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Supplementary Material: Electron-Nuclear Interaction Tensor (T) for a Proton Dipole-Coupled to 

an antiferromagnetically-coupled [S =5/2;S =2] Binuclear Center 

 

 Intermediate X is a diiron S = ½ center comprised of an FeIII(S = 5/2) ion antiferromagnetically 

coupled to a FeIV(S = 2) ion.27 As has been discussed extensively (see12), a nucleus of a diiron center that 

has through-space dipolar coupling to the individual ferric and ferryl iron ions of, TFe(III) and TFe(IV), 

respectively, will have an observed cluster dipolar coupling matrix to the cluster spin, T, that is a 

weighted sum of the individual-ion interactions (eq. S1), 

 

     Fe(III) Fe(IV)7 4= -
3 3

T T T      (S1) 

 

with a similar equation applicable when T is replaced by A. To treat the dipolar interaction, we considered 

a nucleus at an arbitrary location, as depicted in Fig 3, took the classical form of the point-dipole 

interaction with the individual uncoupled iron ions, (TFe(III) and TFe(IV)), expressed them in a common axis 

frame of Fig 3, and added them according to eq. S1 to obtain the effective dipolar tensor T for the S = ½ 

ground state Hamiltonian of the spin-coupled cluster system. To carry this out, it is convenient to define 

a right-handed coordinate frame (e), the unit vectors of which are: e3, lying parallel to Fe-Fe; e1, lying in 

the Fe(H)Fe plane perpendicular to e3; and e2, normal to the plane, Fig 3. As expressed in this frame, the 

cluster dipolar interaction matrix takes the form given in eq. S2: 
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This corresponds to the matrix for an interaction with principal values, T = [T1, T2, T3], where the 
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hyperfine frame is rotated relative to the molecular [e1, e2, e3] frame by a rotation around e2 through the 

angle γ. This dipolar interaction matrix depends on the metrical parameters for the center and we chose to 

parameterize T for a given geometry of Fe(H)Fe in terms of r1; r1 is the distance between the FeIII and the 

proton, dFe-Fe is the Fe-Fe distance, and β1 is the angle subtended by the FeIII-H and Fe-Fe vectors (Fig 3). 

The principal values of the dipolar interaction tensor T then are given by eq. S3: 
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where, 
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 With these equations it is possible to calculate T for a proton at any position relative to the Fe-Fe 

framework; with the possible inclusion of an isotropic coupling term, this in turn allows us to simulate a 

2-D set of ENDOR spectra for the proton at multiple fields across the EPR envelope. Calculations with 

these formulae show that when the proton lies outside of the region between the two iron ions (β1  90 or 

β2  90 ), namely when it is part of a terminal ligand to one ion, then to a good approximation this result 
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reduces to a point-dipole interaction with the adjacent iron. When the nucleus is located symmetrically 

relative to the two iron ions, namely when it is associated with an hydroxo (or aquo) bridge, then these 

results reduce to those reported previously.23  

 

Use of HLLN(2) to compute 2H ENDOR spectra of Hypothetical X with both T and B deuterons. 

To sum the computed spectra for the B-proton of HLLN(2) with the experimentally generated 

simulation for the T-proton, requires that that the hyperfine tensor for B, AB, (TB) be expressed relative to 

the g-tensor frame. This was done through a sequence of relationships. (i) Simulation of the experimental 

spectra (Fig 4A, Table 1) directly yields the T-proton experimental hyperfine and dipolar tensors, AT
ex, 

TT
ex, in the g frame. (ii) Taking the orientation of TT

ex to correspond to that of the dipolar interaction for 

either one of the terminal deuterons if the H2O ligand of HLLN(2), as calculated with eqs S1-4, then 

gives the orientation of AT
ex, TT

ex relative to the molecular e frame. (iii) Together, these relationships fix 

the orientation of g in the e frame (Fig S7), and thus the orientation of the dipolar interaction of the 

HLLN(2), B-proton, TB, as calculated with eqs S1-4, relative to g (Fig S7). 

A limitation to this procedure is that the experimental determination of the orientation of AT
ex 

relative to the g frame contains degeneracy. In the present case this leads to two very distinct solutions39 

for the orientation of g in the e frame for each of the two choices of H2O proton in HLLN(2), and thus for 

the orientation of AB relative to g; these are listed in Table S2. All of the resulting four alternative 

assignments were tested by comparing experiment with their predicted 2-D ENDOR patterns for a 

hypothetical X that contains a B- as well as a T-deuteron, in analogy to the comparisons of Fig 4C and 

Fig 5. We find that the results for the two alternatives associated with H1 have a correspondence to those 

of H2, so show only those for H1. As seen in Figs S4 and S5, it is obvious that none of the additional 

intensity predicted for a B-deuteron by any of the model computations is present in experimental spectra. 



 4

 

Fig S1: 

Comparisons of the Davies 2H ENDOR spectra of X(WT) in H2O (red; 33 ms) and D2O (black; 33ms). 

Experimental conditions: π pulse length = 200 ns, τ = 600 ns, repetition time = 50 ms, average MW 

frequency = 34.827 GHz, T = 2 K.  
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Fig S2A: 

Comparisons of the Davies 2H ENDOR spectra of X(WT; 33 ms; black) and X(Y-122F; 1.2 s; red) in 

D2O; Experimental conditions: π pulse length = 200 ns, τ = 600 ns, repetition time = 50 ms, average MW 

frequency = 34.827 GHz, T = 2 K.   
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Fig S2B: 

Simulated (red) and experimental (black) 2-D field-frequency plot of Davies 2H ENDOR spectra of X(Y-

122F; 1.2 s) in D2O (2H): Conditions: π pulse length = 200 ns, τ = 600 ns, repetition time = 50 ms, MW 

frequency = 34.774 GHz, T = 2 K. Simulation parameters (determined as described in text): g = [g1 = 

2.0056, g2 = 1.9977, g3 = 1.993], A = [A1 = -1.55, A2 = -1.15, A3 = 3.2] MHz (Euler angles α = 10.5º, β = 

74º, γ = 0), line widths used = 0.09 (minimum) to 0.25 (maximum) MHz. all spectra are centered at the 2H 

nuclear Larmor frequency. 
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Fig S3: 

Comparisons of the Davies 14N ENDOR spectra of X (WT; 33 ms; black) and X (Y-122F; 610 ms; red) in 

H2O; Experimental conditions: π pulse length = 200 ns, τ = 600 ns, repetition time = 50 ms, average MW 

frequency = 34.827 GHz, T = 2 K.    
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Fig S4: 

Simulated [red; additions of the ENDOR spectra of the terminal and the bridging hydroxides; β = +72º] 

and the experimental (black, background subtracted) 2-D field-frequency plot of Davies 2H ENDOR 

spectra of RNR intermediate X (WT; 33 ms) in D2O (2H). Simulated parameters for the terminal (see Fig 

4A and Table 1) and bridging hydroxides: g = [g1 = 2.0056, g2 = 1.9977, g3 = 1.993], T = [T1 = -3.387, T2 

= -0.24, T3 = 3.627] MHz (Euler angles α = 48.4º, β = 54.8º, γ = 69.5º).  
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Fig S5: 

Simulated [red; additions of the ENDOR spectra of the terminal and the bridging hydroxides; β = -72º] 

and the experimental (black, background subtracted) 2-D field-frequency plot of Davies 2H ENDOR 

spectra of RNR intermediate X (WT; 33 ms) in D2O (2H). Simulated parameters for the terminal (see Fig 

4A/Table 1) and bridging hydroxides: g = [g1 = 2.0056, g2 = 1.9977, g3 = 1.993], T = [T1 = -3.387, T2 = -

0.24, T3 = 3.627] MHz (Euler angles α = 3.0º, β = 129.4º, γ = 82.0º).   
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Fig S6:  

Simulated (red) and experimental (black) 2-D field-frequency plot of Mims 2H ENDOR spectra of X(WT; 

33 ms) in D2O (2H): Conditions: π pulse length = 50 ns, τ = 500 ns, repetition time = 50 ms, MW 

frequency = 34.949 GHz, T = 2 K. Simulation (with Mims hole; τ = 500 ns) parameters (determined as 

described in text): g = [g1 = 2.0056, g2 = 1.9977, g3 = 1.993], A = [A1 = -1.55, A2 = -1.15, A3 = 3.2] MHz 

(Euler angles α = 10.5º, β = 72º, γ = 0), line widths used = 0.1 (minimum) to 0.22 (maximum) MHz. All 

spectra are centered at the 2H nuclear Larmor frequency. 
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Fig S7: 

Orientation of AT, T/AB for the hypothetical T(HT)+B(HB) model of X (Model 2) considered by HLLN, 

along with two alternate orientations of g in molecular frame determined from AT and experimental 

simulation parameters (See Supp. Mat). TT is not shown for the other terminal proton. 
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Table S1. Metrical and 2H spin Hamiltonian parameters used to calculatea the 2-D ENDOR patterns 

displayed in Fig 4A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Simulations employed g = [g1, g2, g3] = [2.0056, 1.9977, 1.993]. Quadrupole splitting for 2H (I = 1) are 
not resolved, their inclusion had no effect on simulations, so were not incorporated. 
b The Euler angles for Aex are α = 10.5o, β = 72.0o and γ = 0.0o.  
cBest match between Tex and T as calculated by eqs S1-4. 
d r1, β, γ and dFeFe are defined in Fig 3. 
e Metrical parameters to calculate the dipolar tensors of the protons of the terminal H2O, are taken from 
the structure of reference HLLN2. 

Table S2. Calculated orientation of the dipolar tensors of the HLLN2, B-proton, TB relative to g-tensor 

 Terminal OHX- Terminal H2O 

(Calculated)e 

 Experimental Optimizedc Proton-1 Proton-2 

 (Aex)b (Tex) (TT) (T) (T) 

A1/T1(MHz) -1.55 -1.717 -1.718 -1.755 -2.047 

A2/T2(MHz) -1.15 -1.317 -1.316 -1.563 -1.109 

A3/T3(MHz) 3.2 3.033 3.034 3.338 3.157 

λ  0.132 0.132 0.064 0.297 

      

Aiso(MHz) 0.167   0 0 

      

r1(Å)d   2.625 2.53 2.64 

β (°)   94.5 111.3 75.3 

γ (°)   90.0 108.3 68.6 

dFeFe(Å)   2.84 2.84 2.84 
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frame for each of the two choices of H2O protons.  
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