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1 An efficient chaining algorithm for the PSSM matches

chaining problem

This section describes a specialized and improved algorithm for solving the chaining
problem for PSSM matches on a set of database sequences S1, . . . , Sk. The latter are
the sequences for which the enhanced suffix array was constructed. Note that k can be
in the range of millions, if one, e.g., matches against the complete UniProtKB/TrEMBL
database. For a given PSSM family model M = M1, M2, . . . , ML, all Mi, 1 ≤ i ≤ L,
are matched one after the other against the enhanced suffix array. This gives match sets
MS(Mi) for PSSM Mi. L is in the range of tens while the number of PSSM matches
for a particular sequence Sj is in the order of hundreds if Sj is a protein sequence. For
each match f the following information is recorded:
• The ordinal number i of the PSSM Mi involved in the match f . This is denoted

by f.pssm .
• The length of the PSSM involved in the match f . This is denoted by f.length.
• The number j of the sequence Sj the match f occurs in. This is denoted by

f.seqnum.
• The starting position of the match f in sequence Sj. This is denoted by f.pos .
• The weight α(Mf.pssm , s) of the match f , where s is the score of the match. The

weight of f is denoted by f.weight .
In an initial sorting step the unionMS of all match setsMS(Mi), 1 ≤ i ≤ L, is sorted

in ascending order of f.seqnum. Matches with identical sequence numbers are sorted in
ascending order of the ordinal number of the PSSM, i.e., by f.pssm. Suppose that b∗ is
the size of MS. As there are at most b∗ sequences with at least one PSSM match, the
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sorting according to the sequence numbers can be done in O(k∗ + b∗) time and O(k∗)
space using the counting sort algorithm [1]. Here, k∗ is the number of sequences with
at least one PSSM match. As k∗ ≤ b∗, the sorting requires O(b∗) time and space. We
obtain disjoint subsets MS(Sj), 1 ≤ j ≤ k, where MS(Sj) is the set of all matches
in MS matching a substring of Sj. As MS is ordered by the ordinal number of the
PSSM and the counting sort algorithm is stable, the sets MS(Sj) are also sorted by
the ordinal number of the PSSMs. Let MS(Sj , Mi) denote the matches f ∈ MS(Sj)
such that f.pssm = i. In a second sorting step, each MS(Sj , Mi) is sorted according
to the starting position of the matches. As this is a typical integer sorting problem, it
requires O(bj,i log bj,i) time, where bj,i is the size of MS(Sj , Mi). Altogether, the two

initial sorting steps can be performed in O(b∗ +
∑k

j=1

∑L

i=1
bj,i log bj,i) time.

For all S1, S2, . . . , Sk one now solves independent chaining problems for setsMS(Sj),
1 ≤ j ≤ k, of matches sorted according to the ordinal number of the PSSM and the
starting position of the matches in Sj. Let j be fixed, but arbitrary. For each match
f ∈ MS(Sj), the weight f.weight is positive. Hence, an optimal chain ends with a
match f such that there is no match f ′ satisfying f ≪ f ′. Similarly, an optimal chain
begins with a match f ′ such that there is no match f satisfying f ≪ f ′.

The chaining problem is solved by a dynamic programming algorithm which tabulates
for all matches f ′ ∈ MS(Sj) the maximum score f ′.score of all chains ending with f ′.
In addition, it computes the predecessor f ′.prec of f ′ in a chain with maximum score
ending with f ′. To obtain f ′.score, one has to maximize over all matches f such that
f.pssm < f ′.pssm and f.pos + f.length − 1 < f ′.pos . This is a two dimensional search
problem. As the matches inMS(Sj) are already sorted according to the first dimension
(i.e., by the ordinal number of the PSSM), one can reduce it to a one dimensional
sorting problem. This has already been observed [2], and led to the development of an
algorithm solving the chaining problem in O(b log b), where b is the number of matches in
MS(Sj). We follow the basic structure of this algorithm. However, the algorithm of [2]
was developed for chaining pairwise sequence matches. The PSSM chaining problem is
a special instance of this problem: the first “sequence” consists of the positions 1, . . . , L,
and a match for PSSM Mi is a match of length one to position i. Moreover, all matches
at position i in the first sequence are of equal length because they are matches to the
same PSSM Mi of identical length. In addition to this, our initial sorting step delivers,
for all i, 1 ≤ i ≤ L, the matches inMS(Sj, Mi) in sorted order according to the starting
position in Sj. All these properties allow to simplify and improve the algorithm of [2] in
the following aspects:

• While the algorithm of [2] requires a dictionary data structure with insert, delete,
predecessor, and successor operations running in logarithmic time (e.g., an AVL-
tree or a red-black tree [1]), our approach only needs a linear list, which is much
easier to implement and requires less space.

• While the algorithm of [2] requires an initial sorting step using O(b∗ log b∗) time,
our method only needs O(b∗ +

∑k

j=1

∑L

i=1
bj,i log bj,i) time for this step. Note that

the bj,i satisfy
∑k

j=1

∑L

i=1
bj,i = b∗.
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• While the algorithm of [2] solves the chaining problem for MS(Sj) in O(b log b)
time, our approach runs in O(b · L) time. If L is considered to be a constant, the
running time becomes linear in b, where b = |MS(Sj)|.

To explain our algorithm, let i, 1 ≤ i ≤ L be arbitrary but fixed and assume that all
match sets MS(Sj, Mi′), i′ < i have been processed. In a first loop over the sorted
matches in MS(Sj, Mi) one determines the score of the matches. In a second loop,
one inserts them into a linear list if necessary. The linear list contains a subset of the
previously processed and scored matches. This split of the computation into two loops
is different from the algorithm of [2] where the scoring and insertions are interweaved
in one loop, requiring an extra array of length 2b containing references to the matches.
The separation into two loops allows us to get rid of this extra array.

Now consider the first loop over all elements in MS(Sj , Mi) in sorted order of the
match position in Sj. Let f ′ be the current element. At this point, all matches f such
that f.pssm < f ′.pssm have been processed already. In particular, the score f.score and
the previous match (if any) in an optimal chain ending with f has been determined.
Among the processed matches we only have to consider those matches f satisfying
f.pos + f.length − 1 < f ′.pos . If there is such a match, one takes the one with maximal
score, say f . Then, the optimal chain ending with f ′ contains the previous match f , and
the score is f ′.score = f ′.weight + f.score. If there is no such match, then the optimal
chain ending with f ′ only consists of f ′ and f ′.score = f ′.weight .

Now consider the second loop over all elements in MS(Sj, Mi) for which the scores
and predecessor matches (if any) are already determined. Let f ′ be the current element
to be inserted. As explained in the previous case, one has to make sure that, among
the processed matches, one can efficiently determine the match f with the maximum
score such that f.pos + f.length − 1 is smaller than some value depending on f ′. The
processed matches are stored in a linear list which is sorted in ascending order of the
position of the matches in Sj . Let ≺pos denote this order, that is f ≺pos f ′′ if and only
if f.pos + f.length < f ′′.pos + f ′′.length for any matches f and f ′′. If for two processed
matches f and f ′′ one has f.pos < f ′′.pos and f.score > f ′′.score, then an optimal chain
does not include f ′′. Each chain that uses f ′′ can also use f and increase the chain score.
As a consequence, one has to take care that f ′′ is not inserted into the linear list or it is
deleted if it was inserted earlier. In this way, f ≺pos f ′′ always implies f.score ≤ f ′′.score

for two matches f and f ′′ in the linear list. As the elements to be scored in the first
loop and to be inserted in the second loop are ordered in the same way as the elements
in the linear list, one can perform the scoring and the insertion loop (which also may
involve deletions) by merging two lists of length l1 and l2 in O(l1 + l2) time where l1
is the number of matches to be scored and inserted and l2 is the length of linear list
involved. Let b = |MS(Sj)|. As l1 + l2 ≤ b, one obtains a running time of O(b) for each
set MS(Sj, Mi). As there are L such sets, the running time is O(b · L).
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Algorithm 1: Compute skip table in O(n) time.

input : The longest common prefix table lcp with n + 1 entries for some text of
length n.

output: The corresponding skip table skp with n + 1 entries.

push(suffixes,0);1

push(depths,0);2

for i← 1, . . . , n do3

while top(depths) > lcp[i] do4

skp[pop(suffixes)]← i;5

pop(depths);6

if lcp[i] > 0 then push(depths,lcp[i]);7

else skp[pop(suffixes)]← n + 1;8

push(suffixes,i);9

skp[pop(suffixes)]← n + 1;10

Figure 1: Linear time computation of table skp using information from table lcp. The
algorithm uses two stacks, one stack depths holding the lcp-values from table
lcp, and one stack suffixes holding indexes of the suffix array suf. Both stacks are
used synchronously, i.e., their depths are the same after each iteration. There
are at most n push-operations on the stacks. Each iteration of the inner while-
loop involves a pop-operation on the non-empty stacks. Hence, the overall
running time of the inner while-loop is bounded by n. The rest of the for-loop
also runs in linear time. Hence, the algorithm requires linear time.
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Figure 2: Classification performance of PoSSuMsearch2 in the three described evalua-
tion scenarios when using a naive chainscore function that simply computes
the product of raw p-values without further normalization. Shown are per-
centage true positive values averaged over all test families (coverage) (y-axis)
for different numbers of accepted false positives (x-axis). Compared to the re-
sults of Figure 4 of the main document it is obvious that the naive chainscore
performs significantly worse than the default chain score defined in Equation
2.
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Figure 3: Runtimes in seconds and scaling behavior of PoSSuMsearch2 (left) and hmm-

search (right) when searching for the first 100 PFAM protein families in subsets
of UniProtKB/Swiss-Prot of increasing sizes.

k = 2 k = 3 k = 4 k = 5
πtc πnc πtc πtc πtc

Running time hmmsearch [min] 65,283.2 65289.7 65,283.2 65,283.2 65,283.2
Running time PSfamSearch [min] 1,490.0 4676.0 1,340.4 942.8 966.4
Total speedup 43.8 14.0 48.7 69.2 67.6
Speedup max. 5,176.6 1765.1 7,945.8 8,302.1 9,260.0
Speedup min. 2.6 1.1 1.9 1.9 1.9
Number of sequences passing filter step 0.80% 3.83% 1.14% 0.67% 0.87%
Average percentage true positives 99.54% 99.47% 99.21% 99.05% 98.43%
Minimum percentage true positives 97.50% 95.65% 96.78% 97.06% 95.43%

Table 1: Speedups and percentage true positive values (coverage) obtained by PSfam-

Search compared to hmmsearch when searching with PSSM family models cor-
responding to the first 200 TIGRFAM models using πtc (πnc, for k = 2 only) in
the complete UniProtKB/TrEMBL database. Measurements were obtained for
different values of k corresponding to training sets containing 50, 33, 25, and 20
percent of all family members detected by hmmsearch. For details, see corre-
sponding part in the main document. Row 4 (5) gives the maximum (minimum)
speedup obtained for a particular model.
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Figure 4: Search space reduction through PSSM family model pre-filtering. We mea-
sured the number of sequences passing pre-filtering of the search space with
PoSSuMsearch2 (x-axis, logscale) with p-value cutoffs πtc (dark) and πnc (light)
for the first 20 protein families of the TIGRFAM database (Rel. 8.0). The bar
on top shows the total number of sequences in UniProtKB/Swiss-Prot release
57.5 (471,472 protein sequences with a total length of ∼ 167MB) that needed
to be searched by direct hmmsearch without filtering. Thus the search space
is reduced by at least one order of magnitude. In some cases the reduction is
by several orders of magnitude.

Comparison of running times of hmmerhead vs. hmmsearch using trusted cutoffs
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Comparison of running times of hmmerhead vs. hmmsearch using noise cutoffs
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Figure 5: Comparison of running times of HMMERHEAD (version 0.6) (y-axis, logscale)
and hmmsearch (x-axis, logscale), and achieved coverage when searching with
the first 200 TIGRFAM models on UniProtKB/TrEMBL using trusted cutoffs
(left) and noise cutoffs (right), respectively. Obtained speedups per model were
in the range between 1.46 and 1.91 with an average of 1.73 when using trusted
cutoffs, and between 1.55 and 1.93 with an average of 1.79 when using noise
cutoffs.
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TIGR
family

#seqs in
red.

Space

% of total
seq. space

min.
chain
length

#found #missed found[%] missed[%]

TIGR00001 29,729 0.37 2 602 2 99.67 0.33
TIGR00002 78,870 0.99 3 868 1 99.88 0.12
TIGR00003 27,754 0.35 2 454 5 98.91 1.09
TIGR00004 1796 0.02 7 1,274 1 99.92 0.08
TIGR00005 3,962 0.05 8 2,448 1 99.96 0.04
TIGR00006 1,068 0.01 8 1,067 3 99.72 0.28
TIGR00007 468 0.005 8 413 1 99.76 0.24
TIGR00008 1,118 0.01 3 885 5 99.44 0.56
TIGR00009 634,977 8.02 2 627 4 99.37 0.63
TIGR00010 1,788 0.02 8 1,265 1 99.92 0.08
TIGR00011 711 0.009 8 625 3 99.52 0.48
TIGR00012 1,274,316 16.09 2 919 1 99.89 0.11
TIGR00013 13,465 0.17 3 329 6 98.21 1.79
TIGR00014 1,168 0.01 5 690 1 99.86 0.14
TIGR00016 1,089 0.01 8 1,070 8 99.26 0.74
TIGR00017 740 0.009 8 716 0 100.00 0.00
TIGR00018 538 0.006 8 531 11 97.97 2.03
TIGR00019 666 0.008 8 644 3 99.54 0.46
TIGR00020 999 0.01 8 986 3 99.70 0.30
TIGR00021 668 0.008 8 646 2 99.69 0.31

Average: 103,794.5 1.31 5.85
∑

17,059
∑

62 99.51 0.49

Table 2: Results of p-value cutoff calibration based on hmmsearch matches obtained on
UniProtKB/TrEMBL using trusted cutoffs. Cutoffs were calibrated such that half
of the sequences (training set) pass PoSSuMsearch2 filtering. Columns 2 and 3
give the absolute number and percentage of sequences passing the filter. Num-
bers of found and missed family sequences on complete UniProtKB/TrEMBL are
given in columns 5 and 6.
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TIGR
family

#seqs in
red.

Space

% of total
seq. space

min.
chain
length

#found #missed found[%] missed[%]

TIGR00001 549,709 6.94 2 657 5 99.24 0.76
TIGR00002 109,392 1.38 3 875 1 99.89 0.11
TIGR00003 42,176 0.53 3 478 3 99.38 0.62
TIGR00004 31,718 0.40 5 1,592 1 99.94 0.06
TIGR00005 32,143 0.40 6 3,545 0 100.00 0.00
TIGR00006 1,086 0.013 8 1,079 3 99.72 0.28
TIGR00007 506 0.006 8 505 2 99.60 0.40
TIGR00008 1,118 0.014 3 890 8 99.11 0.89
TIGR00009 634,977 8.02 2 640 4 99.38 0.62
TIGR00010 3,314 0.04 6 2,157 1 99.95 0.05
TIGR00011 80,265 1.01 3 778 2 99.74 0.26
TIGR00012 1,274,316 16.09 2 972 1 99.90 0.10
TIGR00013 513,962 6.49 2 659 2 99.70 0.30
TIGR00014 1,847 0.02 5 768 5 99.35 0.65
TIGR00016 1,163 0.01 8 1,166 3 99.74 0.26
TIGR00017 7,001 0.08 6 754 5 99.34 0.66
TIGR00018 1,151 0.01 5 625 3 99.52 0.48
TIGR00019 733 0.009 8 711 5 99.30 0.70
TIGR00020 1,092 0.01 8 1,029 4 99.61 0.39
TIGR00021 69,621 0.87 5 680 2 99.71 0.29

Average: 167,864.5 2.12 4.9
∑

20,560
∑

60 99.61 0.39

Table 3: Results of p-value cutoff calibration based on hmmsearch matches obtained on
UniProtKB/TrEMBL using noise cutoffs. Cutoffs were calibrated such that half of
the sequences (training set) pass PoSSuMsearch2 filtering. Columns 2 and 3 give
the absolute number and percentage of sequences passing the filter. Numbers of
found and missed family sequences on complete UniProtKB/TrEMBL are given
in columns 5 and 6.

9



Strain Refseq accession
Escherichia coli 536 NC 008253.1
Escherichia coli 55989 NC 011748.1
Escherichia coli APEC O1 NC 008563.1
Escherichia coli ATCC 8739 NC 010468.1
Escherichia coli B str. REL606 NC 012967.1
Escherichia coli BL21 NC 012892.1
Escherichia coli BL21(DE3) NC 012947.1
Escherichia coli BW2952 NC 012759.1
Escherichia coli CFT073 NC 004431.1
Escherichia coli E24377A NC 009801.1
Escherichia coli ED1a NC 011745.1
Escherichia coli HS NC 009800.1
Escherichia coli IAI1 NC 011741.1
Escherichia coli IAI39 NC 011750.1
Escherichia coli O127:H6 str. E2348/69 NC 011601.1
Escherichia coli O157:H7 EDL933 NC 002655.2
Escherichia coli O157:H7 str. EC4115 NC 011353.1
Escherichia coli O157:H7 str. Sakai NC 002695.1
Escherichia coli O157:H7 str. TW14359 NC 013008.1
Escherichia coli S88 NC 011742.1
Escherichia coli SE11 NC 011415.1
Escherichia coli SMS-3-5 NC 010498.1
Escherichia coli UTI89 NC 007946.1
Escherichia coli str. K-12 substr. DH10B NC 010473.1
Escherichia coli str. K-12 substr. MG1655 NC 000913.2
Escherichia coli str. K-12 substr. W3110 AC 000091.1

Table 4: Strains and Refseq accession numbers of 26 publicly available E. coli proteomes
used in the whole proteome annotation experiment.
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Figure 6: Classification performance of rpsblast and PSfamSearch with respect to hmm-

search when using trusted cutoffs (left) and noise cutoffs (right), respectively.
In this experiment we determined the percentage true positives averaged over
the first 200 TIGRFAM families (y-axis) when accepting a certain number of
false positives (x-axis) in a database search on complete UniProtKB/TrEMBL.
For rpsblast , which was run with default parameters, we used models from the
CDD database Rel. 2.17 corresponding to these families. As ‘state of truth’ we
used the results obtained from hmmsearch.
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