| Strain  | Genotype                                                                                             | Source                   |
|---------|------------------------------------------------------------------------------------------------------|--------------------------|
| PN143   | h- cdc25-22                                                                                          | Our stock                |
| PN1840  | h- cdc25-22 Orp1-HA                                                                                  | Grallert and Nurse, 1996 |
| YRC16   | h- cdc25-22 leu1-32 ura4-D18 ade6-M210<br>orp4::3HA[ura4+]                                           | Chuang and Kelly, 1999   |
| EOY68   | $h+ cdc25$ -22 ori2004 $\Delta I$                                                                    | Takahashi et al., 2003   |
| EOY72   | $h+ cdc 25$ -22 ori2004 $\Delta III$                                                                 | Takahashi et al., 2003   |
| EOY90   | h- cdc25-22 ori2004ДІДІІІ                                                                            | Takahashi et al., 2003   |
| AK300   | h- [Msmt-0] cdc25-22 leu1-32 his7-366<br>leu1::pFS181(leu1 adh1:hENT1) pJL218 (his7<br>adh1:tk)      | Our stock                |
| PN10488 | <i>h</i> + <i>cdc25-22 cdc45-YFP::ura4</i> + <i>ura4-D18</i>                                         | This study               |
| PN10489 | <i>h- cdc25-22 ori2004Д</i> Orp1-HA                                                                  | This study               |
| PN10490 | <i>h+ cdc25-22 ori2004ΔIII</i> Orp1-HA                                                               | This study               |
| PN10491 | <i>h- cdc25-22 ori2004ΔIΔIII</i> Orp1-HA                                                             | This study               |
| PN10492 | h+ cdc25-22 ori2004∆I cdc45-YFP∷ura4+                                                                | This study               |
| PN10493 | h+ cdc25-22 ori2004∆III cdc45YFP∷ura4+<br>ura4-D18                                                   | This study               |
| PN10494 | h- cdc25-22 ori2004∆I∆III cdc45YFP∷ura4+                                                             | This study               |
| PN10495 | h- cdc25-22 his7-366 leu1::pFS181(leu1<br>adh1:hENT1) pJL218 (his7 adh1:tk)<br>kanMX6:nmt1:3HA-cdc45 | This study               |
| PN10496 | h- cdc25-22 his7-366 leu1::pFS181(leu1<br>adh1:hENT1) pJL218 (his7 adh1:tk)<br>kanMX6:nmt1:3HA-hsk1  | This study               |
| PN10497 | h+ cdc25-22 leu1::pFS181(leu1 adh1:hENT1)<br>pJL218 (his7 adh1:tk) kanMX6:nmt1-3HA-dfp1              | This study               |

Supplementary Table 1. Schizosaccharomyces pombe strains used in this study

| PN10498 | h- cdc25-22 his7-366 leu1::pFS181(leu1 | This study |
|---------|----------------------------------------|------------|
|         | adh1:hENT1) pJL218 (his7 adh1:tk)      |            |
|         | kanMX6:nmt1-3HA-cdt1                   |            |









#### **Supplementary Figure 1**

Chromatin IP analysis of ORC, MCM, and Cdc45 binding at *ori2004*, *ori2060*, and *ars727*. A) Detailed scanning of Orp1 binding in a 4 kb region centered on *ori2004*. Primer sets are spaced approximately 500bp apart. The coordinates for *ori2004* and *ori2060* shown in Fig. 1A are used for all figures showing ChIP at these origins. Although Orp1 is bound at the origin throughout the cell cycle, its levels at the origin reach a maximum around 20 minutes before the start of S-phase. B) Orp2 binding at *ori2004* shows similar timing and periodicity at *ori2004* as Orp1. C) Mcm4 binding at *ori2004* peaks over region II and was displaced from and adjacent to the peak of Orp1 binding (compare Supp. Figs. 1A and 1C). Mcm4 binding at *ori2004*. Cdc45 association occurs only during a short period in the cell cycle. E-F) Orp1 and Mcm4 binding in a 2.5 kb region centered on *ori2060*; primers are spaced approximately 250 bp apart. Both Orp1 and Mcm4 bind periodically to *ori2060*. Orp1 binding peaks around 40 minutes after *cdc25-22* release, while Mcm4 binding is maximal at 50 minutes post-release.



**Supplementary Figure 2** 

Timing of replication of *ori2004* deletions. Quantitative PCR was used to determine the replication of two early firing and efficient origins, *ori2004*, *ori3061*, and a late-replicating region of the genome during a synchronous time course after release from *cdc25-22* arrest. Data were normalized to the control region (diamonds) and then adjusted to generate copy number by taking into account the pattern of replication of the control region, as previously determined by Heichinger et. al (2006). The graphs represent adjusted data from representative experiments, and the replication curves for *ori2004* (squares) and *ori3061* (triangles) are shown. The point of 50% replication is marked by asterisks for each origin. *ori2004* and *ori3061* reach 50% replication at the same time, between 65 and 70 minutes; this is similar to the timing of 70 minutes reported in Heichinger et al (2006). While wild type *ori2004* (A) and *ori2004ΔIΔIII* (D) show delays of 10 and 15 minutes, respectively. These results suggest that reduction in ORC binding leads to a delay in the timing of replication at an origin.

## Supp. Fig. 3



## **Supplementary Figure 3**

Cdc45 binding to regions containing *ori2060* and *ars727*. (A, B) Quantitative real-time PCR analysis of Cdc45 binding at *ori2060* and *ars727* during S phase. Unlike Orp1 and Mcm4 binding, during S phase, Cdc45 binding occurs throughout the region and not just at the origins, suggesting that passive replication is responsible for a large part of the replication through both *ori2060* (A) and *ars727* (B).

Supp. Fig. 4



В



#### **Supplementary Figure 4**

Treatment by MBC, a drug that destabilizes microtubules, prolongs M phase. A) Mcm4 binding at *ori2004* and *ori2060* during the MBC arrest. Cells containing *cdc25-22* were arrested at 36.5° for 3 hours and 45 minutes, and MBC was added 10 minutes before release into permissive temperature. Mcm4 occupancy is minimal during this time period, reaching only around 0.1% IP, while normally Mcm4 has an occupancy of around 1% (shown by the dotted lines). B) Left panel: Schematic of the experimental design for MBC treatment followed by HU arrest. Right panel: FACS profile for the experimental scheme. Cells do not undergo a complete round of replication and divide by the end of the experiment.

| Supp Eig 5   |            |                    |                |
|--------------|------------|--------------------|----------------|
| Supp. Fig. S | ORI Number | Efficiency Mitosis | Reduced in MBC |
|              | 3061       | 76                 | +              |
|              | 1128       | 73                 | +              |
|              | 2026       | 65                 | +              |
|              | 3006       | 65                 | +              |
|              | 3033       | 64                 | +              |
|              | 3021       | 62                 | -              |
|              | 2024       | 62                 | +              |
|              | 1132       | 61                 | +              |
|              | 1138       | 60                 |                |
|              | 1035       | 60                 | +              |
|              | 1129       | 59                 | -              |
|              | 1109       | 59                 | +              |
|              | 2042       | 58                 | +              |
|              | 1028       | 57                 | +              |
|              | 3049       | 57                 | +              |
|              | 1110       | 56                 | -              |
|              | 3044       | 56                 | +              |
|              | 1126       | 50                 | +              |
|              | 1045       | 22                 | +              |
|              | 1170       | 55                 | +              |
|              | 2077       | 54                 |                |
|              | 2040       | 54                 | +              |
|              | 2040       | 57                 | +              |
|              | 3056       | 53                 | +              |
|              | 1102       | 55                 | +              |
|              | 3050       | 53                 | -<br>-         |
|              | 3045       | 52                 | +              |
|              | 3025       | 52                 | +              |
|              | 3057       | 52                 |                |
|              | 3035       | 52                 | +              |
|              | 3009       | 52                 | +              |
|              | 3065       | 52                 | +              |
|              | 1024       | 51                 | +              |
|              | 2050       | 51                 | +              |
|              | 1019       | 51                 | +              |
|              | 1123       | 50                 | +              |
|              | 1116       | 50                 | +              |
|              | 1104       | 50                 | +              |
|              | 2015       | 50                 | -              |
|              | 3007       | 49                 | +              |
|              | 3018       | 49                 | +              |
|              | 3037       | 49                 | +              |
|              | 3059       | 49                 | -              |
|              | 1034       | 49                 | +              |
|              | 3060       | 49                 | +              |
|              | 3062       | 49                 | +              |
|              | 3083       | 49                 | +              |
|              | 3024       | 48                 | +              |
|              | 3047       | 48                 | +              |

#### Supplementary Figure 5

Early-firing efficient origins are reduced in efficiency after MBC treatment. List showing the top 50 most efficient origins according to Heichinger et al. (2006) and the effect of prolonging mitosis. Origins that are reduced in efficiency after MBC treatment in three biological repeat experiments are marked with +.

Supp. Fig. 6

Sum of origin efficiencies Efficiency (sum) MBC induced (best) 4000000 5000000 

chromosome coordinates



**Chromosome 1** 



### **Supplementary Figure 6**

Analysis of regions that show increased replication in the MBC experiment. The positions of the 50 best MBC induced regions are marked with black triangles, and the sum of the origin efficiencies for consecutive, non-overlapping 200 kb windows are indicated with a gray line. Origin efficiencies are obtained from Heichinger et al. (2006). In general, regions from which MBC-induced origins are excluded have lower efficiencies.

# Supp. Fig. 7

| ori2004          |                                                                   | avi2004 secondinates      | ars727           |                                                                  |      | Primers f                   | or checking replication after MBC treatment                        |
|------------------|-------------------------------------------------------------------|---------------------------|------------------|------------------------------------------------------------------|------|-----------------------------|--------------------------------------------------------------------|
| OJW55<br>OJW56   | TGAAAAGTGGTAAAGGCCTGTATG<br>GTGGTATGGTATAAATTTCCTAATCTTAACATC     | -1271                     | OJW201<br>OJW202 | ACTCATGTTGGAAAGAAGTGGACACAA<br>CCACACCCCACATCTTTTACATTCG         | -57  | control<br>0JW191           | GCACAGCAAAATGCTAGAGCCAAA                                           |
| OJW53<br>OJW54   | GCGGCGACACTAGAATATGGA<br>CAAGTTTATCCCCACTGATCCTCT                 | -743                      | OJW203<br>OJW204 | GCAAAGGTAGATGGAGATGGTTAGCTAGA<br>CGTAGTACTCATTTCCCCCCACCTCAT     | 76   | ori3002                     |                                                                    |
| OJW25<br>OJW26   | ATGGTAGATGGAGAAACGGGTTATA<br>ACCAGCCCCCTCCTACAGAA                 | -230                      | OJW205<br>OJW206 | GGTGAGATGGGATGAACTGAATGAATT<br>CCGTCTCATGTAACTTCACTAAAGTTCATTTA  | 225  | OJW50                       | TACAATGACAAGATAATATTTATAGCGAAAATTT                                 |
| OJW63<br>OJW64   | TTGCTTATCTTTTGGGTAGTTTTCG<br>CTTACATTTTCGGGAACTTATTAGTCAA         | 349                       | OJW207<br>OJW208 | TAACAATTTTCCTCAACTTTGCACAAG<br>TGATGGGTATTCGGACCAAACTTC          | 552  | OJW303<br>OJW304            | AAACGAGAAGTCAGTCCCCACGC<br>CCTGTTAGCCGGTTACACGCTACAT               |
| OJW65<br>OJW66   | ACACATCTTACAAACACGCAGAAGT<br>TGAAGCTAAATCGTTGCGTGTATT             | 714                       | OJW209<br>OJW210 | ACGTATTGAAATTCCGCCAAACCT<br>CGGTTTGCCTTGTTTACTGATTTCG            | 915  | ori1128<br>OJW305           | TGAAAACCAAGCACAGCCTTCCAT                                           |
| OJW67<br>OJW68   | GGACAGTTGACCGAGTCTTTTCA<br>TGAACCAGAGAATTCGTAATTCAGA              | 1025                      | OJW211<br>OJW212 | AAGTTTACCTTTTTGTCAATCCGCT<br>CCGCTTCAGGTTTCGTTTTCATATT           | 1114 | ori3033                     | TTAGECISITGAGAAGGTCCCA                                             |
| OJW69<br>OJW70   | TGCCTTGACTGAACTGGGATCT<br>TGCGTTTATTCACTTCCGAGAA                  | 1771                      | OJW213<br>OJW214 | ACATTATTACATCGTGTTTCGGAGAATTACA<br>GCTGTGAATGTTAGTAAGAGCACCATTAA | 1653 | OJW308                      | CCGGTACAAATTAAAATGCCTTCAATG                                        |
| OJW71<br>OJW72   | TGTACAGACATCTAACTAATTCTCGTCTAGAG<br>AAAAGGAGGAGGAGATTAAGGAGATAA   | 2294                      | OJW215<br>OJW216 | ACCCTAGTTTTTCAAATCATTGTACTGTAGCA<br>CTTTTGATTTCTTTAATGGTGTGTGCAA | 1907 | OJW287<br>OJW288            | TGCTCCTTCAATCCATTTGATGACA<br>TTAGCCTGTAAACATGCACCGGC               |
| OJW81<br>OJW82   | TTGACTCAGTACACACCACACAAATATAT<br>TGTGATGGAATTGGTTATACCAATAGA      | 150                       |                  |                                                                  |      | chrI-2<br>OJW299            | GGAATATGCGATGAGTTCGCTTGA                                           |
| ori2060          |                                                                   |                           |                  |                                                                  |      | 01W300                      | CGAATGGACTTTTATCGCGCAC                                             |
| OJW123<br>OJW124 | TATTGTTTCCTGGTAAATTCTTATATCGGC<br>CGGAAGTACCGCATATTGAAAGCC        | ori2060 coordinates<br>64 |                  |                                                                  |      | chrI-3<br>OJW301<br>OJW302  | GGCCACCTTATCAATGTCCATGTG<br>GGTGTCATCAATGTTCTCAGCGGT               |
| OJW125<br>OJW126 | GCAAAGAAACAGCTATTTTTACACCTGG<br>ACCGACAACAAAACTACAAGATATAATACCA   | 305                       |                  |                                                                  |      | chrI-4<br>OJW313            | AATAGCTGTTGTCGTTTTTGAAGGTTGAT                                      |
| OJW127<br>OJW128 | AATAACTAATATTTGGAATGGCGCCT<br>CCCTTCTCTTTTAATACACTCTCATCGA        | 479                       |                  |                                                                  |      | chrI-5                      | I GGGAAATGGCACCITTACTACAAAG                                        |
| OJW129<br>OJW130 | TTCAGGGCTCAAAGTTAGAAAAATCAAGT<br>CCCGAAATTGCACGGATAGTATAATT       | 758                       |                  |                                                                  |      | OJW315<br>OJW316            | ATGAAGAACAAGCCGGTTTAATGCA<br>CACCGGTTTCGTGAACTTCAGCT               |
| OJW131<br>OJW132 | AATGGGAGGGTGTAATTGAGAAAATATT<br>CGTTGCTTCCGTACCTTCATTTCTAA        | 1001                      |                  |                                                                  |      | chrII-1<br>OJW291<br>OJW292 | GCTTGTCCGTTATGCAGCTAGTGGA<br>GTTGCCCAATGGTCTCCTAAATCCA             |
| OJW133<br>OJW134 | AGAAAAACCATCCTGGCTTCATTC<br>CGATAATCTTGTGAACTACATTTCCACTAAA       | 1280                      |                  |                                                                  |      | chrII-2<br>OJW323           | GGTAAACACGATGTCGACGGTCC                                            |
| OJW135<br>OJW136 | GAGAAACATTTGCGGTCAGCAACT<br>TTCAAAATTTAGCTGCCATGAGGTT             | 1490                      |                  |                                                                  |      | OJW324                      | CACATCCCTTTTGCCAAACAGCTA                                           |
| OJW137<br>OJW138 | GGAAAATCTAGAAATATTGGAAAGTTGCTTCT<br>CCAACTCCTTCTACTAAAGTGGTGAAAGA | 1781                      |                  |                                                                  |      | OJW297<br>OJW298            | AACGGAAAAACCTATACCTGATGGTG<br>AACTCGAAGGTGCTTCATTGGTTTTATT         |
| OJW139<br>OJW140 | CGAAACAATTAATCAAACTATTCAAGCGA<br>GACATGATGGTTCCAAAAATAAAAAGTTCT   | 2026                      |                  |                                                                  |      | ori1140<br>OJW398<br>OJW399 | TTTAGGCTTTGTCATTGTTGTTCGAGTT<br>CCTAATCGTAGAACATTTTATAGTTTATGCTGGT |

## **Supplementary Figure 7**

**Primers used for real-time PCR assays.** Sequences of primers used for quantitative PCR assays. The primers for *ori2004*, *ori2060*, and *ars727* are accompanied by their origin coordinates.