

line 7). This query �nds the database rows of any neuron other than #46

which received a current injection pulse (CIP) larger than 100 pA and re-

sponded by �ring slower than 50 Hz.

Taking the query results from one table and applying them to another

query is called nesting. Allowing nested queries is critical for expressiveness

in forming complex queries (Alg. 3, line 11). This query selects model_db

neurons that �re at the same rates as real neurons of neuron_db.

62

A.1.5 Performance of querying operations

The querying and measure calculation performance measurements in Table 1

were obtained on a PC computer with two 64-bit AMD Opteron 244 proces-

sors, each operating at 1800 MHz clock speed with a total of 3 GB of RAM,

running MATLAB Version 7.3.0.298 (R2006b) for a 64-bit Linux. The dis-

played times in the table were obtained by �tting parameters of template

polynomial functions (such as t = a+ bn+ cm+dnm) from the observations.

For some functions, the parameters were optimized with the fminsearch (or

fmins in newer versions) of Matlab. This resulted in the following equations:

• The equality operator (==) took n× 77× 10−6 s.

• The anyRows function took 7.0× 10−3 + n× 1.16× 10−6 +m× 9.40×

10−6 + n×m× 0.052× 10−6 s.

• Conjunctions tookm×1.8×10−3+n (m× 2.80× 10−6 − 5.69× 10−6)−

1.4× 10−3 s.

• Applying query results took 4.16×10−3 +n×0.55×10−6 +m×49.33×

10−6 s.

The time measurements in Table 2 for accessing, indexing and �ltering op-

erations used the PANDORA commands in Alg. 4:

• Numerically indexing a Matlab data matrix (line 2) extracted from a

DB (line 1).

63

Algorithm 4 Accessing, indexing and �ltering times were measured using
these commands.

1 >> data = a_db . data
>> part_data= data (1 : 100 , 101)

3 >> part_data = a_db . data (1 : 100 , 101)
>> a_new_db = onlyRowsTests (a_db , 1 :100 , 101)

5 >> a_new_db = onlyRowsTests (a_db , 1 : 100 , ' sp ike_rate ')
>> a_new_db = a_db(1 : 100 , 101)

7 >> a_new_db = a_db(1 : 100 , ' sp ike_rate ')

• Numerically indexing the data matrix of a DB table (line 3).

• Filtering an existing DB table, a_db, to produce a new DB table,

a_new_db using numeric (line 4) and symbolic (line 5) column indexing.

• Filtering using the overloaded parenthesis operators (lines 6 and 7).

A.1.6 Comparing characteristic distributions

Distributions of electrophysiological characteristics from databases can be

visualized for comparison (Fig. 5A). In addition, statistics can be calculated

to compare empirical distributions to each other (Fig. 5A) or to model distri-

butions. To compare our discrete histograms, we used the Kullback-Leibler

(KL) divergence measure (Kullback and Leibler, 1951), which gives the dif-

ference of two probability distributions in bits with

D(p1 ‖ p2) =
∑
x

p1(x) log

(
p1(x)

p2(x)

)
.

64

A
pAcip 0 100 200 0 100 200
PicroTx 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
KynAcid 0.001 0.001 0.001 0.001 0.001 0.001
TTX 0 0 0 0 0 0

Apamin 0 0 0 0 0 0
drug 4AP 0 0 0 0 0 0
NeuronId 107 107 107 108 108 108

TracesetIndex 109 109 109 111 111 111
NumDuplicates 2 3 1 2 3 1

RowIndex 1 2 6 7 8 12
steady rate 0 25.9982 0 0 29.9673 50.5537

B
PicroTx 0.0001 0.0001
KynAcid 0.001 0.001
TTX 0 0

Apamin 0 0
drug 4AP 0 0
NeuronId 107 108

TracesetIndex 109 111
steady rate 0pA 0 0

steady rate D100pA 25.9982 29.9673
steady rate D200pA 0 50.5537

Table S1: Characteristics extracted from the same neuron in di�erent stimu-
lus conditions could be combined (see Methods and Supp. Matlab Code 2).
(A) Before combining, three di�erent current injection values, 0, 100, 200 pA,
existed for neurons with NeuronIds 107 and 108 in this example database.
(B) After combining, each neuron is represented once and the �steady rate�
characteristic extracted at di�erent current injection values was replicated
by su�xing a proper stimulation value (e.g., �_D100pA� stood for a depo-
larizing 100 pA current).

Because this form of the KL divergence is asymmetric, we also provided a

symmetric version that is called the resistor average (Johnson and Sinanovi¢,

2001; Sinanovi¢ and Johnson, 2007), de�ned as

1

R(p1, p2)
=

1

D(p1 ‖ p2)
+

1

D(p2 ‖ p1)
.

We implemented these measures under the histogram_db database object

(See calcKLhists function).

A.1.7 Combining trials with di�erent stimulus parameters

After averaging rows with redundant stimulus conditions, the database still

contained multiple rows of characteristics for each neuron because of the dif-

ferent stimuli applied (Table S1A). However, many types of statistical anal-

65

yses require that each neuron be treated as a single set of results (such as

the histograms in Fig. 5A), necessitating a database where each row points

to one unique neuron. In the speci�c experimental procedure, the stimulus

parameter varied was the magnitude of a current injection pulse (CIP). To

achieve a one-neuron-per-row database, we used PANDORA to �nd all CIP

magnitudes applied to each neuron, and merged selected characteristics from

each di�erent stimulus magnitude into a single database row (Table S1B).

This format increased the e�ciency of representation by selecting only needed

characteristics for each stimulus condition. For instance, �ring rate charac-

teristics were omitted for hyperpolarizing current stimuli since the neurons

were silent, but they were kept for depolarizing stimuli because we were in-

terested in �ring rate changes with stimulus magnitude. Once the �ring rate

characteristics from di�erent current injections on one neuron were combined

together, it was possible to calculate each neuron's frequency-current (f -I)

relationship (e.g., Fig. 11A). Although this approach was specialized for the

experimental study where only a current stimulus condition was varied, the

underlying generic functions (see next section) can be used for similar pur-

poses in other experimental or simulation protocols. An important feature

of these functions was to properly treat the stimulus conditions that were

missing in some neurons.

66

A
PicroTx 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
KynAcid 0.001 0.001 0.001 0.001 0.001 0.001
TTX 0 7e− 09 0 7e− 09 0 7e− 09

Apamin 0 0 0 0 0 0
drug 4AP 0 0 0 0 0 0
NeuronId 107 107 108 108 110 110

D100pA steady rate 25.9982 19.6056 29.9673 22.7628 23.8443 20.9744

B
Page 1 Page 2 Page 3

TTX 0 7e− 09 0 7e− 09 0 7e− 09
D100pA steady rate 25.9982 19.6056 29.9673 22.7628 23.8443 20.9744

RowIndex 1 2 3 4 5 6

C
d1_2 −6.3926 −7.2045 −2.8699

PageIndex 1 2 3

D
Page 1 Page 2

TTX 0 0 0 7e− 09 7e− 09 7e− 09
D100pA steady rate 25.9982 29.9673 23.8443 19.6056 22.7628 20.9744

RowIndex 1 3 5 2 4 6

Table S2: Steps for multivariate analysis of a sample TTX database with
several parameters and one rate characteristic (see commands in Supp. Mat-
lab Code 2). (A) After reducing the example subset DB (Table 4) to
only three neurons and two TTX concentrations (see Fig. 8A). (B) Look-
ing for background conditions with only a changing TTX parameter using
the invarValues function resulted in a database of the rate characteristics
in di�erent pages for each separate neuron. RowIndex points back to rows
of the original DB in panel B to enable retrieving other constant parame-
ters. (C) From the 3D database, di�erential e�ects of TTX between its �rst
and second value (d1_2) on the rate characteristic was mostly negative (see
Fig. 8C). PageIndex points back to the pages of the 3D database in panel C
to enable accessing absolute rate values. (D) Swapping the page and row di-
mensions of the 3D database groups same TTX values in each page, suitable
for displaying average e�ects of TTX (see Fig. 8B).

67

A.1.8 Multivariate parameter analysis

Multivariate analysis is used to �nd parameter e�ects on measured charac-

teristics in databases with several changing parameters (Table S2A). First,

the database is sorted to identify background parameter combinations and

to isolate the e�ect of target parameters (Table S2B and Fig. 8A; see the

invarValues function in Supp. Mat. A.3). This is equivalent to the �group

by� clause in extensions to the SQL language (http://dev.mysql.com/doc/

refman/5.1/en/select.html), but it di�ers in implementation. In PAN-

DORA, this function produces a new database with a three-dimensional ma-

trix (Table S2B; see the tests_3D_db class in Supp. Mat. A.3) where each

page of the matrix (a slice in its third dimension) denotes an invariant back-

ground parameter combination (e.g., other drugs applied) with varying target

parameters (e.g., target drug or model parameter) and associated character-

istics (e.g., �ring rate). The database contains as many pages as there are

invariant backgrounds. This three-dimensional database can be targeted to

several types of further analyses:

1. Di�erential parameter e�ects:

Since each page of the database contains the measured characteristics

for increasing values of target parameters, subtracting successive rows

gives the di�erence in measured characteristics for a change in param-

eter values (Table S2C and see Fig. 8C; see the diff2D function). The

subtraction is done separately in each page of the database. Summing

68

http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html

the rows of this database gives the total change in characteristics from

increasing parameters from the lowest to highest values.

2. Average parameter e�ects:

The statistical summary of parameter e�ects can be found when the

page and row dimensions of the tests_3D_db object are swapped with

the swapRowsPages function. This puts measured characteristics for all

combinations of background parameters in the same page and di�erent

target parameter values in di�erent pages (Table S2D). The statistics

are calculated separately for each page of the database, resulting in a

database table of the average characteristics for each target parameter

value (see Fig. 8B; see the statsMeanStd function). Statistics can also

be calculated to the results of the di�erential parameter e�ects (e.g.,

to �nd the average e�ect of changing a parameter).

3. Reducing database contents based on target parameter values:

After swapping page and row dimensions, the pages with di�erent tar-

get values can be combined back together to yield a two-dimensional

database (Table S1; see the mergePages function). When inserting

the characteristics from each page into a new database, a su�x is

added to indicate the page they came from. Characteristics to take

from each page can be chosen to keep only necessary characteristics.

The mergeMultipleCIPsinOne function uses this method to generate

a three-dimensional database by �nding target values of the current

69

stimulus parameter and then choosing desired characteristics for each

of the current stimulus magnitudes (Table S1). For instance, �ring rate

characteristics are not needed for hyperpolarizing current stimuli.

A.1.9 Distance measures for comparing individual neuron repre-

sentations

To enable comparing characteristic pro�les across neurons, PANDORA of-

fered several methods of calculating the distance between two pro�les. In

PANDORA, the normalized Euclidean distance (dn,m) between the two neu-

ron representations (x, y), is calculated as the average of absolute di�erences

(error) of corresponding N individual characteristics, each normalized by the

measure's standard deviation (σi) from a reference database, with

dx,y =
N∑

i=1

|xi − yi|/Nσi ,

where xi and yi represent the ith characteristic of the neurons. The contri-

bution of individual measure di�erences to this Euclidean distance measure

are inversely proportional to that characteristic's variance in the physiology

database in order to weight each characteristic's importance in accordance

with its physiological variability. In addition, the error from each measure

can be weighted arbitrarily to re�ect other physiological reasons and assump-

tions.

Normalized Euclidean distance assumes that each measured characteristic

70

Algorithm 5 Finding closest matches of a neuron representation (row 34 in
from_db_obj) in another database (to_db_obj) involves two steps. First,
the source neuron representation is extracted and put in a criterion obj
(crit_row_obj on line 1). Then, the target database is sorted according
to distance to the criterion neuron representation to yield a ranked database
(a_ranked_db_obj on line 2).

1 >> crit_row_obj = matchingRow (from_db_obj , 34)
>> a_ranked_db_obj = rankMatching (to_db_obj , crit_row_obj)

is independent. For interdependent characteristics, the Mahalonobis distance

method in PANDORA calculates a distance accounting for the covariance

between characteristics:

d(~x, ~y) =
√

(~x− ~y)TP−1(~x− ~y) ,

where P is the covariance matrix of characteristics in the database and ~x and

~y are neuron characteristic vectors (Mahalanobis, 1936). These distances can

be calculated across neurons in a dataset when the measured characteristics

are collected in a database.

A.1.10 Matching and ranking neuron representations according

to distance

The extracted characteristics from neurons can be used to �nd quantita-

tive distances between neuron representations (see above). Commands used

for this comparison are reviewed here (Alg. 5). The example in the Re-

sults section compared a recorded neuron to model neurons (Table S3). The

71

Criterion Crit. STD Rank 1 (∆/STD) Rank 2 (∆/STD) Rank 3 (∆/STD) Rank 4 (∆/STD)
NaF 250 250 250 250
NaP 0.5 0.5 1 0.5
Kv2 1 0.1 1 10
Kv3 50 50 50 50
Kv4f 10 10 10 20
KCNQ 0.08 0.08 2 0.08
SK 2 2 8 2

CaHVA 0.3 0.3 0.03 0.03
HCN 0.2 0.2 0.2 0.2
morph 1 1 1 1
trial 101396 101387 1768 100757

AHP depth 12.8378 2.8259 9.1446 (−1.31) 8.4588 (−1.55) 8.9246 (−1.38) 12.1371 (−0.25)
AP amplitude 68.6496 9.3287 59.784 (−0.95) 59.417 (−0.99) 59.9227 (−0.94) 60.1521 (−0.91)
AP threshold −44.1695 4.1218 −48.1403 (−0.96) −48.1504 (−0.97) −47.8401 (−0.89) −48.0135 (−0.93)

D100pA �rst 100ms rate 61.9785 16.5595 46.62 (−0.93) 49.7512 (−0.74) 56.3063 (−0.34) 45.5581 (−0.99)
D100pA steady rate 41.843 11.0971 43.4385 (+0.14) 44.9438 (+0.28) 44.9491 (+0.28) 48.8145 (+0.63)
H100pA potential −84.0265 12.8929 −76.9437 (+0.55) −76.8403 (+0.56) −77.4378 (+0.51) −76.9472 (+0.55)

H100pA sag 2.4265 9.5843 1.7168 (−0.07) 1.5728 (−0.09) 1.8669 (−0.06) 1.5188 (−0.09)
resting potential −57.0681 5.9278 −59.4825 (−0.41) −59.3612 (−0.39) −62.1849 (−0.86) −59.3711 (−0.39)
spont �ring rate 8.8003 4.6848 9.6764 (+0.19) 9.8382 (+0.22) 6.8306 (−0.42) 8.3039 (−0.11)

Distance 0.85614 0.85662 0.86978 0.8709

Table S3: Model neurons that best matched a selected recorded neuron
(Criterion) could be found by comparing their characteristic pro�les (see
Supp. Methods A.1.10). The selected recorded neuron's characteristics and
the standard deviation of the characteristics in the recorded neuron database
(Crit. STD) were used to calculate the normalized Euclidean distance (Dis-
tance) for each of the model neurons (see Methods). The top four models
shown had the lowest distances to the selected neuron, which was calculated
from the average of the individual normalized characteristic di�erences shown
in parenthesis (∆/STD). These di�erences were normalized by dividing with
the criterion STD such that they showed the characteristic di�erence in num-
ber of standard deviations. Similarly, the distance calculated indicated the
average STD di�erence from the selected neuron.

72

table showed the ranked database object (a_ranked_db_obj on line 2 of

Alg. 5) which contains both the criterion row information (selected row and

the database's standard deviation) and the resulting ranked target database

contents.

A.1.11 Plotting subsystem

PANDORA improves Matlab's plotting capabilities by providing an object

structure for creating complex plots. A generic plot object is de�ned that

can be superposed over other plot objects and can also be stacked horizon-

tally or vertically. Several commonly used optional plot features, such as

those for managing customized titles, axis labels and the space allocated for

them, are intelligently calculated. Plots are automatically redrawn when

they are resized�enabling most e�cient use of the drawing area at di�erent

scales. Plot objects with customized labels and superposed components can

be displayed in Matlab �gures, printed to a �le, or saved as a Matlab object

to be used later. These plotting functions can be downloaded and used in-

dependent of PANDORA (http://userwww.service.emory.edu/~cgunay/

pandora/#cgmplot).

PANDORA objects are visualized by functions that return generic plot

objects. These objects can be plotted directly, or incorporated as a part of

a more complex plot (e.g., Fig. 11A).

73

http://userwww.service.emory.edu/~cgunay/pandora/#cgmplot
http://userwww.service.emory.edu/~cgunay/pandora/#cgmplot

Algorithm 6 Functions needed to de�ne a new datatype for creating a
database from thermostat readings. The constructor function (line 1) stores
the raw data, which is two arrays of thermostat readings (thermA and
thermB), into the thermostat_obj object. The getResults function (line 7)
returns two desired characteristics about if the average of saved thermostat
readings cross speci�c thresholds.

function thermostat_datatype (thermA , thermB)
2 s t r = s t r u c t ;

s t r . thermA = thermA ;
4 s t r . thermB = thermB ;

thermostat_obj = c l a s s (s t r , ' thermostat_datatype ')
6 end

function r e s u l t s = ge tResu l t s (thermostat_obj)
8 r e s u l t s = s t r u c t ;

r e s u l t s . i sHo t In s i d e = mean(thermostat_obj . thermA) > 70 ;
10 r e s u l t s . i sCo ldOuts ide = mean(thermostat_obj . thermB) < 40 ;

end

A.1.12 Making a database from a custom datatype

If a dataset and its datatype items are not supported by existing PANDORA

structures, new classes can be de�ned. Here, we review the steps to create a

database from a hypothetical thermostat dataset to demonstrate this process.

First, a proper wrapper class for holding basic raw data traces (i.e., ther-

mostat readings) must be de�ned (Alg. 6). The getResults function in this

class de�nes measurements to be entered into the database (Alg. 6, line 7).

Second, a way to load raw data items must be identi�ed to process the

dataset and construct the database (Section A.1.2). This dataset requires

de�ning a new dataset subclass, thermostat_dataset (Alg. 7). The charac-

teristics and metadata are simple, so minimal e�ort is required to build this

74

Algorithm 7 Functions needed to de�ne a new dataset class,
thermostat_dataset, for creating a database from thermostat readings.
The constructor function (line 1) stores a list of sequence numbers that
represent the dataset of thermostat readings and creates a subclass of
params_tests_dataset. The loadItemProfile function (line 6) gets called
for each item in the dataset when addressed by its index. The function reads
the raw thermostat data from an external source using the sequence num-
ber and constructs a thermostat_datatype object (Alg. 6). The datatype
object is used to extract the desired characteristics and the results are encap-
sulated in a results_profile object to be entered into the database. The
getItemParams function (line 11) returns parameter values for each dataset
item (the sequence number and sensitivity of the thermostat), similar to
loadItemProfile. Finally, the paramNames function (line 15) de�nes the
names of the two parameters returned by getItemParams for representing
them in the database.

1 function thermostat_dataset (dataset_seq_numbers)
dataset_obj = . . .

3 c l a s s (obj , ' thermostat_dataset ' , . . .
params_tests_dataset (dataset_seq_numbers)) ;

5 end
function a_pro f i l e = l oad I t emPro f i l e (dataset_obj , index)

7 [thermA , thermB] = readTherm (dataset_obj . l i s t { index }) ;
a_pro f i l e = . . .

9 r e s u l t s_p r o f i l e (g e tResu l t s (thermostat_datatype (thermA , thermB))) ;
end

11 function params = getItemParams (dataset_obj , index)
seq_num = dataset_obj . l i s t { index } ;

13 params = [seq_num , getSens i t iv i tyFromSeq (seq_num)] ;
end

15 function param_names = paramNames (dataset_obj)
param_names = { 'Seq_No ' , ' S e n s i t i v i t y ' } ;

17 end

75

class. The class is composed of a constructor function that takes the new

thermostat numbers, and �le and parameter loader functions that read the

raw data (line 6) and metadata (line 11, 15) to assign them to the proper

locations in the dataset structures.

The thermostat dataset is a simple example and more complex datasets

can be constructed similarly. It is possible to use PANDORA's existing

data types for construct a new data structure. One of the existing classes

is the trace class that can hold any type of time series data in a vector

form (e.g., current, extracellular voltage, or EEG traces) with parameters

for the x-axis and y-axis resolutions. To accommodate a new type of data

that requires parameters or data not supported by the basic trace class, a

new trace subclass similar to cip_trace can be created to take advantage

of existing functions de�ned in trace. cip_trace provides the additional

parameters for the start time and duration of the current-injection pulse

(CIP) for use in measurement functions speci�c to this stimulus type. All

other generic measurements were reused from the trace class. The data

type is accompanied by a compatible dataset class, such as in the above

thermostat example. The params_tests_dataset class provides an abstract

mechanism to acquire the data from a dataset item (e.g., which channels and

traces to load) and parameters to associate with it. This class can be used

for loading simple traces from data �les (see the params_tests_dataset

class in the Supp. Mat. A.3 and the manual at Günay, 2007, 2008a,b), or it

can be extended to a subclass if loading the new data items requires special

76

operations, such as in the above thermostat dataset.

For any new subclass, including children of params_tests_dataset and

trace classes, one needs to de�ne generic functions that allow interaction

with PANDORA conventions such as overloaded indexing and plotting fea-

tures. These functions, such as get and set that allow reading and changing

object properties, can be simply copied from any other PANDORA class pro-

vided that some keywords contained are properly renamed (see the manual

for more information).

A.1.13 Custom dataset for activity sensors

As a real application of making a custom dataset, we review the details of the

analysis of the sensor database from the lobster (see Methods and Results). It

was suggested that homeostatic regulation of neuron activity could improve

by having three sensors in each neuron (Liu et al, 1998). But this required

considering 85,750 possible combinations of the original 366 sensors. To it-

erate across the 85,750 sensor combinations, we created a new PANDORA

dataset class (see Supp. Methods A.1.12), called triplet_dataset, that con-

tained items of FSD sensor triplets. We de�ned the function loadItemProfile

(see Supp. Methods A.1.12) that is run for each sensor triplet, which trains

a classi�er to best predict functional networks based only on these sensor

readings. The prediction success rate of this classi�er on a 10,000-model

network subset was used to indicate the performance of the chosen sen-

sors. In addition, the function calculated other characteristics of the cho-

77

sen sensors, such as how much separation of functional networks from non-

functional networks they obtained in terms of center of gravity between the

two classes. These calculated characteristics were entered into a database

from the triplet_dataset class, which allowed us to compare the classi�-

cation success of the 85,750 sensor triplets.

A.2 Supplementary Matlab Scripts and Data

Supp. Matlab Code 1 Example Matlab script to load a single intracellular

data trace and �nd its spikes and to plot a few histograms from a spike

database obtained from this trace (Alg. 8).

Supp. Matlab Code 2 Example Matlab script to averaging similar stimu-

lus conditions, merging entries into single rows, and �nding invariant param-

eter e�ects. After averaging, the standard deviation (STD) becomes essential

for interpreting the averaged results and it is included in a second page of

the new database, adding a third dimension to the data matrix (Alg. 9).

A.3 List of major PANDORA components and func-

tions

See User and Programmer Manuals in Günay, 2007, 2008a,b for tutorials and

usage details of components and functions.

78

Algorithm 8 Example Matlab script 1.

% Examples in t h i s f i l e r e qu i r e the supplementary Matlab data f i l e :
% load an i n t r a c e l l u l a r t race o f 160 ms
load (' supp_mat_1_dat .mat ')

% crea t e t race o b j e c t wi th 10 kHz sample ra t e and mV un i t s
i f exist (' f i l t f i l t ' , ' f i l e ') == 2

% using the s i g n a l p roce s s ing t oo l b o x
a_trace = trace (test_data , 1e−4, 1e−3, ' t e s t t r a c e ') ;
a_spikes = sp i k e s (a_trace) ;

else

% using the s i g n a l p roce s s ing t oo l b o x
a_trace = trace (test_data , 1e−4, 1e−3, ' t e s t t r a c e ' , . . .

s t r u c t (' sp ike_f inder ' , 2 , ' th r e sho ld ' , −85));
a_spikes = sp i k e s (a_trace) ;

end

% d i s a b l e warnings
warning o f f backtrace
warning o f f calcInitVm : info

% ex t r a c t s p i k e c h a r a c t e r i s t i c s
[r e s u l t s per iod_spikes a_spikes_db spikes_stats_db spikes_hists_dbs]= . . .

ana lyzeSp ike s InPer iod (a_trace , a_spikes , periodWhole (a_trace) , ' ') ;

% d i s p l a y i n f o about s p i k e s DB ex t r a c t e d from data
a_spikes_db %#ok<NOPTS>

% p l o t a l l s p i k e s annotated on the t race (t a k e s a long time f o r the
% 10−second t race !)
plot (a_spikes_db) ;

% p l o t some his tograms
plot (histogram (a_spikes_db , ' InitVm ')) ; % th r e s h o l d v o l t a g e
plot (histogram (a_spikes_db , 'MaxAHP')) ; % AHP magnitude
plot (histogram (a_spikes_db , 'MinVm ')) ; % minimum of AHP vo l t a g e

% make the example p l o t in the paper
p lo tF igure (p lot_abst ract (a_spikes_db , ' annotated sp ike c h a r a c t e r i s t i c s ' , . . .

s t r u c t (' f i x e dS i z e ' , [2 2] , ' ax i sL im i t s ' , [1450 1555 −100 −60] , . . .
' qu i e t ' , 1)))

79

Algorithm 9 Example Matlab script 2.

% Examples in t h i s f i l e r e qu i r e the supplementary Matlab data f i l e :
load ' supp_mat_2_dat .mat '

% Example f o r averag ing rows
% ∗∗
% di s p l a y example database content s be f o r e averag ing (see Table 3A in
manuscript)
displayRows (sor t rows (raw_example1_db , ' pAcip '))
% average the rows
avg_example1_db = meanDuplicateParams (raw_example1_db) ;
% di s p l a y content s a f t e r averag ing
displayRows (sor t rows (avg_example1_db , ' pAcip '))
% op t i ona l l y , generate a formatted LaTeX t a b l e (see Table 3B in manuscript)
s t r i n g 2F i l e (displayRowsTeX (sor t rows (avg_example1_db , ' pAcip ') , . . .

' Parameter in the raw c e l l database . ' , . . .
s t r u c t (' r o t a t e ' , 0 , ' width ' , ' \ textwidth ' , . . .

' l a b e l ' , ' t b l : ttx−c e l l s ')) , ' example−t ab l e . tex ')
% Example f o r combining (merging) rows
% ∗∗
% di s p l a y example database content s be f o r e merging (see Table S1A in manuscript)
displayRowsTeX (sor t rows (merge_example_db , ' NeuronId '))
% merge columns in to rows
merged_db = . . .

mergeMultipleCIPsInOne (delColumns (merge_example_db (: , : , 1) , . . .
{ ' NumDuplicates ' , 'RowIndex ' }) , . . .

{ '_0pA ' , 9 , . . .
'_D100pA ' , 9 , '_D200pA ' , 9})

% di s p l a y a f t e r merging
displayRowsTeX (sor t rows (merged_db , ' NeuronId '))
% op t i ona l l y , generate a formatted LaTeX t a b l e (see Table S1B in manuscript)
s t r i n g 2F i l e (displayRowsTeX (sor t rows (merged_db , ' NeuronId ') , . . .

' Parameter in the raw c e l l database . ' , . . .
s t r u c t (' r o t a t e ' , 0 , ' width ' , ' \ textwidth ' , . . .

' l a b e l ' , ' t b l : ttx−c e l l s ')) , [' example− ' . . .
' t ab l e . tex '])

% Example f o r inva r i an t parameter e f f e c t s
% ∗∗
% di s p l a y database content s o f TTX c e l l s (see Table 4 in manuscript)
displayRows (sor t rows (ttx_example1_db , ' NeuronId '))
% s e l e c t two TTX concent ra t ions and three neurons
ttx_reduced_db = ttx_example1_db (anyRows (ttx_example1_db (: , 'TTX') , [0 ; . . .

7e−9]) & anyRows (ttx_example1_db (: , ' NeuronId ') , [1 0 7 ; . . .
108 ; 1 10]) , :)

% f ind invar i an t parameter e f f e c t s on ex t r a c t ed c h a r a c t e r i s t i c s
ttx_invar_reduced_db = invarParam (delColumns (ttx_reduced_db , ' Traceset Index ') , 'TTX')
% Find d i f f e r e n t i a l e f f e c t s o f TTX on ra te
ttx_diffed_db = di f f 2D (ttx_invar_reduced_db , ' D100pA_steady_rate ') ;
% Plot as a bar p l o t (Figure 8C in manuscript)
p lo tF igure (plotBox (ttx_diffed_db (: , 'd1_2 ') , ' ' , . . .

s t r u c t (' qu i e t ' , 1 , ' putLabels ' , 1 , ' f i x e dS i z e ' , . . .
[2 . 5 2] , ' colormap ' , [0 0 0])))

% Find s t a t i s t i c s o f parameter e f f e c t s
ttx_stats_db = statsMeanSE (swapRowsPages (ttx_invar_reduced_db)) ;
% p l o t bar p l o t showing parameter e f f e c t s (see Figure 8B in manuscript)
p lo tF igure (plot_bars (ttx_stats_db (: , { 'TTX' , ' D100pA_steady_rate ' } , :) , . . .

' ' , . . .
s t r u c t (' pageVar iable ' , 'TTX' , ' ax i sL im i t s ' , [NaN NaN . . .

20 30] , ' qu i e t ' , 1 , ' f i x e d S i z e ' , [2 . 5 2] , ' colormap ' , . . .
[0 0 0])))80

Basic data wrapper classes that de�ne the measurements:

trace A voltage/current trace.

spikes Spike times of a trace.

spike_shape Averaged spike shape from a trace.

period De�nes time periods to operate on trace or spikes

objects.

cip_trace A voltage trace with a CIP applied.

Pro�le classes that hold measurement results:

result_pro�le Base class that holds a results structure.

trace_pro�le Generic example class for holding a trace pro�le.

cip_trace_pro�le Holds cip_trace results. Template class designed

only for sub-classing.

cip_trace_allspikes_pro�le Created by cip_trace/getPro�leAllSpikes, contains

statistics of spike shape measures from individual

spikes.

Dataset classes that point to or hold raw data:

params_tests_dataset Base class for datasets.

params_tests_�leset Holds a list of �lenames and associated information,

capable of creating a params_tests_db.

params_cip_trace_�leset Fileset from which cip_trace objects can be created.

physiol_cip_traceset Dataset of a traceset from a single �le.

physiol_cip_traceset_�leset Dataset of a tracesets from many �les.

81

Database classes created from datasets:

tests_db Base class for databases. Contains many utilities.

params_tests_db DB extended to hold parameter values associated

with results.

spikes_db Holds measures from each individual spike in a trace.

test_3D_db 3D database of tests that vary with a third variable.

corrcoefs_db Holds correlation coe�cients.

histogram_db Holds histogram bins.

stats_db Holds statistical measurements.

ranked_db Database ranked for a criterion, holds error values or

distances.

82

Major database functions of tests_db:

corrcoef Calculates correlation coe�cients of selected

columns.

crossProd Creates a new database by taking the set

cross-product of two databases.

cov Calculates covariance matrix.

enumerateColumns Find unique values in selected columns and replace

with enumerated numbers.

factorac Factor analysis.

�llMissingColumns Put this value in NaN columns.

groupBy Equivalent to SQL GROUP BY clause, splice table

by unique values of selected columns.

histogram Calculates histogram of selected column.

invarValues Find unique values of background columns and put

the remaining columns in pages of 3D table.

princomp Finds principal components.

sortrows Sorts rows for chosen columns.

statsMeanStd Calculates mean and STD of rows.

matchingRow Extracts a selected row and information about

statistics of a database for comparing to another

database.

rankMatching Uses the extracted information from matchingRow

to rank a database according to distance.

83

Bundle classes that combine a database and original dataset:

dataset_db_bundle Base class of bundles. Puts a processed and raw DBs

with datasets.

model_ct_bundle Bundle for model databases.

physiol_bundle Bundle for physiology databases.

Plotting classes:

plot_abstract Base class that holds information su�cient to

generate any plot.

plot_simple Simple extension that works for most simple plots.

plot_stack Holds horizontal or vertical stack of plot_abstract

objects.

plot_superpose Allows superposing di�erent plot_abstract's in the

same axis.

plot_bars Multi-axis bar plot with extended errorbars.

plot_errorbar Errorbar plot.

plot_errorbars Multi-axis errorbar plot.

Classes for generating formatted reports:

doc_generate Base class for all document classes.

doc_plot Holds a plot_abstract and captions, etc.

doc_multi Combines multiple doc_generate objects.

84

Script control classes for cluster computing:

script_factory Generates a set of scripts based on a recipe.

script_array Designed to execute an array job serially on a

computer.

script_array_for_cluster Executes an array job on a cluster computer.

References

Giugliano M (2002) Abf_atf_import: Importing Axon Binary and Axon

Text Files into MATLAB for processing, visualization and analysis. MAT-

LAB File Exchange, URL http://www.mathworks.com/matlabcentral/

fileexchange

Günay C (2007) Plotting and analysis for neural database-oriented research

applications (PANDORA) toolbox. URL http://userwww.service.

emory.edu/~cgunay/pandora

Günay C (2008a) PANDORA Neural Analysis Toolbox. Intenational Neu-

roinformatics Coordinating Facility (INCF) Software Center, URL http:

//software.incf.org/software/44/view/PANDORA

Günay C (2008b) PANDORA Neural Analysis Toolbox. SimToolDB, URL

http://senselab.med.yale.edu/SimToolDB

Johnson DH, Sinanovi¢ S (2001) Symmetrizing the kullback-leibler distance.

Tech. rep., Electrical & Computer Engineering Department, MS380 Rice

85

http://www.mathworks.com/matlabcentral/fileexchange
http://www.mathworks.com/matlabcentral/fileexchange
http://userwww.service.emory.edu/~cgunay/pandora
http://userwww.service.emory.edu/~cgunay/pandora
http://software.incf.org/software/44/view/PANDORA
http://software.incf.org/software/44/view/PANDORA
http://senselab.med.yale.edu/SimToolDB

University Houston, Texas 77005-1892, URL http://www-dsp.rice.edu/

~dhj/resistor.pdf

Kullback S, Leibler R (1951) On information and su�ciency. Annals of Math-

ematical Statistics 22(1):79�86

Liu Z, Golowasch J, Marder E, Abbott LF (1998) A model neuron with

activity-dependent conductances regulated by multiple calcium sensors. J

Neurosci 18(7):2309�20

Mahalanobis P (1936) On the generalized distance in statistics. Proceedings

of the National Institute of Science of India 12:49�55

Sinanovi¢ S, Johnson DH (2007) Toward a theory of information processing.

Signal Processing 87:1326�44

86

http://www-dsp.rice.edu/~dhj/resistor.pdf
http://www-dsp.rice.edu/~dhj/resistor.pdf

