
Supporting Appendix

Bending of the Microtubule Tip and Progression of the Path

We calculate the average microtubule trajectory under a force density fe directed along

the x-axis (Fig. 5a). The microtubule’s path coordinates s, θ are defined within the cartesian

reference frame as depicted in the figure. As explained in the main text, the average curva-

ture of the microtubule path 〈dθ/ds〉 is related to the microscopic bending of the microtubule

tip θ′m(s) (Fig. 5b) as 〈
dθ

ds
(s)

〉
≈

〈
θ′m(s)

d

〉
. (5)

To determine the macroscopic θ(s) we need to calculate the microscopic bending θ′m(s) due

to an external perpendicular force f⊥ = fesinθ(s).

Bending of the microtubule tip

We relate the microscopic bending of the microtubule tip to its material properties. We

consider the bending of the free tip of length d (Fig. 5c) that is fixed in position and

orientation (θ′ = 0) at the origin. Using the microscopic coordinates θ′, s′ as defined in the

figure, we express the microscopic tip curvature as a function of the bending momentum

M(s′) [1]
dθ′

ds′
= −M(s′)

EI
. (6)

Here E is the bending modulus and I is the second moment of inertia. We calculate the

internal shear force F (s′) and internal bending momentum M(s′) on a cross section of the

tip segment of length (〈d〉−s′) (Fig. 5d). From force balance we find F (s′) = f⊥(d−s′) and

from balance of momentum we find M(s′) = −f⊥
2

(d − s′)2. Substituting M(s′) into Eq. 6

we obtain an expression for the shape of the bent tip,

dθ′

ds′
=

f⊥
2EI

(d− s′)2. (7)

Solving this equation with the boundary condition θ′(0) = 0 yields for the shape of the tip

θ′(s′) =
f⊥

6EI
(s′3 − 3ds′2 + 3d2s′), (8)

1



f
⊥ θ'

m

d

d - s’M

F

f
⊥

d θ
m '(s)

f
⊥

θ(s)

x

y
(a)

dθ

ds
(s)

s f
θ(s)

(b)

(c) (d)

θ'(s')
s'

FIG. 5: (a) Microtubule trajectory under force density f along the x-axis. The path coordinates

θ, s describe the trajectory. (b) The macroscopic path trajectory is described in terms of the

microscopic bending of the microtubule tip θ′m under the perpendicular force f⊥, the magnitude

of which is depending on the microtubule’s orientation θ(s). (c) Bending of the tip in microscopic

coordinates θ′, s′. (d) Free-body-diagram of the microtubule tip defining the internal shear force

F and bending momentum M as a function of position s′.

which defines the deviation at the end of the tip as θ′m = f⊥d3

6EI
. Substituting this in Eq. 5

we find that the local curvature of the microtubule trajectory is

〈
dθ

ds

〉
=

〈
fed

2

6EI
sinθ

〉
. (9)

For the averaging of the right-hand side of this equation, we use make use of the fact that

the tip lengths d are exponentially distributed as a result of the random placement of kinesin

motors on a a surface. The second moment 〈d2〉 of an exponential distribution with mean

〈d〉 equals 2〈d〉2. This result, combined with the substitution of EI=kbTp yields

〈
dθ

ds

〉
=

fe 〈d〉2
3kbTp

sinθ. (10)

.
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Expression for the microtubule trajectory

Having obtained an expression for the local curvature (Eq. 9), we now find the expression

for the microtubule trajectory. For this purpose, we will express the path curvature in

cartesian coordinates as
dθ

ds
=

1

[1 + ( dy
dx

)2]3/2

d2y

dx2
. (11)

To circumvent an infinite boundary condition at the origin ( dy
dx
≡ ∞) we will solve the

trajectory for a microtubule starting at the origin oriented along the x-axis, and subjected

to a force density directed along the y-axis. In the final solution we will then interchange

the x and y coordinates to arrive at a description for the trajectory as depicted in Fig.

5a. Thus, we combine Eqs. 9-11 where we replace sinθ with cosθ because of the axis inter-

change. Rewriting cos(θ) = [1 + ( dy
dx

)2]−1/2 we arrive at the differential equation describing

the microtubule trajectory
d2y

dx2
= [1 + (

dy

dx
)2]

fe〈d〉2
3kbTp

. (12)

Solving the equation with initial conditions dy
dx
|0 = 0, and y(0) = 0 we find that y(x) =

−R0ln(cos x
R0

), where R0 = 3kbTp
fe〈d〉2 . Interchanging the x and y coordinates according to

Fig. 5a we obtain

y(x) = R0arccos(e
− x

R0 ). (13)

Magnitude of the Electric Field-Induced Force

We calculate the expression for the electric field-induced force in the situation of station-

ary electrophoresis, that is, the force that is exerted on a charged object which is prevented

from moving in an electric field. We show a cartoon of the experimental situation Fig. 6a.

A negatively charged microtubule is subjected to an electric field E⊥ which is directed per-

pendicular to its long axis. The field exerts a force per unit length of the microtubule which

we denote fq. Moreover, the electric field also exerts force on the counter ions immediately

around the microtubule. As a result of this, and additionally because of any electro-osmotic

flow, the fluid will move around the microtubule and exert a force per unit length of the

microtubule, ffluid, in the direction indicated. Thus, the effect of the electric field is to exert
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a net perpendicular force on the microtubule,

f⊥ = fq + ffluid, (14)

which is balanced by the mechanical force fmech, that is exerted through the kinesin

molecules.

It remains to calculate the magnitude of the forces in Eq. 14. The magnitude of the

electrical force fq equals λE⊥, where λ is the line-charge density of the microtubule. The

magnitude of the fluid forces can be calculated from the fluid velocity profile v around the

microtubule tip. This profile can be obtained from solving the Navier-Stokes equation,

η∇2v +∇P = −ρ∇ψ. (15)

The first term represents the viscous forces, with η the viscosity of the fluid, the second term

represents the pressure forces, with P the hydrostatic pressure, and the last term denotes the

electrical forces on the fluid, through the charge density ρ and potential ψ. In the situation

of stationary electrophoresis, we need to solve Eq. 15 with the boundary conditions v = 0

at positions 0 (microtubule surface) and X, where X denotes the surfaces of the channel

walls (no-slip boundary condition). A schematic of the fluid velocity profile is depicted in

Fig. 6b.

The linearity of the Navier-Stokes equations allows us to state the solution to Eq. 15 as

v=vh + ve [2], where vh is the solution to the homogeneous differential equation, and ve is

a particular solution to Eq. 15. The boundary conditions request that vh = ve = 0 at the

no-slip surfaces X and that vh = −ve at the surface of the microtubule (Fig. 6 b-d). In

other words, the solution to the problem of stationary electrophoresis can be found from a

superposition of solutions to the following homogeneous and particular differential equations

for vh and ve, respectively (with Ph + Pe = P ),

η∇2vh +∇Ph = 0 with vh(X) = 0, vh(0) = −ve(0),

η∇2ve +∇Pe = −ρ∇ψ with ve(X) = 0, ve(0) = µ⊥E⊥.
(16)

These differential equations describe the well-known situations of (i) the motion of an object

with a certain velocity vh(0) by a non-electric force (Fig. 6c), that is, purely hydrodynamic

motion, and (ii) the free electrophoresis of an object (Fig. 6d) with velocity ve(0), due

to its mobility µ⊥. For both situations the magnitude of the resultant fluid forces are
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FIG. 6: (a) Schematic of the experimental situation. A microtubule is subjected to a perpendicular

electric field E⊥. The electric field exerts a force density fq on the negatively charged microtubule.

The moving fluid exerts a force density ffluid which we calculate. The microtubule is hold taut by a

mechanical force exerted by the kinesin fmech. (b-d) To calculate ffluid we make use of the linearity

of the Navier-Stokes equations. The schematic fluid velocity profile around the microtubule in

stationary electrophoresis is shown in (b) as function of distance from the microtubule surface.

This profile is a superposition of the fluid velocity profiles shown in (c-d). (c) Fluid velocity

around an object that moves in purely hydrodynamic motion to the left with a velocity −µ⊥E⊥.

(d) Fluid velocity profile around an object in free electrophoresis, that moves to the right with a

velocity µ⊥E⊥.

known. In the case of purely hydrodynamic motion of an object with velocity vh(0), the

fluid forces have to balance the external force, and add up to ffluid,h = −c⊥vh(0), where

c⊥ is the Stokes-friction coefficient for the object. In the case of free electrophoresis, the

fluid forces completely balance the electrical force on the object and thus ffluid,e = −λE⊥.

Since vh(0) = −µ⊥E⊥ (Fig. 6c, Eq. 16), we calculate that ffluid,h = c⊥µ⊥E⊥. Therefore, in

the case of stationary electrophoresis, the total force exerted by the fluid profile v=vh + ve

around the stationary microtubule equals c⊥µ⊥E⊥ − λE⊥. The total electric field-induced

force (Eq. 14) is thus equal to

f⊥ = c⊥µ⊥E⊥. (17)
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Measurement of the Perpendicular Mobility µ⊥,e

We measure the value of µ⊥,e in Eq. 3 by performing electrophoresis experiments on freely

suspended microtubules in channels as described previously [3]. In short, we coat the inside

of straight 1 µm high channels with casein to prevent sticking of microtubules, with omission

of kinesin, and then add microtubules. Upon application of an electric field, we observe the

electrophoresis of individual microtubules in various orientations (Fig. 7). As expected,

the electrophoretic motion of microtubules is in the direction opposite to the electric field.

Because of their anisotropic mobility [3], microtubules that are oriented parallel to the

electric field move faster than microtubules oriented perpendicular to the field (Fig. 7a).

Fig. 7b is a plot of binned values of a large number (∼5,800) of orientation-dependent

velocities, measured with E = 4 kV/m. For the calibration of the perpendicular force (Eq. 3)

we are only interested in the velocity of microtubules oriented perpendicular to the electric

field, v⊥ = µ⊥,eE. The inset in Fig. 7b shows measured values of v⊥ for different electric

fields. From the linear relation between v⊥ and E we determine µ⊥,e = −(1.03± 0.01) · 10−8

m2/Vs. We note that this value represents both the electrical properties of the microtubules

as well as the electro-osmotic flow (EOF) velocity in the channel. We confirmed in separate

experiments [3] that the additional coating of kinesin molecules had no significant influence

on the EOF.

Measurement of the Bulk Persistence Length

We measure the value of the persistence length of long microtubules from the thermal

fluctuations in their shapes. For this we follow the procedures and mathematical treatment

as originally outlined by Gittes et al. [4]. In short, from a large number of shape fluctuations

of an individual long microtubule that is suspended in a shallow experimental chamber, we

determine the variance of the mode amplitudes of the shape-constituting fourier modes.

The variance of these modes is a measure of the persistence length of the filament. We find

that the bulk persistence length of our taxol-stabilized microtubules is 3.6± 0.3 mm (mean

± standard error) as measured from the first three modi of 7 different microtubules with

contour lengths ranging from 22− 41 µm.
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FIG. 7: (a) Overlay of snapshots with 0.12 s intervals of freely suspended microtubules in free

electrophoresis (E = 4 kV/m). The velocity is orientation dependent as is obvious from these two

microtubules in extreme orientations. (b) Binned data (5,800 data points) of orientation-dependent

velocities under the same electric field. The inset shows the value of v⊥ for different electric fields.

Materials and methods

Rhodamine-labeled microtubules were polymerized at 37 ◦C for 45 min at a concentration

of 2 mg/ml in presence of 4 mM MgCl2, 1 mM GTP and 5% DMSO in BRB80 buffer, and

stabilized and 100× diluted in BRB80 containing 100 µM paclitaxel. Cover slips were

cleaned by sonication in acetone, sulfuric acid, and ammonium-fluorid etchant, followed by

a oxygen plasma treatment. Less than 1 µl of a microtubule containing solution in BRB80,

supplemented with 100 µM Taxol, 120 mM D-glucose, 0.12 mg/ml glucose-oxidase, added

on top, creating an experimental chamber with a thickness of approximately 1− 3 µm. The

edges of the chamber were sealed with nail polish.

Fluorescence images of freely suspended microtubules were taken with a camera integra-

tion time of 20 ms and a time resolution of 1 s. The one-second interval between frames is

long enough to prevent any serial correlation between the modes of microtubules, which can

be estimated as maximum ∼1 s for the lowest mode of our longest microtubule (to calculate

the mode relaxation time we refer to Eq. 32 in Ref. [4]). The integration time of 20 ms is

sufficiently short to measure up to the first three modes of our longest microtubule, and up

to the first two modes of our shortest microtubule (we estimate a 3-ms relaxation time for

the third mode of a 22 µm long microtubule).
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FIG. 8: (a) Snapshots of a 28 µm long microtubule. The time between the first and last snapshot

is 70 seconds. (b) Mode amplitudes of the microtubule shown in a as a function of time. The

non-zero averages of the different modes corresponds to the fixed curvature of the filament. (c)

Variance of the mode amplitudes shown in b as a function of mode number. Red line is a fit of

Eq. 18 according to the model presented in Eq. 17 in ref. [4]. (d) Persistence lengths obtained

from different modes from 7 different microtubules. The values obtained from different modes of

the same microtubule are slightly displaced along the x-axis for clarity, and the mode numbers

are indicated. Error bars and the weighted average are calculated on the natural logarithm of the

data as outlined in ref. [4]. The solid black line is the weighted average of all data points, with the

exception of the two values for mode 3 at L = 22 and L = 34 µm.
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Results

Fig. 8 shows, as an example, snapshots of a 28 µm long microtubule taken over a time

period of 70 s. The microtubule has a distinct fixed curvature in addition to much smaller

thermal fluctuations in its curvature. As described previously [4], we digitize 11 points along

the microtubule contour length and calculate the tangent angles of the 10 segments between

these points. The resulting tangent angle as a function of contour length was decomposed

into nine different fourier cosine modes with mode amplitudes an, with n = 1, . . . , 9.

Fig. 8b shows the mode amplitudes for the first eight modes as a function of time for

this particular microtubule. The total observation time was 12 min and during this time

the mode amplitudes show a distinct scatter around an average value which for the first two

modes is smaller than zero due to the fixed curvature of the microtubule. The variance of

the mode amplitudes is related to the persistence length of the filament.

In Fig. 8c we show the variance as a function of mode number. The variance contains

contributions from the thermal fluctuations and from random measurement errors in the

position of the microtubule. The red line in the figure is a fit of a model that captures both

the thermal fluctuations as well as the random digitization errors (Eq. 17 in ref. [4]):

var (an) =
(

L

nπ

)2 1

p
+

4

L

〈
ε2
k

〉 [
1 + (N − 1) sin2

(
nπ

2N

)]
. (18)

Here, N is the number of segments in the microtubule, and 〈ε2
k〉 is the random error distance

by which the microtubule positions are digitized. In this equation, the first term represent

the variance introduced by thermal fluctuations and the second term represent the variance

due to the digitization errors, 〈a2
n〉noise

. From the fit (with fit parameters p and 〈ε2
k〉) we

determine the magnitude of this experimental error to the measured variance, which can

be subtracted from the measured variance to find the variance induced due to thermal

fluctuations at each mode number, which yields a value for the persistence length for each

mode:
1

p
=

(
nπ

L

)2 [
var (an)

measured −
〈
a2

n

〉noise
]

(19)

For the particular microtubule shown in the figure, we calculate the persistence length

from the first three modes using Eq. 19 (Eq. 18 in ref. [4]). The natural logarithms of

the persistence length from the three modes of this 28 µm long microtubule are plotted in

Fig. 8d, together with the values obtained from six other microtubules. The persistence
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lengths obtained from the different modes and from different microtubules are consistent,

with the exception of the values obtained from the third modes of the microtubules with

lengths of 22 and 34 µm. Excluding the latter two data points, the weighted mean and

standard error of the persistence length is 3.6± 0.3 mm.

The high value of the persistence length for these long microtubules is in good agreement

with other reports [4, 5], although our value is slightly lower. Note that the value that we

find in this measurement represents a lower bound on the persistence length because we see

in our images that microtubules have some freedom to rotate partially around their long

axis. This rotation can contribute an additional variance to the measured mode amplitude,

in particular when the microtubule has some fixed mean curvature.
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