Synthesis of (-)-Berkelic Acid

Xiaoxing Wu, Jingye Zhou, and Barry B. Snider*

Department of Chemistry MS 015, Brandeis University, Waltham, MA 02454-9110, USA

Experimental Procedures	S2-S26
Table S1. Comparison of the ¹ H NMR Spectral Data Reported for Berkelic Acid Methyl	
Ester in CDCl ₃ with Those of Intermediates 22 and 27a	S27
Table S2 . Comparison of the ¹ H NMR Spectral Data Reported for Berkelic Acid in CDCl ₃	
with Those of 35 and 36	S28
Table S3 . Comparison of the ¹ H NMR Spectral Data Reported for Berkelic Acid in CD ₃ OD	
with Those of 35 and 36	S29
Table S4 . Comparison of the ¹³ C NMR Spectral Data Reported for Berkelic Acid in CDCl ₃	
with Those of 35 and 36	S30
Table S5 . Comparison of the ¹³ C NMR Spectral Data Reported for Berkelic Acid in CD ₃ OD	
with Those of 35 and 36	\$31
Discussion of the Preparation and Stereochemical Assignment of Citronellal-derived Hydroxy	
Esters 41-44	\$32-\$34
Table S6. Comparison of the ¹³ C and ¹ H NMR Spectral Data Reported for Citronellal-	
derived Hydroxy Esters 41-44	S35
Table S7. Comparison of the ¹³ C and ¹ H NMR Spectral Data Reported for Berkelic Acid	
Intermediates 33 and 34	S36
Copies of ¹ H and ¹³ C NMR Spectra	\$37-\$63

Experimental Section

General procedures. NMR spectra were recorded at 400 MHz in CDCl₃ with TMS as an internal standard unless otherwise indicated. Chemical shifts are reported in δ , coupling constants in Hz, and IR spectra in cm⁻¹. Spectra in CD₃OD are referenced to the residual solvent peaks at δ 3.30 (¹H) and δ 49.00 (¹³C) to be consistent with the data for the natural product.^[1] Spectra in acetone-*d*₆ are referenced to the residual solvent peaks at δ 2.05 (¹H). Spectra in benzene-*d*₆ are referenced to the residual solvent peaks at δ 2.05 (¹H). Spectra in benzene-*d*₆ are referenced to the residual solvent peaks at δ 7.16 (¹H) and δ 128.39 (¹³C). The atom numbering used in the tabulation of all tetracyclic compounds (**22**, **27-30**, **S4-S5**, **33-36**) is that used in the isolation of berkelic acid^[1] rather than that of the systematic name given in the procedure heading.

5-Bromoresorcinol (S1) was prepared by the literature procedure.^[9] To a solution of 1bromo-3,5-dimethoxybenzene (**13**, 2 g, 9.2 mmol) in dry CH₂Cl₂ (25 mL) was added BBr₃ solution (19 mL, 1 M in CH₂Cl₂, 19 mmol) by syringe over 30 min under N₂ at -78 °C. The reaction mixture was stirred from -78 to 25 °C overnight. The brown solution was cooled to 0 °C and H₂O (50 mL) was added slowly. The aqueous layer was saturated with solid NaCl. The two layers were separated and the aqueous layer was extracted with EtOAc (4 × 50 mL). The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography on silica gel (4:1 hexanes/EtOAc) gave 1.69 g (97%) of **S1** as a white solid: mp 86-87 °C (lit.^[10a] mp 85-86.4 °C); ¹H NMR (acetone-*d*₆) 8.72 (s, 2, OH), 6.52 (d, 2, *J* = 2.1), 6.33 (t, 1, *J* = 2.1). The ¹H NMR (acetone-*d*₆) spectral data are identical to the literature data.^[10a]

1-Bromo-3,5-bis[[(**1,1-dimethylethyl)dimethylsilyl]oxy]-benzene** (**14**). A solution of **S1** (1.69 g, 8.94 mmol), imidazole (1.4 g, 20.6 mmol), and *tert*-butyldimethylsilyl chloride (2.83 g, 18.8 mmol) in anhydrous DMF (20 mL) was stirred under N₂ at 25 °C overnight. H₂O (20 mL) was added and the aqueous layer was extracted with CH₂Cl₂ (3×20 mL). The combined extracts were dried (MgSO₄) and concentrated to yield 3.70 g of crude **14**. Flash chromatography on silica gel (hexanes) gave 3.50 g (94%) of **14** as a colorless liquid: ¹H NMR 6.63 (d, 2, *J* = 2.1), 6.25 (t, 1, *J* = 2.1), 0.97 (s, 18), 0.19 (s, 12); ¹³C NMR 157.1 (2 C), 122.2, 116.9 (2 C), 111.1, 25.6 (6 C), 18.2 (2 C), -4.5 (4 C). After correction for improper referencing in the literature (TBS methyl group rather than TMS) our spectral data correspond to those reported.^[11]

C₅H₁₁ S2

(2R)-(+)-2-Pentyloxirane (S2). To a mixture of (1R,2R)-(-)-N,N'-bis(3,5-di-t-

butylsalicylidene)-1,2-cyclohexanediaminocobalt (II) (26 mg, 43 µmol, 0.005 equiv) and (±)-2pentyloxirane (1.2 mL, 8.8 mmol) was added AcOH (18 µL, 189 µmol, 0.02 equiv), THF (100 µL, 1.23 mmol), and H₂O (86 µL, 4.8 mmol, 0.55 equiv) at 0 °C. The orange suspension warmed to 25 °C and stirred for 24 h. Flash chromatography on silica gel (30:1 pentane/ether) gave 376 mg (38%) of (2*R*)-(+)-2-pentyloxirane (**S2**) as a colorless liquid: $[\alpha]_D^{22}$ +9.7 (*c* 1.92, CHCl₃); {lit.^[3] for the enantiomer: $[\alpha]_D^{21}$ - 10.6 (*c* 0.99, CHCl₃)}; ¹H NMR 2.94-2.88 (m, 1), 2.75 (dd, 1, *J* = 4.9, 4.3), 2.47 (dd, 1, *J* = 4.9, 2.4), 1.57-1.40 (m, 4), 1.39-1.27 (m, 4), 0.90 (t, 3, *J* = 6.7). The ¹H NMR spectral data are identical to the literature data.^[3]

(αR) -3,5-Bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]- α -pentylbenzeneethanol

(S3). Bromobenzene 14 (427 mg, 1.02 mmol) in a flask was flame-dried under vacuum and dry THF (5 mL) was added. To the above solution was added *t*-BuLi (1.5 mL, 1.5 M in pentane, 2.25 mmol) over 5 min under N₂ at -78 °C and the solution was stirred at -78 °C for 30 min. (*R*)-

(+)-2-pentyloxirane (140 mg, 1.23 mmol) was added dropwise at -78 °C and the solution was stirred at -78 °C for 30 min and at -25 °C for 18 h. The resulting solution was warmed to 25 °C and quenched with saturated NH₄Cl (5 mL). The phases were separated and the aqueous layer was extracted with ether (3 × 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated to yield 459.7 mg of crude **S3**. Flash chromatography on silica gel (80:1 to 30:1 hexanes/EtOAc) gave 340.7 mg (74%) of **S3** as a colorless liquid: $[\alpha]_D^{22}$ -4.7 (*c* 2.65, CHCl₃); ¹H NMR 6.33 (s, 2), 6.22 (s, 1), 3.79-3.70 (m, 1), 2.70 (dd, 1, *J* = 13.4, 4.3), 2.52 (dd, 1, *J* = 13.4, 7.9), 1.55 (d, 1, *J* = 3.7, OH), 1.54-1.21 (m, 8), 0.97 (s, 18), 0.89 (t, 3, *J* = 6.7), 0.19 (s, 12); ¹³C NMR 156.6 (2 C), 140.4, 114.5 (2 C), 110.3, 72.5, 44.1, 36.6, 31.9, 25.7 (6 C), 25.4, 22.6, 18.2 (2 C), 14.1, -4.4 (4 C); IR (neat) 3373, 2957, 2931, 2859, 1588; HRMS (EI) calcd for C₂₅H₄₈O₃Si₂ (M⁺) 452.3142, found 452.3142. HO____OH

5-(2*R***)-2-Hydroxyheptyl-1,3-benzenediol (15)**. A solution of **S3** (892.2 mg, 1.97 mmol) in EtOH (25 mL) was treated with KOH (441 mg, 7.88 mmol) under N₂. The solution was heated at 55 °C for 8 h. EtOH was evaporated under reduced pressure and brine (10 mL) was added. The aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were dried (Na₂SO₄) and concentrated to yield 622 mg of crude **15**. Flash chromatography on silica gel (3:2 hexanes/EtOAc) gave 352.1 mg (80%) of pure **15**: mp 142-143 °C (lit.^[3] mp 141.2-142.3 °C); $[\alpha]_D^{22}$ +4.1 (*c* 2.20, EtOH); {lit.^[3] $[\alpha]_D^{21}$ +4.3 (*c* 2.21, EtOH)}; ¹H NMR (acetone-*d*₆) 8.09 (s, 2, OH), 6.22 (s, 2), 6.19 (s, 1), 3.77-3.68 (m, 1), 3.43 (d, 1, *J* = 4.9, OH), 2.56 (dd, 1, *J* = 13.4, 6.7), 2.54 (dd, 1, *J* = 13.4, 6.1), 1.55-1.20 (m, 8), 0.87 (t, 3, *J* = 7.0). The ¹H NMR (acetone-*d*₆) spectral data are identical to the literature data.^[3]

2,6-Dihydroxy-4-[(2*R*)-2-hydroxyheptyl]-benzoic Acid ((*R*)-(–)-3). A mixture of 15 (60 mg, 267 µmol) and KHCO₃ (133 mg, 1.33 mmol) in dry glycerol (0.21 mL) was stirred under CO₂ (1 atm) at 150 °C for 5 h. After cooling, H₂O (6.7 mL) and KHCO₃ (645 mg) were added and the mixture was extracted with ether (3 × 6.7 mL). The aqueous layer was acidified with 10% HCl to pH 1 and extracted with EtOAc (3 × 11 mL). The combined EtOAc layers were washed with brine (3 × 6.7 mL), dried (MgSO₄), and concentrated to yield 42.1 mg (59%) of pure (*R*)-(–)-3. mp 127-129 °C (lit.^[3] mp 127-130 °C); $[\alpha]_D^{22}$ –8.3 (*c* 1.29, EtOH); {lit.^[3] $[\alpha]_D^{21}$ –8.4 (*c* 1.02, EtOH)}; ¹H NMR (acetone-*d*₆) 7.50-6.60 (br, 2, OH), 6.35 (s, 2), 3.84-3.75 (m, 1), 2.64 (dd, 1, *J* = 13.4, 5.5), 2.60 (dd, 1, *J* = 13.4, 7.3), 1.57-1.19 (m, 8), 0.87 (t, 3, *J* = 6.7). The ¹H NMR (acetone-*d*₆) spectral data are identical to the literature data.^[3]

(3S,4S)-Dihydro-4-[(2E)-3-[[(3aR,7aR)-octahydro-1,3-dimethyl-2-oxido-1H-1,3,2benzodiazaphosphol-1-yl]phosphinyl]-2-propen-1-yl]-3-methyl-2(3H)-furanone (*ent*-17). To a solution of (*R*,*R*)-allyl phophonamide *ent*-16^[14] (400 mg, 1.75 mmol) in THF (12 mL) was added *n*-BuLi (1.32 mL, 1.6 M in hexane, 2.11 mmol) by syringe over 5 min at -100 °C under N₂. The solution was stirred at this temperature for 10 min and at -78 °C for another 10 min. The solution was recooled to -100 °C and 2-butenolide (156 μ L, 2.11mmol) was added dropwise. The mixture was stirred at -100 °C for 10 min and -78 °C for another 30 min. MeI (0.8 mL, 12.4 mmol) was added over 5 min at -78 °C. The solution was stirred from -78 to 25 °C for 4 h and quenched with saturated NH₄Cl (10 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried (MgSO₄)

and concentrated to yield 580 mg of crude *ent*-**17**. Flash chromatography on silica gel (100:5:1 EtOAc/MeOH/Et₃N) gave 415 mg (73%) of *ent*-**17** with >95:5 diastereoselectivity as determined by ¹H NMR spectroscopy: $[\alpha]_D^{22} - 29.6$ (*c* 2.01, CHCl₃); ¹H NMR 6.72-6.57 (m, 1), 5.58 (dd, 1, J = 16.8, 20.5), 4.40 (dd, 1, J = 6.7, 9.1), 3.84 (dd, 1, J = 8.0, 9.1), 2.81-2.72 (m, 1), 2.63-2.23 (m, 5), 2.51 (d, 3, J = 12.2), 2.48 (d, 3, J = 12.2), 2.08-1.79 (m, 4), 1.41-1.20 (m, 3), 1.29 (d, 3, J = 6.7), 1.41-1.03 (m,1); ¹³C NMR 179.0, 148.2 (d, J = 3.1), 123.0 (d, J = 151), 70.5, 64.5 (d, J = 7.6), 63.6 (d, J = 5.3), 42.3, 39.9, 36.2 (d, J = 19.8), 28.62-28.47 (2 C doublets), 28.0, 27.9, 24.1, 24.0, 14.0; IR (neat) 3445, 2935, 1777, 1770, 1633; HRMS (ES) calcd for C₁₆H₂₈N₂O₃P (MH⁺) 327.1838, found 327.1842.

An identical reaction with (*S*,*S*)-allyl phosphonamide **16** afforded **17**.

(3S,4S)-Dihydro-4-[2-[(1,1-dimethylethyl)diphenylsilyloxy]ethyl]-3-methyl-2(3H)-

furanone (*ent*-18). Ozone was bubbled through a solution of *ent*-17 (830 mg, 2.55 mmol) in MeOH/CH₂Cl₂ (1:1, 50 mL) at -78 °C for a period of 20 min until the appearance of a persistent blue color. The excess ozone was replaced with oxygen (10 min) followed by nitrogen (30 min). NaBH₄ (670 mg, 17.2 mmol) was added and the solution was stirred from -78 to 25 °C for 3 h. The solvents were evaporated under reduced pressure at 25 °C and water (10 mL) was added to the residue. The aqueous solution was acidified with 10% HCl, saturated with solid NaCl, and extracted with CH₂Cl₂ (4 × 15 mL). The combined organic extracts were dried (MgSO₄) and concentrated to yield 445 mg of crude alcohol without further purification.

A solution of the above crude alcohol, imidazole (274 mg, 4.02 mmol), and TBDPSCl (0.97 mL, 3.79 mmol) in CH₂Cl₂ (25 mL) was stirred at 25 °C for 12 h under N₂. Saturated NH₄Cl (10 mL) and H₂O (10 mL) were added. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. Flash chromatography on silica gel (15:1 hexanes/EtOAc) 510.6 mg (52%) of *ent*-**18** as a colorless oil: $[\alpha]_D^{22} - 15.5$ (*c* 2.73, CHCl₃); ¹H

NMR 7.64 (d, 4, J = 7.3), 7.47-7.36 (m, 6), 4.43 (dd, 1, J = 9.1, 7.9), 3.85 (dd, 1, J = 9.1, 8.1), 3.74-3.64 (m, 2), 2.34-2.22 (m, 1), 2.27-2.14 (m, 1), 1.90-1.80 (m, 1), 1.65-1.55 (m, 1), 1.23 (d, 3, J = 6.7), 1.06 (s, 9); ¹³C NMR 179.5, 135.4 (4 C), 133.2, 133.1, 129.80, 129.78, 127.7 (4 C), 72.0, 62.0, 41.9, 40.2, 34.6, 26.8 (3 C), 19.0, 13.7; IR (neat) 2933, 2859, 1779; HRMS (Q-tof) calcd for C₂₃H₃₀O₃SiNa (MNa⁺) 405.1862, found 405.1871.

An identical reaction with 17 afforded 18.

1,1-Dimethylethyl (3S,4S)-4-[2-[(1,1-Dimethylethyl)diphenylsilyloxy]ethyl]-

tetrahydro-2-methoxyl-3-methyl-2-furanacetate (*ent*-19). To a solution of *tert*-butyl acetate (258 μ L, 1.91 mmol) in THF (6 mL) was added LHMDS (1.90 mL, 1 M in THF, 1.90 mmol) over 5 min at -78 °C under N₂. The solution was stirred for 1 h at this temperature and a solution of *ent*-18 (122.2 mg, 0.32 mmol) in THF (3 mL) was added dropwise by cannula to the reaction mixture. The reaction was stirred from -78 to 25 °C for 3 h and quenched with saturated NH₄Cl (8 mL). The two layers were separated and the aqueous layer was extracted with ether (3 × 10 mL). The combined organic layers were dried (MgSO₄) and concentrated to give 195.4 mg of crude adducts.

A solution of the crude adducts in anhydrous MeOH (12 mL) was treated with Dowex 50WX8-400-H⁺ ion exchange resin (18 mg) at 25 °C. The reaction was stirred at 25 °C for 12 h. The reaction mixture was filtered through Celite to remove the catalyst and the filtrate was concentrated at 25 °C to give 137.6 mg of crude *ent*-**19**. Flash chromatography on MeOH-deactivated silica gel (50:1 hexanes/EtOAc) gave 128.3 mg (78%) of 90% pure *ent*-**19** (mainly one diastereomer of unknown stereochemistry at the ketal carbon) as a colorless oil: $[\alpha]_D^{22}$ – 36.2 (*c* 2.20, CHCl₃); ¹H NMR 7.65 (d, 4, *J* = 6.7), 7.46-7.34 (m, 6), 3.97 (dd, 1, *J* = 8.5, 7.9), 3.69-3.56 (m, 2), 3.49 (dd, 1, *J* = 8.5, 8.5), 3.23 (s, 3), 2.65 (d, 1, *J* = 13.4), 2.58 (d, 1, *J* = 13.4), 2.14-2.02 (m, 1), 2.02-1.91 (m, 1), 1.87-1.76 (m, 1), 1.48-1.38 (m, 1), 1.45 (s, 9), 1.04 (s, 9), 0.99

(d, 3, J = 6.7); ¹³C NMR 169.0, 135.5 (4 C), 133.7, 133.6, 129.6 (2 C), 127.6 (4 C), 106.3, 80.5, 72.9, 63.2, 48.4, 47.1, 42.1, 39.6, 35.7, 28.0 (3 C), 26.8 (3 C), 19.1, 11.5; IR (neat) 2931, 2856, 1728; HRMS (Q-tof) calcd for C₂₉H₄₁O₄Si (M⁺-OCH₃) 481.2774, found 481.2758.

An identical reaction with **18** afforded **19**.

(3*S*,4*S*)-4-[2-[(1,1-Dimethylethyl)diphenylsilyloxy]ethyl]-tetrahydro-2-methoxyl-3methyl-2-furanethanol (*ent*-20) and (3*S*,4*S*)-4-[2-[(1,1-

Dimethylethyl)diphenylsilyloxy]ethyl]-tetrahydro-2-methoxyl-3-methyl-2-

furanacetaldehyde (*ent*-21). DIBAL-H (0.82 mL, 1 M in hexane, 0.82 mmol) was added dropwise to a solution of *ent*-19 (102.3 mg, 0.2 mmol) in ether (6 mL) at -78 °C under N₂. The reaction mixture was stirred at -78 °C for 1.5 h. The reaction was quenched with saturated Rochelle salt solution (8 mL) and allowed to warm to 25 °C. The resulting mixture was stirred at 25 °C for 1 h until clear separation of two layers was observed and extracted with ether (3 × 8 mL). The combined ether extracts were dried (MgSO₄) and concentrated at 25 °C to give 84.7 mg of crude product. Flash chromatography on MeOH-deactivated silica gel (30:1 to 5:1 hexanes/EtOAc) gave 37.8 mg (43%) of aldehyde *ent*-21 followed by 34.4 mg (39%) of alcohol *ent*-20.

Data for *ent*-**21**: $[\alpha]_D^{22} - 74.7$ (*c* 2.13, CHCl₃); ¹H NMR 9.69 (dd, 1, *J* = 3.7, 2.4), 7.65 (d, 4, *J* = 6.7), 7.47-7.33 (m, 6), 4.04 (dd, 1, *J* = 8.5, 8.5), 3.68-3.57 (m, 2), 3.55 (dd, 1, *J* = 8.5, 8.5), 3.26 (s, 3), 2.85 (dd, 1, *J* = 14.7, 2.4), 2.59 (dd, 1, *J* = 14.7, 3.7), 2.10-2.08 (m, 1), 1.84-1.74 (m, 1), 1.63-1.52 (m, 1), 1.48-1.37 (m, 1), 1.05 (s, 9), 0.98 (d, 3, *J* = 6.7); ¹³C NMR 201.0, 135.5 (4 C), 133.6, 133.5, 129.6 (2 C), 127.7 (4 C), 106.0, 73.1, 63.1, 48.6, 48.5, 46.5, 41.9, 35.6, 26.8 (3 C), 19.1, 11.2; IR (neat) 2933, 2858, 1724; HRMS (Q-tof) calcd for C₂₆H₃₆O₄SiNa (MNa⁺) 463.2281, found 463.2270.

Data for *ent*-**20**: $[\alpha]_D^{22} - 51.0$ (*c* 0.98, CHCl₃); ¹H NMR 7.65 (dd, 4, *J*=7.9, 1.8), 7.46-7.36 (m, 6), 3.99 (dd, 1, *J* = 8.5, 8.5), 3.73-3.59 (m, 4), 3.53 (dd, 1, *J* = 8.5, 8.5), 3.23 (s, 3), 2.96 (dd, 1, *J* = 7.3, 3.7, OH), 2.18-2.07 (m, 2), 1.86-1.67 (m, 3), 1.50-1.40 (m, 1), 1.05 (s, 9), 0.97 (d, 3, *J* = 6.7); ¹³C NMR 135.5 (4 C), 133.65, 133.58, 129.6 (2 C), 127.7 (4 C), 109.1, 72.8, 63.2, 58.8, 48.3, 46.2, 41.9, 35.8, 33.5, 26.8 (3 C), 19.1, 11.6; IR (neat) 2931, 2856, 1728; HRMS (Q-tof) calcd for C₂₆H₃₈O₄NaSi (MNa⁺) 465.2437, found 465.2413.

An identical reaction with 19 afforded 21 and 20.

Oxidation of *ent-20* **to Give** *ent-21***.** To a solution of oxalyl chloride (59 μ L, 679 μ mol) in dry CH₂Cl₂ (2 mL) was added a solution of DMSO (79 μ L, 1.13 mmol) dropwise under N₂ at -78 °C. After 15 min, alcohol *ent-20* (100 mg, 226 μ mol) in CH₂Cl₂ (2 mL) was added dropwise and the solution was stirred at -78 °C for 1 h. NEt₃ (0.47 mL, 226 μ mol) was added dropwise and the solution was stirred at -78 °C for 2 h and warmed to -30 °C over a period of 1 h. The reaction mixture was quenched with 5% aqueous NaHSO₃ (6 mL) and warmed to 25 °C. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 6 mL). The combined organic layers were dried (Na₂SO₄) and concentrated at 25 °C. Flash chromatography on MeOH-deactivated silica gel (30:1 hexanes/EtOAc) gave 52.0 mg (52%) of aldehyde *ent-***21**.

Methyl (2*S*,3*R*,3'a*S*,4*R*,5'*R*)-, (2*R*,3*R*,3'a*S*,4*R*,5'*R*)-, (2*R*,3*R*,3'a*R*,4*R*,5'*R*)-, and (2*S*,3*R*,3'a*R*,4*R*,5'*R*)-4-[2-[(1,1-Dimethylethyl)diphenylsilyloxy]ethyl]-3',3'a,4,5,5',6'hexahydro-8'-hydroxy-3-methyl-5'-pentyl-spiro[furan-2(3*H*),2'-[2*H*]pyrano[2,3,4*de*][1]benzopyran]-9'-carboxylate (22, 23, 24, and 25, respectively). A solution of freshly prepared acid (*R*)-(–)-3 (31.5 mg, 118 µmol) and freshly prepared ketal aldehyde 21 (40.4 mg, 92 µmol) was treated with Dowex 50WX8-400-H⁺ ion exchange resin (30 mg) at 25 °C and stirred at 25 °C for 12 h. The reaction mixture was filtered through Celite to remove the catalyst and the filtrate was concentrated to give crude product.

An ether solution (2 mL) of diazomethane (0.67 mmol) was added dropwise to an ether solution (2 mL) of the crude product at 25 °C. The resulting solution was stirred at 25 °C for 20 min and carefully concentrated to give crude tetracyclic diastereomers. Flash chromatography on silica gel (50:1 to 20:1 hexanes/EtOAc) gave 35.3 mg (57%) of a 4:1:3:0 mixture of **22**, **23**, **24**, and **25** as determined by integration of H-15 at δ 4.75 (dd, 1, *J* = 12.2, 5.2), 4.55 (dd, 1, *J* = 12.0, 5.6), and 4.85 (dd, 1, *J* = 11.3, 6.4), respectively. The structures were tentatively assigned by analogy to the peaks for **9-12** at δ 4.77 (dd, 1, *J* = 12.2, 5.4), 4.57 (dd, 1, *J* = 12.2, 5.3), 4.85 (dd, 1, *J* = 11.4, 6.5), and 4.68 (dd, 1, *J* = 10.3, 6.3).

TFA (2 μ L) was added to a CDCl₃ solution (1 mL) of the above mixture. The reaction was stirred at 25 °C for 20 h and concentrated under reduced pressure. Flash chromatography on silica gel (30:1 hexanes/EtOAc) gave a 2:trace:1:0 mixture of **22-25**. The early fraction contained pure **22**.

Data for **22**: ¹H NMR 11.4 (s, 1, OH), 7.66 (d, 4, J = 6.3), 7.48-7.33 (m, 6), 6.32 (s, 1, H-4), 4.75 (dd, 1, J = 12.2, 5.2, H-15), 4.14 (dd, 1, J = 7.8, 7.8, H-26), 3.86 (s, 3, OMe), 3.84-3.77 (m, 1, H-9), 3.69 (dd, 1, J = 7.8, 7.8, H-26), 3.72-3.64 (m, 2, 2 H-21), 2.77 (dd, 1, J = 17.7, 4.3, H-8), 2.61 (dd, 1, J = 17.7, 11.0, H-8), 2.24 (dd, 1, J = 12.2, 5.2, H-16), 2.28-2.20 (m, 1, H-18), 2.04-1.86 (m, 3, 2 H-20, H-19), 1.81 (dd, 1, J = 12.2, 12.2, H-16), 1.68-1.60 (m, 1), 1.58-1.46 (m, 2), 1.45-1.26 (m, 5), 1.05 (s, 9), 1.05 (d, 3, J = 6.7, 3 H-25), 0.90 (t, 3, J = 6.7, 3 H-14).

Methyl (2*S*,3*S*,3'a*S*,4*S*,5'*R*)-4-[2-[(1,1-Dimethylethyl)diphenylsilyloxy]ethyl]-3',3'a,4,5,5',6'-hexahydro-8'-hydroxy-3-methyl-5'-pentyl-spiro[furan-2(3*H*),2'-[2*H*]pyrano[2,3,4-*de*][1]benzopyran]-9'-carboxylate (27a) and Methyl (2*S*,3*S*,3'a*S*,4*S*,5'*R*)-3',3'a,4,5,5',6'-Hexahydro-8'-hydroxy-4-[2-hydroxyethyl]-3-methyl-5'-pentyl-spiro[furan-2(3*H*),2'-[2*H*]pyrano[2,3,4-*de*][1]benzopyran]-9'-carboxylate (27b). A solution of freshly prepared acid (*R*)-(-)-3 (37.8 mg, 141 µmol) and freshly prepared ketal aldehyde *ent*-21 (48.0 mg, 109 µmol) was treated with Dowex 50WX8-400-H⁺ ion exchange resin (25 mg) at 25 °C and stirred at 25 °C for 60 h. The reaction mixture was filtered through Celite to remove the catalyst and the filtrate was concentrated to give 79.1 mg of crude product.

An ether solution (2 mL) of diazomethane (0.67 mmol) was added dropwise to an ether solution (2 mL) of the 79 mg of crude product at 25 °C. The resulting solution was stirred at 25 °C for 20 min and carefully concentrated to give crude ester. Flash chromatography on silica gel (50:1 to 2:1 hexanes/EtOAc) gave 22.1 mg (30%) of **27a** followed by 10.6 mg (22%) of **27b**.

Data for **27a**: $[\alpha]_D^{22}$ -64.6 (*c* 1.11, CHCl₃); ¹H NMR 11.4 (s, 1, OH), 7.66 (d, 4, *J* = 7.8), 7.48-7.33 (m, 6), 6.31 (s, 1, H-4), 4.76 (dd, 1, *J* = 12.2, 5.4, H-15), 4.25 (dd, 1, *J* = 8.5, 8.5, H-26), 3.83-3.76 (m, 1, H-9), 3.82 (s, 3, OMe), 3.73-3.64 (m, 2, 2 H-21), 3.55 (dd, 1, *J* = 8.5, 8.5, H-26), 2.76 (dd, 1, *J* = 17.6, 3.9, H-8), 2.60 (dd, 1, *J* = 17.6, 10.7, H-8), 2.45-2.33 (m, 1, H-19), 2.16 (dd, 1, *J* = 12.2, 5.4, H-16), 1.95 (dd, 1, *J* = 12.2, 12.2, H-16), 1.95-1.87 (m, 1, H-20), 1.73 (dq, 1, *J* = 10.5, 6.7, H-18), 1.68-1.60 (m, 1, H-10), 1.58-1.46 (m, 3), 1.44-1.24 (m, 5), 1.06 (d, 3, *J* = 6.7, 3 H-25), 1.055 (s, 9), 0.90 (t, 3, *J* = 6.6); ¹³C NMR 171.6, 162.1, 152.1, 141.3, 135.5 (4 C), 133.5 (2 C), 129.71, 129.69, 127.7 (4 C), 112.7, 108.9, 108.3, 99.9, 75.1, 73.5, 68.2, 63.2, 52.0, 49.0, 41.6, 36.3, 35.5, 34.5, 34.0, 31.8, 26.8 (3 C), 25.1, 22.6, 19.1, 14.0, 11.7; IR (neat) 3398, 2957, 2932, 2859, 1660; HRMS (EI) calcd for C₄₀H₅₂O₇Si (M⁺) 672.3482, found 672.3480.

Data for **27b**: $[\alpha]_D^{22} - 98.7$ (*c* 0.53, CHCl₃); ¹H NMR 11.4 (s, 1, OH), 6.31 (s, 1, H-4), 4.76 (dd, 1, *J* = 12.2, 5.4, H-15), 4.25 (dd, 1, *J* = 8.5, 8.5, H-26), 3.91 (s, 3, OMe), 3.85-3.77 (m, 1, H-9), 3.72 (t, 2, *J* = 6.1, 2 H-21), 3.63 (dd, 1, *J* = 8.5, 8.5, H-26), 2.76 (dd, 1, *J* = 17.6, 3.9, H-8), 2.60 (dd, 1, *J* = 17.6, 10.7, H-8), 2.49-2.34 (m, 1, H-19), 2.18 (dd, 1, *J* = 12.2, 5.4, H-16), 1.96 (dd, 1, *J* = 12.2, 12.2, H-16), 1.99-1.90 (m, 1, H-20), 1.76 (dq, 1, *J* = 10.7, 6.3, H-18), 1.68-1.60 (m, 1, H-10), 1.60-1.46 (m, 3), 1.45-1.24 (m, 5), 1.09 (d, 3, *J* = 6.8, 3 H-25), 0.90 (t, 3, *J* = 6.6);¹³C NMR 171.6, 162.1, 152.0, 141.3, 112.7, 109.1, 108.3, 99.9, 75.1, 73.1, 68.1, 61.9, 52.0, 48.9, 40.8, 36.3, 35.3, 34.5, 33.9, 31.8, 25.1, 22.6, 14.0, 11.7; IR (neat) 3406, 2953, 2933, 2860, 1660; HRMS (EI) calcd for C₂₄H₃₄O₇ (M⁺) 434.2305, found 434.2305.

2-Propenyl (2*S*,3*S*,3'a*S*,4*S*,5'*R*)-4-[2-[(1,1-Dimethylethyl)diphenylsilyloxy]ethyl]-3',3'a,4,5,5',6'-hexahydro-3-methyl-5'-pentyl-8'-(2-propenyloxy)-spiro[furan-2(3*H*),2'-[2*H*]pyrano[2,3,4-*de*][1]benzopyran]-9'-carboxylate (28) and 2-Propenyl (2*S*,3*S*,3'a*S*,4*S*,5'*R*)-3',3'a,4,5,5',6'-Hexahydro-4-[2-hydroxyethyl]-3-methyl-5'-pentyl-8'-(2propenyloxy)-spiro[furan-2(3*H*),2'-[2*H*]pyrano[2,3,4-*de*][1]benzopyran]-9'-carboxylate (29). A solution of freshly prepared acid (*R*)-(-)-3 (42.0 mg, 157 µmol) and freshly prepared ketal aldehyde *ent*-21 (43 mg, 97.7 µmol) was treated with Dowex 50WX8-400-H⁺ ion exchange resin (23 mg) at 25 °C and the solution was stirred for 60 h. The reaction mixture was filtered through Celite to remove the catalyst and the filtrate was concentrated to give 78.8 mg of crude product.

To a suspension of the above crude product and K_2CO_3 (108 mg, 784 µmol) in DMF (2 mL) was added allyl bromide (102 µL, 1.18 mmol) under N₂ at 25 °C. The reaction mixture

was stirred at 25 °C for 12 h. H_2O (4 mL) was added and the mixture was extracted with CH_2Cl_2 (4 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. Flash chromatography on silica gel (30:1 to 2:1 hexanes/EtOAc) gave 23.1 mg (32%) of **28** followed by 10.0 mg (20%) of **29**.

Data for **28**: $[\alpha]_D^{22}$ -60.0 (*c* 2.31, CHCl₃); ¹H NMR 7.66 (d, 4, *J* = 6.7), 7.47-7.34 (m, 6), 6.23 (s, 1, H-4), 6.02-5.90 (m, 2), 5.36 (br d, 1, *J* = 17.7), 5.33 (br d, 1, *J* = 17.1), 5.22 (br d, 1, *J* = 10.4), 5.15 (br d, 1, *J* = 10.4), 4.84-4.65 (m, 2, H-15), 4.71 (dd, 1, *J* = 12.3, 5.2), 4.51 (d, 2, *J* = 4.9), 4.20 (dd, 1, *J* = 8.5, 8.5, H-26), 3.83-3.78 (m, 1, H-9), 3.72-3.60 (m, 2, 2 H-21), 3.62 (dd, 1, *J* = 8.5, 8.5, H-26), 2.75 (dd, 1, *J* = 17.1, 3.7, H-8), 2.60 (dd, 1, *J* = 17.1, 10.7, H-8), 2.30-2.18 (m, 1, H-19), 2.15 (dd, 1, *J* = 12.2, 4.9, H-16), 1.97 (dd, 1, *J* = 12.2, 12.2, H-16), 1.89-1.80 (m, 1, H-20), 1.73-1.59 (m, 2, H-18, H-10), 1.58-1.46 (m, 3), 1.43-1.25 (m, 5), 1.05 (s, 9), 1.01 (d, 3, *J* = 6.7, 3 H-25), 0.90 (t, 3, *J* = 6.4); ¹³C NMR 165.5, 155.5, 149.0, 135.8, 135.5 (4 C), 133.55, 133.52, 132.9, 132.3, 129.7 (2 C), 127.7 (4 C), 118.1, 117.1, 114.6, 109.6, 108.7, 104.2, 75.3, 73.3, 69.4, 68.1, 65.6, 63.2, 49.0, 41.3, 36.3, 35.6, 34.5, 34.4, 31.8, 26.8 (3 C), 25.1, 22.6, 19.1, 14.0, 11.6; IR (neat) 2957, 2932, 2859, 1739, 1732; HRMS (EI) calcd for C₄₅H₅₈O₇Si (M⁺) 738.3952, found 738.3953.

Data for **29**: $[\alpha]_D^{22}$ –88.1 (*c* 1.00, CHCl₃); ¹H NMR 6.23 (s, 1, H-4), 6.06-5.92 (m, 2), 5.39 (br d, 1, *J* = 17.1), 5.36 (br d, 1, *J* = 17.1), 5.24 (br d, 1, *J* = 9.8), 5.23 (br d, 1, *J* = 10.4), 4.86-4.76 (m, 2, H-15), 4.74 (dd, 1, *J* = 13.4, 5.5), 4.51 (d, 2, *J* = 4.9), 4.20 (dd, 1, *J* = 8.2, 8.2, H-26), 3.86-3.77 (m, 1, H-9), 3.72-3.58 (m, 2, 2 H-21), 3.59 (dd, 1, *J* = 8.2, 8.2, H-26), 2.75 (dd, 1, *J* = 16.5, 4.0, H-8), 2.60 (dd, 1, *J* = 16.5, 11.0, H-8), 2.30-2.19 (m, 1, H-19), 2.16 (dd, 1, *J* = 12.2, 5.5, H-16), 1.97 (dd, 1, *J* = 12.2, 12.2, H-16), 1.92-1.85 (m, 1, H-20), 1.71 (dq, 1, *J* = 10.5, 6.7, H-18), 1.70-1.60 (m, 1, H-10), 1.58-1.46 (m, 3), 1.45-1.25 (m, 5), 1.03 (d, 3, *J* = 6.7, 3 H-25), 0.90 (t, 3, *J* = 6.7); ¹³C NMR 165.6, 155.5, 149.0, 135.9, 132.9, 132.3, 118.1, 117.1, 114.6, 109.5, 108.8, 104.3, 75.3, 72.9, 69.4, 68.1, 65.6, 61.8, 48.9, 40.6, 36.3, 35.7, 34.43, 34.40, 31.8, 25.1, 22.6, 14.0, 11.7; IR (neat) 3432, 2932, 2876, 1739, 1732, 1714; HRMS (EI) calcd for C₂₉H₄₀O₇ (M⁺) 500.2774, found 500.2769. **Deprotection of 28.** To a solution of **28** (64.7 mg, 88 μ mol) in THF (4 mL) was added TBAF (350 μ L, 1 M in THF, 350 μ mol) and AcOH (20 μ L, 350 μ mol). The solution was stirred at 25 °C for 12 h. The mixture was concentrated under reduced pressure at 25 °C. The residue was treated with brine (4 mL) and 45 drops of saturated NaHCO₃ to adjust the pH to 7 and the aqueous layer was extracted with distilled ether (6 × 10 mL). The combined extracts were dried (Na₂SO₄) and concentrated to yield 73.6 mg of crude **29**. Flash chromatography on silica gel (2:1 hexanes/EtOAc) gave 37.7 mg (86%) of pure **29**.

2-Propenyl (*2S*,*3S*,*3*'**a***S*,*4S*,*5*'**R**)-**3'**,*3*'**a**,*4*,*5*,*5*',*6*'-Hexahydro-3-methyl-4-[2-oxoethyl]-**5'-pentyl-8'-(2-propenyloxy)-spiro[furan-2(***3H*),**2'-[***2H*]**pyrano[2**,*3*,*4-de*]**[1]benzopyran]-9'carboxylate (30)**. Dess-Martin periodinane (178 mg, 0.42 mmol) was added to a solution of alcohol **29** (105 mg, 0.21 mmol) in CH₂Cl₂ (10 mL) at 0 °C. The suspension was allowed to warm to 25 °C and continued to stir for 1 h. The solvent was removed under reduced pressure at 25 °C. Flash chromatography on MeOH-deactivated silica gel (5:1 hexanes/EtOAc) gave 92.4 mg (88%) of pure **30**: $[\alpha]_D^{22}$ –103.9 (*c* 0.18, CHCl₃); ¹H NMR 9.81 (s, 1), 6.24 (s, 1, H-4), 6.08-5.92 (m, 2), 5.40 (br d, 1, *J* = 16.5), 5.36 (br d, 1, *J* = 15.9), 5.26 (br d, 1, *J* = 11.6), 5.23 (br d, 1, *J* = 11.0), 4.85 (dd, 1, *J* = 13.3, 6.1), 4.80 (dd, 1, *J* = 12.2, 5.5, H-15), 4.74 (dd, 1, *J* = 13.3, 5.8), 4.52 (d, 2, *J* = 4.9), 4.35 (dd, 1, *J* = 8.5, 8.5, H-26), 3.88-3.78 (m, 1, H-9), 3.51 (dd, 1, *J* = 8.5, 8.5, H-26), 2.80 (dd, 1, *J* = 17.7, 3.7, H-20), 2.75 (dd, 1, *J* = 16.5, 4.3, H-8), 2.61 (dd, 1, *J* = 16.5, 11.0, H-8), 2.66-2.57 (m, 1, H-19), 2.43 (dd, 1, *J* = 17.7, 9.8, H-20), 2.16 (dd, 1, *J* = 12.2, 5.5, H-16), 1.96 (dd, 1, *J* = 12.2, 12.2, H-16), 1.73 (dq, 1, *J* = 10.4, 6.7, H-18), 1.71-1.60 (m, 1, H-10), 1.58-1.46 (m, 2), 1.45-1.24 (m, 5), 1.04 (d, 3, *J* = 6.7, 3 H-25), 0.90 (t, 3, *J* = 6.7); ¹³C NMR 200.5, 165.5, 155.6, 148.8, 135.9, 132.9, 132.3, 118.4, 117.2, 114.5, 109.6, 108.4, 104.5,

75.3, 72.2, 69.4, 68.0, 65.7, 48.5, 47.3, 37.6, 36.3, 34.4, 34.3, 31.8, 25.1, 22.6, 14.0, 11.5; IR (neat) 2957, 2932, 2860, 1738, 1732, 1716; HRMS (EI) calcd for $C_{29}H_{38}O_7$ (M⁺) 498.2618, found 498.2611.

1-Methoxy-1-trimethylsiloxy-2-methyl-1-butene (31) was prepared by the literature procedure.^[17] *n*-BuLi (12.6 mL, 1.6 M in hexane, 20 mmol) was added dropwise to a solution of diisopropylamine (2.82 mL, 20 mmol) in THF (15 mL) under N₂ at 0 °C. The resulting solution was stirred at 0 °C for 30 min and cooled to -78 °C. A solution of methyl 2-methylbutanoate (2.64 mL, 20 mmol) in THF (6 mL) was added dropwise to the reaction mixture and the reaction was stirred at -78 °C for 1 h. TMSCI (3 mL, 24 mmol) was added dropwise to the reaction mixture and the reaction mixture and the reaction was slowly warmed up to 25 °C over 3 h. The reaction was quenched with ice water (20 mL). The two layers were separated and the aqueous layer was extracted with hexanes (3 × 20 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated at 25 °C. The crude oil was purified by distillation (bp 95-97 °C/35 torr) to give 2.78 g (74%, 7:3 mixture of isomers) of **31** as a colorless oil: ¹H NMR 3.50 (s, 3), 1.99 (q, 0.3 × 2, *J* = 7.6), 1.55 (s, 0.7 × 3), 1.51 (s, 0.3 × 3), 0.94 (q, 0.3 × 2, *J* = 7.6), 0.93 (q, 0.7 × 2, *J* = 7.6), 0.208 (s, 0.3 × 3), 0.203 (s, 0.7 × 3). The ¹H NMR spectral data are identical to the literature data.^[17]

Methyl (αS , βR ,2S,3S,3'aS,4S,5'R)- and (αR , βR ,2S,3S,3'aS,4S,5'R)- α ,3-Dimethyl- α ethyl-3',3'a,4,5,5',6'-hexahydro- β -hydroxyl-3-methyl-5'-pentyl-8'-(2-propenyloxy)-9'-(2propenyloxycarbonyl)-spiro[furan-2(3H),2'-[2H]pyrano[2,3,4-de][1]benzopyran]-4**butanoate** (**33 and 34**). To a solution of *N*-Ts-(*S*)-valine (84 mg, 0.31 mmol)^[19] in dry CH₂Cl₂ (2 mL) was added BH₃•THF (0.31 mL, 1 M solution in THF, 0.31 mmol) by syringe over 3 min under N₂ at 0 °C. The solution was stirred for 30 min at 0 °C and additionally for 30 min at 25 °C. The solution was cooled -78 °C and a solution of aldehyde **30** (44.0 mg, 88.4 µmol) in CH₂Cl₂ (0.5 mL) was added dropwise over 3 min. After stirring for 5 min, silyl ketene acetal **31** (49 mg, 0.31 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise over 3 min. The reaction mixture was stirred for 4 h at -78 °C and quenched with 1 M aqueous HCl (4 mL). The mixture was allowed to warm to 25 °C and the aqueous layer was extracted with CH₂Cl₂ (4 × 5 mL). The combined organic layers were washed with saturated NaHCO₃ (2 × 10 mL), dried (MgSO₄) and concentrated to yield 71.6 mg of crude aldol product. Preparative TLC (4:1 hexanes/EtOAc, developed four times) gave 21.5 mg (40%) of **33** followed with 21.9 mg (40%) of **34**.

Data for **33**: $[\alpha]_D^{22}$ –95.0 (*c* 0.22, CHCl₃); ¹H NMR 6.23 (s, 1, H-4), 6.07-5.92 (m, 2), 5.40 (br d, 1, *J* = 17.1), 5.36 (br d, 1, *J* = 16.5), 5.25 (br d, 1, *J* = 9.8), 5.22 (br d, 1, *J* = 9.2), 4.86-4.72 (m, 3, H-15), 4.51 (d, 2, *J* = 4.9), 4.28 (dd, 1, *J* = 8.5, 8.5, H-26), 3.86-3.78 (m, 1, H-9), 3.77-3.69 (m, 1, H-21), 3.709 (s, 3, OMe), 3.65 (dd, 1, *J* = 8.5, 8.5, H-26), 2.75 (dd, 1, *J* = 17.1, 3.4, H-8), 2.60 (dd, 1, *J* = 17.1, 11.0, H-8), 2.27-2.20 (m, 1, H-19), 2.22 (d, 1, *J* = 6.1, OH), 2.14 (dd, 1, *J* = 12.2, 5.5, H-16), 1.96 (dd, 1, *J* = 12.2, 12.2, H-16), 1.80 (dq, 1, *J* = 13.4, 7.3), 1.71-1.60 (m, 3), 1.59-1.46 (m, 3), 1.45-1.24 (m, 6), 1.14 (s, 3, 3 H-27), 1.03 (d, 3, *J* = 6.7, 3 H-25), 0.90 (t, 3, *J* = 6.7), 0.87 (t, 3, *J* = 7.3); ¹³C NMR 176.94, 165.66, 155.55, 149.09, 135.89, 132.96, 132.40, 118.17, 117.13, 114.65, 109.52, 108.52, 104.23, 76.22, 75.31, 73.87, 69.38, 68.11, 65.64, 51.79, 51.23, 49.04, 42.48, 36.32, 35.31, 34.55, 34.41, 31.79, 28.38, 25.14, 22.61, 16.75, 14.04, 11.87, 8.99; IR (neat) 3508, 2953, 2933, 2860, 1739, 1732, 1715; HRMS (EI) calcd for C₃₅H₅₀O₉ (M⁺) 614.3455, found 614.3451.

Data for **34**: $[\alpha]_D^{22}$ –96.3 (*c* 0.22, CHCl₃); ¹H NMR 6.23 (s, 1, H-4), 6.07-5.92 (m, 2), 5.40 (br d, 1, *J* = 17.1), 5.36 (br d, 1, *J* = 16.5), 5.25 (br d, 1, *J* = 9.8), 5.22 (br d, 1, *J* = 9.2), 4.86-4.72 (m, 3, H-15), 4.51 (d, 2, *J* = 4.9), 4.31 (dd, 1, *J* = 8.5, 8.5, H-26), 3.86-3.77 (m, 1, H-9), 3.726 (s, 3, OMe), 3.74-3.68 (m, 1, H-21), 3.66 (dd, 1, *J* = 8.5, 8.5, H-26), 2.75 (dd, 1, *J* = 17.1, 3.4, H-8), 2.60 (dd, 1, J = 17.1, 11.0, H-8), 2.51 (d, 1, J = 7.3, OH), 2.30-2.21 (m, 1, H-19), 2.14 (dd, 1, J = 12.2, 4.9, H-16), 1.97 (dd, 1, J = 12.2, 12.2, H-16), 1.81-1.44 (m, 7), 1.43-1.17 (m, 6), 1.13 (s, 3, 3 H-27), 1.04 (d, 3, J = 6.1, 3 H-25), 0.90 (t, 3, J = 6.4), 0.85 (t, 3, J = 7.3); ¹³C NMR 177.58, 165.63, 155.56, 149.10, 135.87, 132.96, 132.39, 118.11, 117.12, 114.64, 109.51, 108.43, 104.22, 75.49, 75.30, 74.00, 69.37, 68.11, 65.62, 51.86, 51.45, 49.07, 42.57, 36.31, 34.57, 34.49, 34.41, 31.78, 29.60, 25.13, 22.60, 16.94, 14.03, 11.87, 8.80; IR (neat) 3522, 2955, 2933, 2860, 1737, 1732, 1715; HRMS (EI) calcd for C₃₅H₅₀O₉ (M⁺) 614.3455, found 614.3458.

Methyl (α*S*,2*S*,3*S*,3'a*S*,4*S*,5'*R*)-α,3-Dimethyl-α-ethyl-3',3'a,4,5,5',6'-hexahydro-3methyl- β-oxo-5'-pentyl-8'-(2-propenyloxy)-9'-(2-propenyloxycarbonyl)-spiro[furan-2(3H),2'-[2H]pyrano[2,3,4-de][1]benzopyran]-4-butanoate (S4). The aldol product 33 (20 mg, 32.5 µmol) in CH₂Cl₂ (2 mL) was treated with Dess-Martin periodinane (28 mg, 66 μmol) at 0 °C. The suspension was allowed to warm to 25 °C and continued to stir for 12 h. The solvent was removed under reduced pressure at 25 °C. Flash chromatography on silica gel (10:1 hexanes/EtOAc) gave 16.9 mg (85%) of S4: $[\alpha]_D^{22}$ -88.5 (c 0.73, CHCl₃); ¹H NMR 6.24 (s, 1, H-4), 6.08-5.92 (m, 2), 5.40 (br d, 1, J = 17.7), 5.36 (br d, 1, J = 17.1), 5.27 (br d, 1, J = 17.1) 10.4), 5.23 (br d, 1, J = 10.4), 4.85 (dd, 1, J = 13.4, 6.1), 4.79 (dd, 1, J = 12.2, 5.5, H-15), 4.74 (dd, 1, J = 13.1, 5.8), 4.51 (d, 2, J = 4.9), 4.35 (dd, 1, J = 8.5, 8.5, H-26), 3.86-3.78 (m, 1, H-9),3.74 (s, 3, OMe), 3.45 (dd, 1, J = 8.5, 8.5, H-26), 2.77 (dd, 1, J = 17.7, 3.4, H-20), 2.75 (dd, 1, J= 16.5, 3.7, H-8, 2.60 (dd, 1, J = 17.1, 11.0, H-8), 2.62-2.51 (m, 1, H-19), 2.43 (dd, 1, J = 17.7, H-8) 10.4, H-20), 2.14 (dd, 1, J = 12.2, 5.5, H-16), 1.96 (dd, 1, J = 12.2, 12.2, H-16), 2.02-1.91 (m, 1, H-23), 1.82 (dg, 1, J = 14.0, 7.3, H-23), 1.72-1.58 (m, 2), 1.58-1.46 (m, 2), 1.45-1.24 (m, 5), 1.33 (s, 3, H-27), 1.01 (d, 3, J = 6.7, 3 H-25), 0.90 (t, 3, J = 6.4), 0.84 (t, 3, J = 7.3); ¹³C NMR 206.6, 173.5, 165.5, 155.6, 148.9, 135.8, 132.9, 132.2, 118.5, 117.1, 114.5, 109.7, 108.4, 104.4, 75.3,

72.8, 69.4, 68.0, 65.7, 59.7, 52.4, 48.4, 42.0, 38.9, 36.3, 34.42, 34.39, 31.8, 27.9, 25.1, 22.6, 18.4, 14.0, 11.6, 8.6; IR (neat) 2957, 2933, 2860, 1739, 1731, 1715; HRMS (EI) calcd for C₃₅H₄₈O₉ (M⁺) 612.3298, found 612.3300.

 $(\alpha R, 2S, 3S, 3'aS, 4S, 5'R)$ - α , 3-Dimethyl- α -ethyl-3', 3'a, 4, 5, 5', 6'-hexahydro-3-Methyl methyl- β-oxo-5'-pentyl-8'-(2-propenyloxy)-9'-(2-propenyloxycarbonyl)-spiro[furan-2(3H),2'-[2H]pyrano[2,3,4-de][1]benzopyran]-4-butanoate (S5). An identical reaction with **34** (20.2 mg, 32.9 μ mol) afforded 15.6 mg (77%) of **S5**: $[\alpha]_D^{22}$ –91.9 (*c* 0.70, CHCl₃); ¹H NMR 6.23 (s, 1, H-4), 6.08-5.92 (m, 2), 5.40 (br d, 1, J = 17.7), 5.36 (br d, 1, J = 17.1), 5.27 (br d, 1, J= 10.4), 5.23 (d, 1, J = 10.4), 4.85 (dd, 1, J = 13.4, 6.1), 4.79 (dd, 1, J = 12.2, 5.5, H-15), 4.74 (dd, 1, J = 13.1, 5.8), 4.51 (d, 2, J = 4.9), 4.35 (dd, 1, J = 8.5, 8.5, H-26), 3.86-3.78 (m, 1, H-9),3.74 (s, 3, OMe), 3.45 (dd, 1, J = 8.5, 8.5, H-26), 2.81 (dd, 1, J = 17.7, 3.1, H-20), 2.75 (dd, 1, J= 17.1, 3.7, H-8), 2.60 (dd, 1, J = 17.1, 11.0, H-8), 2.60-2.50 (m, 1, H-19), 2.35 (dd, 1, J = 17.7, 10.4, H-20), 2.14 (dd, 1, J = 12.2, 4.9, H-16), 1.96 (dd, 1, J = 12.2, 12.2, H-16), 2.02-1.91 (m, 1, H-23), 1.82 (dq, 1, J = 14.7, 7.3, H-23), 1.72-1.58 (m, 2), 1.58-1.46 (m, 2), 1.45-1.24 (m, 5), 1.34 (s, 3, H-27), 1.00 (d, 3, J = 6.7, 3 H-25), 0.90 (t, 3, J = 6.7), 0.83 (t, 3, J = 7.3); ¹³C NMR 206.5, 173.5, 165.5, 155.6, 148.9, 135.8, 132.9, 132.2, 118.5, 117.2, 114.5, 109.7, 108.4, 104.4, 75.3, 72.8, 69.4, 68.0, 65.7, 59.7, 52.4, 48.5, 42.0, 38.9, 36.3, 34.42, 34.39, 31.8, 27.8, 25.1, 22.6, 18.3, 14.0, 11.6, 8.6; IR (neat) 2957, 2934, 2860, 1739, 1732, 1715; HRMS (EI) calcd for C₃₅H₄₈O₉ (M⁺) 612.3298, found 612.3296.

Methyl (as,2s,3s,3'as,4s,5'R)-9'-Carboxy-a,3-dimethyl-a-ethyl-3',3'a,4,5,5',6'hexahydro-8'-hydroxy-3-methyl- β-oxo-5'-pentyl-spiro[furan-2(3H),2'-[2H]pyrano[2,3,4de][1]benzopyran]-4-butanoate (35, berkelic acid). To a solution of Pd(PPh₃)₄ (6.1 mg, 5.3 µmol) and S4 (16.2 mg, 26.4 µmol) in dry THF (2 mL) was added NEt₃ (148 µL, 1.06 mmol) and HCO₂H (40 µL, 1.06 mmol) under N₂ at 25 °C. The yellow solution was stirred at 25 °C for 15 h and guenched with saturated NaHCO₃ (5 mL). The agueous layer was extracted with ether $(4 \times 5 \text{ mL})$. The combined organic layers were dried (MgSO₄) and concentrated. Flash chromatography on silica gel (80:1:0 to 200:1:1 CH₂Cl₂/MeOH/AcOH) gave 11.1 mg (78%) of berkelic acid (**35**): $[\alpha]_D^{22}$ –115.5 (*c* 0.55, MeOH); {lit.^[1] $[\alpha]_D^{20}$ -83.5 (*c* 0.0113, MeOH)}; ¹H NMR (CDCl₃, the residual peak of solvent is referenced as δ 7.24 rather than 7.27 to facilitate comparison with the literature data^[1]) 11.82 (s, 1, OH), 11.13-10.92 (br, 1, OH), 6.42 (s, 1, H-4), 4.76 (dd, 1, J = 12.2, 5.4, H-15), 4.44 (dd, 1, J = 8.5, 8.5, H-26), 3.84-3.76 (m, 1, H-9), 3.73 (s, 1)3, OMe), 3.59 (dd, 1, J = 8.5, 8.5, H-26), 2.85 (dd, 1, J = 17.0, 2.4, H-20), 2.78 (dd, 1, J = 17.7, 10.5)3.7, H-8), 2.60 (dd, 1, J = 17.7, 11.0, H-8), 2.54-2.45 (m, 1, H-19), 2.42 (dd, 1, J = 17.0, 9.8, H-20), 2.21 (dd, 1, J = 12.2, 5.4, H-16), 2.05 (dd, 1, J = 12.2, 12.2, H-16), 1.95 (dg, 1, J = 14.2, 7.3, H-23), 1.87 (dq, 1, J = 10.7, 6.8, H-18), 1.80 (dq, 1, J = 14.2, 7.3, H-23), 1.68-1.57 (m, 1), 1.58-1.43 (m, 2), 1.43-1.20 (m, 5), 1.32 (s, 3, H-27), 1.09 (d, 3, J = 6.8, 3 H-25), 0.88 (t, 3, J = 6.6), 0.83 (t, 3, J = 7.6); ¹H NMR (CD₃OD, 500 MHz) 6.27 (s, 1, H-4), 4.72 (dd, 1, J = 12.2, 5.4, H-15), 4.30 (dd, 1, J = 8.5, 8.5, H-26), 3.84-3.77 (m, 1, H-9), 3.73 (s, 3, OMe), 3.50 (dd, 1, J = 8.5, 8.5, H-26), 2.88 (dd, 1, J = 17.6, 3.1, H-20), 2.78 (dd, 1, J = 17.3, 3.7, H-8), 2.70-2.62 (m, 1, H-19), 2.54 (dd, 1, J = 17.3, 11.2, H-8), 2.53 (dd, 1, J = 17.6, 10.5, H-20), 2.14 (dd, 1, J = 12.2, 5.4, H-16), 1.94 (dq, 1, J = 14.2, 7.3, H-23), 1.91 (dd, 1, J = 12.2, 12.2, H-16), 1.88-1.78 (m, 2, H-23, H-18), 1.63-1.48 (m, 3), 1.46-1.27 (m, 5), 1.32 (s, 3, H-27), 1.08 (d, 3, J = 6.3, 3 H-25), 0.92 (t,

3, J = 6.8), 0.83 (t, 3, J = 7.6); ¹³C NMR (CDCl₃) 206.0, 173.4, 170.5, 162.5, 149.8, 142.2, 112.2 (2 C), 110.5, 98.6, 75.2, 73.5, 67.2, 59.7, 52.5, 48.2, 41.6, 39.4, 36.2, 34.30, 34.29, 31.8, 27.9, 25.0, 22.6, 18.4, 14.0, 12.0, 8.7; ¹³C NMR (CD₃OD, 400 MHz) 208.8, 174.8, 173.7, 163.4, 153.1, 142.3, 113.8, 110.7, 109.4, 101.1, 76.6, 74.2, 69.5, 61.0, 52.9, 42.6, 40.5, 37.4, 35.4, 35.0, 33.0, 28.9, 26.2, 23.7, 18.9, 14.4, 11.9, 9.0 (a peak near δ 49.2 is obscured by the solvent peak); IR (neat) 3238, 2957, 2933, 2860, 1713, 1694; HRMS (EI) calcd for C₂₉H₄₀O₉ (M⁺) 532.2672, found 532.2659. The ¹H and ¹³CNMR spectral data in both CDCl₃ and CD₃OD are identical to those of the natural product (see Tables S2-S5).^[1]

Methyl (α*R*,2*S*,3*S*,3'a*S*,4*S*,5'*R*)-9'-Carboxy-α,3-dimethyl-α-ethyl-3',3'a,4,5,5',6'-hexahydro-8'-hydroxy-3-methyl- β-oxo-5'-pentyl-spiro[furan-2(3*H*),2'-[2*H*]pyrano[2,3,4*de*][1]benzopyran]-4-butanoate (36, 22-*epi*-berkelic acid). An identical reaction with S5 (14.0 mg, 22.8 µmol) afforded 8.7 mg (72%) of 22-*epi*-berkelic acid (36): $[\alpha]_D^{22}$ –107.0 (*c* 0.43, MeOH); ¹H NMR (CDCl₃, the residual peak of solvent is referenced as δ 7.24 rather than 7.27 to facilitate comparison with the literature data^[1]) 11.83 (s, 1, OH), 11.08-10.97 (br, 1, OH), 6.42 (s, 1, H-4), 4.77 (dd, 1, *J* = 12.2, 5.4, H-15), 4.45 (dd, 1, *J* = 8.5, 8.5, H-26), 3.84-3.76 (m, 1, H-9), 3.73 (s, 3, OMe), 3.59 (dd, 1, *J* = 8.5, 8.5, H-26), 2.90 (dd, 1, *J* = 17.6, 2.9, H-20), 2.79 (dd, 1, *J* = 17.6, 3.9, H-8), 2.60 (dd, 1, *J* = 17.6, 11.2, H-8), 2.54-2.44 (m, 1, H-19), 2.38 (dd, 1, *J* = 17.6, 10.0, H-20), 2.21 (dd, 1, *J* = 12.2, 5.4, H-16), 2.06 (dd, 1, *J* = 14.2, 7.3, H-23), 1.68-1.57 (m, 1), 1.58-1.43 (m, 2), 1.43-1.20 (m, 5), 1.33 (s, 3, H-27), 1.09 (d, 3, *J* = 6.8, 3 H-25), 0.88 (t, 3, *J* = 6.6), 0.81 (t, 3, *J* = 7.3); ¹H NMR (CD₃OD, 500 MHz) 6.27 (s, 1, H-4), 4.73 (dd, 1, *J* = 12.2, 5.4, H-15), 4.30 (dd, 1, *J* = 8.5, 8.5, H-26), 3.84-3.77 (m, 1, H-9), 3.73 (s, 3, OMe), 3.50 (dd, 1, *J* = 8.5, 8.5, H-26), 2.92 (dd, 1, *J* = 17.6, 3.0, H-20), 2.79 (dd, 1, *J* = 17.3, 3.6, H-8), 2.72-

S21

2.62 (m, 1, H-19), 2.55 (dd, 1, J = 17.3, 10.3, H-8), 2.49 (dd, 1, J = 17.6, 10.5, H-20), 2.14 (dd, 1, J = 12.2, 5.4, H-16), 1.94 (dq, 1, J = 14.2, 7.3, H-23), 1.91 (dd, 1, J = 12.2, 12.2, H-16), 1.88-1.78 (m, 2, H-23, H-18), 1.64-1.49 (m, 3), 1.47-1.30 (m, 5), 1.33 (s, 3, H-27), 1.08 (d, 3, J = 6.3, 3 H-25), 0.92 (t, 3, J = 6.8), 0.82 (t, 3, J = 7.3); ¹³C NMR (CDCl₃) 206.0, 173.4 (tiny), 170.5, 162.5, 149.8, 142.2, 112.17, 112.15, 110.5, 98.6, 75.2, 73.5, 67.2, 59.7, 52.5, 48.2, 41.5, 39.3, 36.2, 34.31, 34.29, 31.8, 27.9, 25.0, 22.6, 18.3, 14.0, 12.0, 8.6; ¹³C NMR (CD₃OD, 400 MHz) 208.7, 174.8, 173.6, 163.4, 153.1, 142.3, 113.8, 110.7, 109.4, 101.1, 76.6, 74.1, 69.5, 61.0, 52.9, 42.6, 40.5, 37.4, 35.4, 35.0, 33.0, 28.8, 26.2, 23.7, 18.8, 14.4, 11.9, 8.9 (a peak near δ 49.2 is obscured by the solvent peak); IR (neat) 3233, 2957, 2933, 2860, 1713, 1694; HRMS (EI) calcd for C₂₉H₄₀O₉ (M⁺) 532.2672, found 532.2667.

Methyl (5R)-5,9-Dimethyl-2-ethyl-3-hydroxy-8-decenoate (38). n-BuLi (6.3 mL,

1.6 M in hexane, 10 mmol) was added dropwise to a solution of diisopropylamine (1.41 mL, 10 mmol) in THF (4 mL) under N₂ at 0 °C. The resulting solution was stirred at 0 °C for 30 min and cooled to -78 °C. A solution of methyl butanoate (1.14 mL, 10 mmol) in THF (4 mL) was added dropwise to the reaction mixture and the reaction was stirred at -78 °C for 1 h. A solution of (*R*)-(+)-citronellal (**37**) (0.81 mL, 4 mmol) in THF (4 mL) was added dropwise to the reaction mixture and the reaction was slowly warmed up to 25 °C over 2 h. The reaction was quenched with saturated NH₄Cl (10 mL) and extracted with ether (3 × 15 mL). The combined ether extracts were dried (Na₂SO₄) and concentrated to give 1.23 g of crude **38**. Flash chromatography on silica gel (10:1 hexanes/EtOAc) gave 0.89 g (86%) of **38** as a mixture of four diastereomers: ¹H NMR 5.14-5.02 (m, 1), 3.94-3.66 (m, 1), 3.72 (s, 3), 2.38-2.30 (m, 1), 2.06-1.88 (m, 3). 1.68 (s, 3), 1.60 (s, 3), 1.79-1.04 (m, 6), 0.98-0.80 (m, 6).

Methyl (2S,3R,5R)- and (2R,3S,5R)-2-Ethyl-3-hydroxy-2,5,9-trimethyl-8-decenoate

(**41 and 42**). *n*-BuLi (0.275 mL, 1.6 M in hexane, 0.44 mmol) was added dropwise to a solution of diisopropylamine (62 μ L, 0.44 mmol) in THF (0.5 mL) under N₂ at 0 °C. The resulting solution was stirred at 0 °C for 30 min and cooled to -50 °C. A solution of **38** (51 mg, 0.2 mmol) in THF (0.5 mL) was added dropwise to the reaction mixture. The resulting solution was stirred at -50 °C for 30 min and at -20 °C for 1 h. A solution of MeI (25 μ L, 0.61 mmol) and HMPA (0.21 mL, 1.2 mmol) in THF (0.3 mL) was added dropwise to the reaction mixture. The solution was stirred at -20 °C for 2 h and slowly warmed up to 25 °C over 1 h. The reaction mixture was quenched with saturated NH₄Cl (4 mL) and extracted with ether (4 × 4 mL). The combined ether extracts were dried (MgSO₄) and concentrated. Flash chromatography on silica gel (25:1

hexanes/EtOAc) gave 8.8 mg (16%) of 1:1 mixture of 41 and 42.

Methyl (2*S*,3*R*,5*R*)-, (2*R*,3*R*,5*R*)-, (2*R*,3*S*,5*R*)-, and (2*S*,3*S*,5*R*)-2-Ethyl-3-hydroxy-2,5,9-trimethyl-8-decenoate (41, 43, 42, and 44, respectively). To a solution of *N*-Ts-(*S*)valine^[19] (81 mg, 0.3 mmol) in dry CH₂Cl₂ (1 mL) was added BH₃•THF (0.3 mL, 1 M solution in THF, 0.3 mmol) by syringe over 3 min under N₂ at 0 °C. The solution was stirred for 30 min at 0 °C and additionally for 30 min at 25 °C. The solution was cooled -78 °C and a solution of *R*-(+)-citronellal (37) (16.3 μ L, 90 μ mol) in CH₂Cl₂ (0.5 mL) was added dropwise over 3 min. After stirring for 5 min, silyl ketene acetal **31** (47 mg, 0.3 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise over 3 min. The reaction mixture was stirred for 4 h at -78 °C and quenched with 1 M aqueous HCl (3 mL). The mixture was allowed to warm to 25 °C and the aqueous layer was extracted with CH_2Cl_2 (4 × 3 mL). The combined organic layers were washed with saturated NaHCO₃ (2 × 6 mL), dried (MgSO₄) and concentrated to yield 21.9 mg of crude aldol product. Flash chromatography (25:1 hexanes/EtOAc) gave 9.1 mg (38%) of **41** contaminated with 15% of **42**, followed by 10.0 mg (41%) of **43** contaminated with 15% of **44**.

Data for **41**: ¹H NMR 5.13-5.06 (m, 1), 3.789 (br d, 1, J = 9.8), 3.685 (s, 3), 2.07-1.85 (m, 3, OH), 1.80 (dq, 1, J = 14.0, 7.3), 1.72-1.64 (m, 1), 1.68 (s, 3), 1.61 (s, 3), 1.54 (dq, 1, J = 13.4, 7.3), 1.52-1.42 (m, 1), 1.33-1.16 (m, 3), 1.113 (s, 3), 0.94 (d, 3, J = 6.7), 0.85 (t, 3, J = 7.3); ¹³C NMR 177.05, 131.20, 124.78, 74.09, 51.62, 51.43, 40.16, 35.52, 29.60, 28.57, 25.72, 25.22, 20.76, 17.65, 16.22, 9.02.

Data for **43**: ¹H NMR 5.14-5.06 (m, 1), 3.755 (br, 1), 3.712 (s, 3), 2.34-2.26 (br, 1, OH), 2.09-1.96 (m, 1), 2.00-1.86 (m, 1), 1.74 (dq, 1, *J* = 14.0, 7.3), 1.76-1.68 (m, 1), 1.68 (s, 3), 1.61 (s, 3), 1.52 (dq, 1, *J* = 13.4, 7.3), 1.54-1.44 (m, 1), 1.37-1.22 (m, 2), 1.20-1.10 (m, 1), 1.095 (s, 3), 0.95 (d, 3, *J* = 6.7), 0.83 (t, 3, *J* = 7.3); ¹³C NMR 177.72, 131.19, 124.79, 73.47, 51.73, 51.61, 39.23, 35.61, 29.50, 29.41, 25.72, 25.32, 20.82, 17.65, 16.53, 8.87.

An identical reaction from *N*-Ts-(*R*)-value afforded 5.0 mg (21%) of **42** contaminated with 15% of **41** and 4.4 mg (18%) of **44** contaminated with 15% of **43**.

Data for **42**: ¹H NMR 5.13-5.06 (m, 1), 3.784 (br d, 1, *J* = 10.4), 3.687 (s, 3), 2.08-1.91 (m, 3, OH), 1.80 (dq, 1, *J* = 14.0, 7.3), 1.73-1.64 (m, 1), 1.68 (s, 3), 1.60 (s, 3), 1.55 (dq, 1, *J* = 14.0, 7.3), 1.47-1.38 (m, 1), 1.34-1.16 (m, 3), 1.119 (s, 3), 0.89 (d, 3, *J* = 6.7), 0.86 (t, 3, *J* = 7.3); ¹³C NMR 177.07, 131.15, 124.70, 73.73, 51.60, 51.36, 39.82, 38.19, 29.10, 28.56, 25.70, 25.51, 18.68, 17.64, 16.25, 8.97.

Data for 44: ¹H NMR 5.13-5.06 (m, 1), 3.760 (br d, 1, J = 10.4), 3.712 (s, 3), 2.36-2.27 (m, 1, OH), 2.07-1.90 (m, 2), 1.74 (dq, 1, J = 14.0, 7.3), 1.78-1.68 (m, 1), 1.68 (s, 3), 1.60 (s, 3), 1.53 (dq, 1, J = 13.4, 7.3), 1.38-1.18 (m, 1), 1.18-1.06 (m, 3), 1.099 (s, 3), 0.90 (d, 3, J = 6.7), 0.83 (t, 3, J = 7.3); ¹³C NMR 177.74, 131.14, 124.72, 73.05, 51.70, 51.49, 38.80, 38.29, 29.41, 28.92, 25.70, 25.54, 18.75, 17.64, 16.58, 8.82.

Methyl (2*S*,5*R*)-2-Ethyl-2,5,9-trimethyl-3-oxo-8-decenoate (45). Dess-Martin periodinane (15.7 mg, 37 µmol) was added to a solution of 41 (5.0 mg, 18.5 µmol) in CH₂Cl₂ (1 mL) at 25 °C. The suspension was stirred at 25 °C for 12 h. The solvent was removed under reduced pressure at 25 °C. Flash chromatography on silica gel (40:1 hexanes/EtOAc) gave 4.3 mg (87%) of 45: ¹H NMR 5.10-5.04 (m, 1), 3.71 (s, 3), 2.37 (dd, 1, J = 17.1, 5.5), 2.26 (dd, 1, J = 17.7, 7.9), 2.10-2.00 (m, 1), 2.00-1.89 (m, 3), 1.79 (dq, 1, J = 14.0, 7.3), 1.68 (s, 3), 1.59 (s, 3), 1.32-1.24 (m, 1), 1.30 (s, 3), 1.20-1.08 (m, 1), 0.85 (d, 3, J = 6.7), 0.82 (t, 3, J = 7.3); ¹³C NMR 207.2, 173.6, 131.4, 124.3, 60.2, 52.2, 45.6, 36.7, 28.2, 27.6, 25.7, 25.5, 19.5, 18.1, 17.6, 8.6.

An identical reaction with 44 also afforded 45.

Methyl (2*R*,5*R*)-2-Ethyl-2,5,9-trimethyl-3-oxo-8-decenoate (46). An identical reaction with 42 afforded 46: ¹H NMR 5.11-5.04 (m, 1), 3.71 (s, 3), 2.41 (dd, 1, J = 17.1, 5.5), 2.24 (dd, 1, J = 17.7, 7.9), 2.11-2.00 (m, 1), 2.00-1.89 (m, 3), 1.78 (dq, 1, J = 14.0, 7.3), 1.68 (s, 3), 1.59 (s, 3), 1.33-1.24 (m, 1), 1.31 (s, 3), 1.19-1.08 (m, 1), 0.86 (d, 3, J = 6.7), 0.83 (t, 3, J = 7.3); ¹³C NMR 207.2, 173.6, 131.4, 124.3, 60.1, 52.2, 45.6, 36.7, 28.1, 27.6, 25.7, 25.5, 19.5, 18.2, 17.6, 8.6.

An identical reaction with 43 afforded 46.

(4R,5R)-4-((2R)-2,6-Dimethyl-5-hepten-1-yl)-5-ethyl-2,2,5-trimethyl-1,3-dioxane

(47). To a stirred suspension of lithium aluminum hydride (44.5 mg, 1.17 mmol) in ether (1.5 mL) was added a solution of β -hydroxy ester 41 (78.5 mg, 0.29 mmol) in ether (3 mL) under N₂ at 25 °C. The suspension was stirred for 3 h and quenched by slow addition of H₂O (1 mL). The white precipitate was filtered off through a pad of Celite and rinsed with EtOAc (6 × 5 mL). The organic layer was washed with brine (5 mL), dried (MgSO₄), and concentrated to give 63.2 mg of diol.

A solution of the diol and TsOH•H₂O (6.0 mg, 32 µmol) in 2,2-dimethoxypropane (2.5 mL) was stirred under N₂ for 40 min. The reaction mixture was diluted with ether (20 mL) and washed with saturated NaHCO₃ (3 × 5 mL). The organic layer was dried (Na₂SO₄) and concentrated. Flash chromatography on silica gel (40:1 hexanes/EtOAc) gave 64.4 mg (79%) of **47**: ¹H NMR 5.13-5.06 (m, 1), 3.63 (dd, 1, J = 8.5, 2.4), 3.58 (d, 1, J = 11.6), 3.40 (d, 1, J = 11.6), 2.06-1.88 (m, 2), 1.93 (dq, 1, J = 14.0, 7.3), 1.69 (s, 3), 1.61 (s, 3), 1.63-1.51 (m, 1), 1.45-1.37 (m, 1), 1.42 (s, 3), 1.37 (s, 3), 1.32-1.21 (m, 2), 1.15 (dq, 1, J = 14.0, 6.7), 1.10-1.00 (m, 1), 0.91 (d, 3, J = 6.7), 0.85 (t, 3, J = 7.6), 0.62 (s, 3); ¹³C NMR 131.1, 124.9, 98.3, 76.4, 67.2, 35.8, 35.7, 35.2, 29.6, 29.2, 25.7, 25.2, 21.4, 20.6, 18.9, 18.4, 17.6, 7.8. A 2D NOESY experiment showed NOEs from the three ring protons at δ 3.63, 3.58, and 3.40 to the methyl singlet at δ 0.62. Only the equatorial ring proton at δ 3.58 showed an NOE to the methyl triplet of the ethyl group at δ 0.91 and one methylene proton of the ethyl group at δ 1.93.

(48). An identical series of reactions with 43 (63.5 mg, 0.24 mmol) afforded 53.7 mg (81%) of
48: ¹H NMR 5.13-5.06 (m, 1), 3.69-3.62 (m, 2), 3.38 (d, 1, *J* = 11.6), 2.06-1.86 (m, 2), 1.68 (s, 3), 1.61 (s, 3), 1.64-1.55 (m, 1), 1.45-1.37 (m, 1), 1.40 (s, 3), 1.38 (s, 3), 1.30-1.19 (m, 3), 1.13

S26

(dq, 1, J = 14.0, 7.3), 1.10-1.00 (m, 1), 0.97 (s, 3), 0.91 (d, 3, J = 6.7), 0.80 (t, 3, J = 7.3); ¹³C NMR 131.1, 124.9, 98.2, 74.0, 69.9, 36.0, 35.7, 35.2, 29.4, 29.0, 28.4, 25.7, 25.2, 20.6, 19.1, 17.6, 15.7, 7.2; ¹H NMR (benzene- d_6) 5.29-5.20 (m, 1), 3.61 (br d, 1, J = 9.8), 3.52 (d, 1, J = 11.6), 3.38 (d, 1, J = 11.6), 2.16-1.99 (m, 2), 1.86-1.74 (m, 1), 1.70 (s, 3), 1.59 (s, 3), 1.59-1.49 (m, 1), 1.50 (s, 3), 1.39-1.29 (m, 1), 1.34 (s, 3), 1.23-1.10 (m, 2), 1.04 (s, 3), 0.97 (d, 3, J = 6.7), 1.09-0.99 (m, 1), 0.89 (dq, 1, J = 14.0, 7.3), 0.62 (t, 3, J = 7.6); ¹³C NMR (benzene- d_6) 131.3, 125.9, 98.7, 74.8, 70.2, 36.9, 36.7, 35.7, 30.2, 29.9, 29.0, 26.3, 26.2, 21.3, 19.6, 18.1, 16.4, 7.7. A 2D NOESY (run in benzene- d_6 because two ring protons overlapped in CDCl₃) experiment showed NOEs from all three ring protons at δ 3.61, 3.52, and 3.38 to the methyl triplet of the ethyl group at δ 0.62, the ethyl methylene group multiplet at δ 1.09-0.99. Only the equatorial ring proton at δ 3.38 showed an NOE to the methyl singlet at δ 1.04.

Table S1. Comparison of the ¹H NMR Spectral Data Reported for Berkelic Acid Methyl Ester in CDCl₃ with Those of Intermediates 22 and 27a.

	MeO ₂ C _OH	MeO ₂ C OH	MeO ₂ C OH
22 C	$\begin{array}{c} & & & \\$	$\begin{array}{c} 0 \\ 19 \\ 19 \\ 26 \end{array} \xrightarrow{10}{18} \begin{array}{c} 0 \\ 16 \\ 16 \\ 16 \\ 15 \\ 16 \\ 16 \\ 15 \\ 9 \\ 9 \\ 16 \\ 16 \\ 15 \\ 9 \\ 16 \\ 15 \\ 9 \\ 16 \\ 15 \\ 16 \\ 15 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 10 \\ 10 \\ 11 \\ 10 \\ $	DPSO $25 OH \beta 4$ $19 H \beta 716 15 O C_5 H_{11}$ $26 H \alpha H H$
literatu methyl	re data for natural berkelic acid ester with proposed structure sho	22 with proposedownstereochemistry	27a with revised stereo- chemistry at C-18 and C-19
Atom	Berkelic Acid Methyl Ester	22	27a
4	6.29 (s)	6.32 (s)	6.31 (s)
8α	2.77 (m)	2.77 (dd, 17.7, 4.3)	2.76 (dd, 17.6, 3.9)
8β	2.56 (dd, 17.4, 11.2)	2.61 (dd, 17.7, 11.0)	2.60 (dd, 17.6, 10.7)
9	3.79 (m)	3.79 (m)	3.79 (m)
15	4.73 (dd, 12.3, 5.2)	4.75 (dd, 12.2, 5.2)	4.76 (dd, 12.2, 5.4)
16a	2.13 (dd, 12.3, 5.5)	2.24 (dd, 12.2, 5.2)	2.16 (dd, 12.2, 5.4)
16β	2.05 (dd, 12.3, 12.2)	1.81 (dd, 12.2, 12.2)	1.95 (dd, 12.2, 12.2)
18	1.83 (m)	2.24 (m)	1.73 (m)
25	1.02 (d, 6.6)	1.05 (d, 6.7)	1.06 (d, 6.7)
26a	4.31 (t, 8.5)	4.14 (t, 7.8)	4.25 (t , 8.5)
26β	3.44 (t, 8.5)	3.69 (t, 7.8)	3.55 (t , 8.5)

Shifts in bold show significant differences in the ¹H NMR spectra of **22** and **27a**

Table S2. Comparison of the ¹H NMR Spectral Data Reported for Berkelic Acid in CDCl₃ with Those of 35 and 36.^a

4	6.41 (s)	6.42 (s)	6.42 (s)
8α	2.77 (dd, 17.6, 4.0)	2.78 (dd, 17.7, 3.7)	2.79 (dd, 17.6, 3.9)
8β	2.59 (dd, 17.6, 11.0)	2.60 (dd, 17.7, 11.0)	2.60 (dd, 17.6, 11.2)
9	3.80 (m)	3.80 (m)	3.80 (m)
10	1.61 (m)	1.62 (m)	1.62 (m)
10	1.50 (m)	1.50 (m)	1.50 (m)
11	1.50 (m)	1.43 (m)	1.43 (m)
12	1.30 (m)	1.30 (m)	1.30 (m)
13	1.30 (m)	1.30 (m)	1.30 (m)
14	0.88 (t)	0.88 (t, 6.6)	0.88 (t, 6.6)
15	4.76 (dd, 12.2, 5.7)	4.76 (dd, 12.2, 5.4)	4.77 (dd, 12.2, 5.4)
16α	2.20 (dd, 12.2, 5.7)	2.21 (dd, 12.2, 5.4)	2.21 (dd, 12.2, 5.4)
16β	2.05 (dd, 12.2, 12.2)	2.05 (dd, 12.2, 12.2)	2.06 (dd, 12.2, 12.2)
18	1.87 (m)	1.87 (dq, 10.7, 6.8)	1.87 (dq, 11.3, 6.8)
19	2.50 (m)	2.50 (m)	2.49 (m)
20 ^b	2.84 (dd, 17.0, 2.5)	2.85 (dd, 17.0, 2.4)	2.90 (dd, 17.6, 2.9)
20 ^b	2.42 (dd, 17.0, 10.3)	2.42 (dd, 17.0, 9.8)	2.38 (dd, 17.6, 10.0)
23	1.94 (m)	1.95 (dq, 14.2, 7.3)	1.95 (dq, 14.2, 7.3)
23	1.80 (m)	1.80 (dq, 14.2, 7.3)	1.80 (dq, 14.2, 7.3)
24^{b}	0.82 (t, 7.2)	0.83 (t, 7.3)	0.81 (t, 7.3)
25	1.08 (d, 6.8)	1.09 (d, 6.7)	1.09 (d, 6.7)
26α	4.43 (t, 8.8)	4.44 (t, 8.5)	4.45 (t, 8.5)
26β	3.58 (t, 8.8)	3.59 (t, 8.5)	3.59 (t, 8.5)
27 ⁶	1.31	1.32	1.33
OMe	3.73	3.73	3.73
OH	11.82	11.82	11.83

a) The spectra are referenced to the residual solvent peak at δ 7.24, not δ 7.27 to be consistent with the literature data. b) Bold hydrogens have different chemical shifts in **35** and **36**.

OMe 3.73

28∥ MeO 27	$\begin{array}{c} 0 \\ 0 \\ 22 \\ 19 \\ 23 \\ 24 \\ 24 \\ 24 \\ 25 \\ 16 \\ 17 \\ 15 \\ 16 \\ 16 \\ 17 \\ 15 \\ 16 \\ 4 \\ 25 \\ H \\ 0 \\ 9 \\ 8 \\ C_5 H_{11} (C-10 \text{ to } C) \end{array}$	$ \begin{array}{c} $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
natural stereoc assigne	berkelic acid showing revised chemistry at C-18 and C-19 and ed stereochemistry at C-22		
Atom	Berkelic Acid	35	36
4	6.27 (s)	6.27 (s)	6.27 (s)
8α	2.77 (dd, 17.4, 5.3)	2.78 (dd, 17.3, 3.7)	2.79 (dd, 17.3, 3.6)
8β	2.54 (dd, 17.4, 11.0)	2.54 (dd, 17.3, 11.2)	2.55 (dd, 17.3, 10.3)
9	3.79 (m)	3.79 (m)	3.79 (m)
10	1.63 (m)	1.63 (m)	1.63 (m)
10	1.55 (m)	1.55 (m)	1.55 (m)
11	1.55 (m)	1.55 (m)	1.55 (m)
12	1.40 (m)	1.40 (m)	1.40 (m)
13	1.40 (m)	1.40 (m)	1.40 (m)
14	0.92 (t, 6.4)	0.92 (t, 6.8)	0.92 (t, 6.8)
15	4.72 (dd, 12.2, 5.4)	4.72 (dd, 12.2, 5.4)	4.73 (dd, 12.2, 5.4)
16α	2.16 (dd, 12.4, 5.4)	2.14 (dd, 12.2, 5.4)	2.14 (dd, 12.2, 5.4)
16β	1.9 ^a (dd, 12.4, 12.4)	1.91 (dd, 12.2, 12.2)	1.91 (dd, 12.2, 12.2)
18	1.82 (m)	1.82 (m)	1.82 (m)
19	2.66 (m)	2.66 (m)	2.66 (m)
20 ^b	2.87 (dd, 17.5, 3.0)	2.88 (dd, 17.6, 3.1)	2.92 (dd, 17.6, 3.0)
20 ⁰	2.53 (m)	2.53 (dd, 17.6, 10.5)	2.49 (dd, 17.6, 10.5
23	1.93 (m)	1.94 (dq, 14.2, 7.3)	1.94 (dq, 14.2, 7.3)
23	1.84 (m)	1.84 (m)	1.84 (m)
24°	0.83 (t, 7.7)	0.83 (t, 7.6)	0.82 (t, 7.3)
25	1.07 (d, 6.7)	1.08 (d, 6.3)	1.08 (d, 6.3)
26α	4.30 (t, 8.3)	4.30 (t, 8.5)	4.30 (t, 8.5)
26β	3.50 (t, 8.3)	3.50 (t, 8.5)	3.50 (t, 8.5)
27°	1.32	1.32	1.33

a) This peak is reported to absorb at $\delta 2.02$.^[1] However, examination of the supporting material indicate that there are no peaks between 2.0 and 2.1 and the COSY and HSQC indicate that this hydrogen absorbs at about δ 1.9. b) Bold hydrogens have different chemical shifts in **35** and **36**.

3.73

3.73

Table S4. Comparison of the ¹³C NMR Spectral Data Reported for Berkelic Acid in CDCl₃ with Those of 35 and 36.

$MeO \begin{array}{c} & 26 \\ & 28 \\ & 22 \\ & 27 \\ & 27 \\ & 23 \\ & 27 \\ & 23 \\ & 27 \\ & 23 \\ & 25 \\ & 19 \\ & 19 \\ & 19 \\ & 19 \\ & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 15 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 4 \\ & 17 \\ & 16 \\ & 17 \\ & 10 $		CO ₂ H O O Me		
²⁴ ¹¹ O 9 8 C ₅ H ₁₁ (C-10 tr	35 o C-14)	Ι C₅H ₁₁	36	C₅H ₁₁

natural berkelic acid showing revised stereochemistry at C-18 and C-19 and assigned stereochemistry at C-22

Atom	Berkelic Acid	35	36
1	170.5	170.5	170.5
2	98.6	98.6	98.6
3	162.5	162.5	162.5
4	110.5	110.5	110.5
5	142.3	142.2	142.2
6	112.2	112.2	112.17 or 112.15
7	149.8	149.8	149.8
8	34.3	34.30 or 34.29	34.31 or 34.29
9	75.2	75.2	75.2
10	36.2	36.2	36.2
11	25.1	25.0	25.0
12	31.7	31.8	31.8
13	22.6	22.6	22.6
14	14.0	14.0	14.0
15	67.2	67.2	67.2
16	34.2	34.30 or 34.29	34.31 or 34.29
17	112.2	112.2	112.17 or 112.15
18	48.2	48.2	48.2
19	39.3	39.4	39.3
20	41.6	41.6	41.5
21	206.1	206.0	206.0
22	59.7	59.7	59.7
23	27.9	27.9	27.9
24	8.7	8.7	8.6
25	12.0	12.0	12.0
26	73.5	73.5	73.5
27	18.4	18.4	18.3
28	173.4	173.4	173.4
OMe	52.5	52.5	52.6

Table S5. Comparison of the ¹³C NMR Spectral Data Reported for Berkelic Acid in CD₃OD with Those of 35 and 36.

0 28 MeO 27	$\begin{array}{c} 0 \\ 22 \\ 22 \\ 22 \\ 24 \\ 23 \\ 24 \\ 24 \\ 24$	H COH MeO 35 C-10 to C-14)	CO_2H H C_5H_{11} C_5H_{11} C_5H_{11} C_5H_{11} C_5 H	
natural stereoc assigne	berkelic acid showing revise shemistry at C-18 and C-19 a ed stereochemistry at C-22	ed and		
Atom	Berkelic Acid	35	36	
1	173.6	173.7	173.6	
2	101.0	101.1	101.1	
3	163.4	163.4	163.4	
4	109.4	109.4	109.4	
5	142.3	142.3	142.3	
6	113.7	113.8	113.8	
7	153.0	153.1	153.1	
8	35.4	35.4	35.4	
9	76.5	76.6	76.6	
10	37.4	37.4	37.4	
11	26.2	26.2	26.2	
12	33.0	33.0	33.0	
13	23.7	23.7	23.7	
14	14.4	14.4	14.4	
15	69.4	69.5	69.5	
16	35.0	35.0	35.0	
17	110.7	110.7	110.7	
18	49.2	obscured by CD ₃ OD	obscured by CD ₃ OD	
19	40.4	40.5	40.5	
20	42.6	42.6	42.6	
21	208.7	208.8	208.7	
22	61.0	61.0	61.0	
23	28.9	28.9	28.8	
24	9.0	9.0	8.9	
25	11.9	11.9	11.9	
26	74.1	74.2	74.1	
27	19.0	18.9	18.8	
28	174.8	174.8	174.8	
OMe	52.9	52.9	52.9	

Assignment of C-22 Stereochemistry

The Kiyooka aldol reaction leads to two, rather than four, aldol products making it possible to isolate pure **33** and **34**. Unfortunately, this reaction controls the stereochemistry at the alcohol center (C-21), which is lost in the Dess-Martin oxidation, rather than at C-22. Using reagent **32** derived from (*S*)-valine, the enol ether always approaches from the *Si*-face to afford adducts **33** and **34** with *R*-stereochemistry at C-21.^[22] The ¹H and ¹³C NMR spectra of alcohols **33** and **34** are slightly different, but these differences can't be used to assign their stereochemistry. We therefore prepared a series of analogues of known stereochemistry with the hope that the spectral differences between these analogues and compounds **33** and **34** were sufficiently consistent to permit us to assign the stereochemistry of **33** and **34** at C-22.

The analogues were prepared from (*R*)-citronellal (**37**) (see Scheme 8). Addition of **37** to the lithium enolate of methyl butyrate afforded **38**, which was converted to the alkoxy enolates **39** and **40**, which were treated with MeI as described by $\text{Fráter}^{[23]}$ to give 16% of a 1:1 mixture of **41** and **42**. Chelation in **39** and **40** controls the geometry so that methylation occurs primarily from the face opposite the alkyl group. This sequence typically proceeds with excellent relative stereocontrol, but in poor yield^[24] so that it isn't practical to use it with aldehyde **30** to prepare berkelic acid. We also converted **37** and **31** by Kiyooka's procedure^[19] to **41** (38%) and **43** (41%) using *N*-Ts-(*S*)-valine and to **42** (21%) and **44** (18%) using *N*-Ts-(*R*)-valine. Kiyooka's procedure controls the stereochemistry at C-3 well, but doesn't control C-2. The compound produced by both Fráter's procedure and Kiyooka's procedure using *N*-Ts-(*S*)-valine must be **41**. Therefore, the other isomer produced from Kiyooka's procedure using *N*-Ts-(*S*)-valine must be **43**. The compound produced by both Fráter's procedure and Kiyooka's procedure using *N*-Ts-(*S*)-valine must be **43**. The refore, the other isomer produced from Kiyooka's procedure using *N*-Ts-(*S*)-valine must be **43**. Therefore, the other isomer produced from Kiyooka's procedure using *N*-Ts-(*S*)-valine must be **44**. Therefore, the other isomer produced from Kiyooka's procedure using *N*-Ts-(*S*)-valine must be **45**. Therefore, the other isomer produced from Kiyooka's procedure using *N*-Ts-(*S*)-valine must be **46**.

The structure assignments of **41-44** should be secure, but were confirmed by Dess-Martin oxidation of **41** and **44** to keto ester **45** and of **42** and **43** to keto ester **46**, and by conversion of **41**

and **43** to ketals **47** and **48**, respectively, whose stereochemistry was established by NOE studies.^[25] At this point, the structures of **41-44** were secure. The only remaining assumption regards the face of the aldehyde that is attacked, which has been established by Kiyooka and others in numerous examples.^[19,22]

We then compared the spectral data of **41-44** and **33** and **34**. The subtle differences in the ¹H and ¹³C NMR spectra of (21R,22S)-**33**, (2S,3R)-**41**, (2R,3S)-**42** on the one hand and (21R,22R)-**34**, (2R,3R)-**43**, and (2S,3S)-**42** on the other hand are identical in all 10 features that we can distinguish as shown in Tables S6 and S7 suggesting that the stereochemistry of **33** and **34** can be assigned as shown by analogy to that of **41-44**. The chromatographic properties also support this assignment: **33** is less polar than **34**, **41** is less polar than **43**, and **42** is less polar than **44**.

References

[22] K. Ishiwara and H. Yamamoto in *Modern Aldol Reactions, Vol. 2: Metal Catalysis* (Ed.;R. Mahrwald) Wiley-VCH, Weinheim, 2004, pp 25-68.

[23] a) G. Fráter, U. Müller, W. Günther, *Tetrahedron* 1984, 40, 1269-1277; b) G. Fráter,
 Helv. Chem. Acta 1979, 62, 2825-2828.

[24] E. Tayama, R. Hashimoto, *Tetrahedron Lett.* 2007, 48, 7950-7952.

[25] For analogous NOE studies on a related ketal, see: R. A. N. C. Crump, I. Fleming, J. H.

M. Hill, D. Parker, N. L. Reddy, D. Waterson, J. Chem. Soc. Perkin Trans. 1 1992, 3277-3294.

Scheme 8. Reagents and conditions: a) methyl butanoate, LDA, THF, -78 °C, 1 h, add **37**, -78 to -70 °C, 2 h (86%); b) 2 equiv LDA, THF, -50 to -20 °C, 90 min, then MeI, HMPA, -20 to 25 °C; c) Dess-Martin (87%); d) LAH, ether, 25 °C, 3 h; e) 2,2-dimethoxypropane, TsOH, 25 °C, 40 min (79% of **47** from **41**, 81% of **48** from **43**).

Table S6. Comparison of the ¹³C and ¹H NMR Spectral Data Reported for Citronellalderived Hydroxy Esters 41-44.

MeO ¹ ² ³ ⁴	5 6 7	9 10 8	MeO		R	Me			R		R
4	1 (2S, 3F	R)		42 (2/	r, 3S)		I	43 (2R,	3R)		44 (2S, 3S)
C (Roman) ^a	41	42	43	44							
$H(Italics)^{a}$	(2S, 3R))(2R, 3S))(2R, 3R)	(2S, 3S))						
1	177.05	177.07	177.72	177.74	(2R, 3R)	and ((2S, 3)	S) 0.7 j	ppm d	ownfield	
2	51.6*	51.6*	51.73*	51.70*							
2-Me	16.21	16.25	16.53	16.58	(2R, 3R)	and ((2S, 3)	S) 0.3 j	ppm d	ownfield	
2-Me	1.11	1.12	1.09	1.10	(2R, 3R)	and	(2S, 3)	S) 0.02	2 ppm	upfield	
2-Et (CH ₂)	28.57	28.56	29.41	29.41	(2R, 3R)	and ((2S, 3)	S) 0.85	; ppm	downfield	
2-Et (CH ₃)	9.0	9.0	8.87	8.82	(2R, 3R)	and ((2S, 3)	S) 0.15	ppm	upfield	
2 - $Et(CH_3)$	0.85	0.86	0.83	0.83	(2R, 3R)	and	(2S, 3)	S) 0.02	25 ppm	ı upfield	
OMe	51.4*	51.4*	51.6*	51.5*							
ОМе	3.69	3.69	3.71	3.71	(2R, 3R)	and	(2S, 3)	S) 0.02	2 ppm	downfield	
3	74.09	73.73	73.47	73.05	(2R, 3R)	and ((2S, 3)	5) 0.6-	0.7 pp	m upfield	
3	3.79	3.78	3.76	3.76	(2R, 3R)	and	(2S, 3)	Ś) 0.02	2 ppm	upfield	
4	40.16	39.82	39.23	38.80	(2R, 3R)	and ((2S, 3)	5) 0.9-	1.0 pp	m upfield	
5	29.60	29.10	29.50	28.92	(3R) 0.5	ppm	dow	nfield		-	
5-Me	20.76	18.68	20.82	18.75	(3R) 2.1	ppm	dow	nfield			
5-Me	0.94	0.89	0.95	0.90	(3R) 0.0	5 ppr	n dov	vnfield	!		
6	35.52	38.19	35.61	38.29	(3R) 2.7	ppm	upfi	eld			
7	25.2	25.5	25.3	25.5			•				
8	124.8	124.7	124.8	124.7							
9	131.2	131.2	131.2	131.1							
10	25.7	25.7	25.7	25.7							
9-Me	17.6	17.6	17.6	17.6							

* Data for C-2 and the OMe group may be switched. a) ¹³C NMR data are in roman type and ¹H NMR data are in italic type.

MeO ¹ 33 (2 <i>S</i> , 3 <i>R</i>) nur as in 41-44	H 4 H H O H C 5	CO ₂ AllyI OAllyI	CO_2Allyl MeO 28 22 22 22 22 22 22 22
C (Roman) ^a	33	34	
H (Italics) ^a	(2S, 3R)	(2R, 3R)	
1	176.94	177.58	(2R,3R) 0.64 ppm downfield
2-Me	10.75	10.94	(2R,3R) 0.19 ppm downfield
2-Me	1.14	1.13	(2R,3R) 0.01 ppm upfield
2-Et (CH ₂)	28.38	29.60	(2R,3R) 1.22 ppm downfield
2-Et (CH ₃)	8.99	8.80	(2R,3R) 0.19 ppm upfield
2- <i>Et</i> (<i>CH</i> ₃)	0.87	0.85	(2R,3R) 0.02 ppm upfield
OMe	3.709	3.726	(2R, 3R) 0.017 ppm downfield
3	76.22	75.49	(2R,3R) 0.73 ppm upfield
3	3.73	3.70	(2R,3R) 0.03 ppm upfield
4	35.31	34.57	(2R,3R) 0.74 ppm upfield

Table S7. Comparison of the ¹³C and ¹H NMR Spectral Data Reported for Berkelic Acid Intermediates 33 and 34.

a) ¹³C NMR data are in roman type and ¹H NMR data are in italic type.

Wu, Zhou, and Snider

Syntheis of (-)-Berkelic Acid

Wu, Zhou, and Snider

<u>S43</u>

WXX-10-147-2

INDEX

FREQUENCY 16650.889

HEIGHT

15636.180

PPM 165.637 155.543 149.016 135.909 132.321 132.327

18.0 29.7 29.4 37.3 26.4

CO2AIIyi

14980.052 13662.455 13361.857 13302.348

1876.414

- - - -

20

шđđ

<u>S54</u>

WXX-11-21-2

wxx-11-23-5

	Syntheis of (-)-Berkelic Acid	Wu, Zhou, and Snider S59
N		ини 3323333222222222222222222222222222222
00		$ \begin{array}{c} y- - 2 \\ y- - 2 \\ z > 209802 $
180		PPM 208 153 153 153 153 153 153 153 153
160		HV HV HV U22554210 U22554210 U22554210 U22554210 U22554210 U22554210 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U2255444 U22554 U22555 U22554 U22555 U22554 U22555 U2255 U2255 U22555 U22555 U2255 U22555 U2255 U2255 U2255 U2255 U2555 U2555 U2555 U2555
140		Meo
120		400 MHz (CD ₃
100		
80		
. 6(
J		
40		
20		
mđđ		

<u>S60</u>

wxx≁11-23-6

,	Syntheis of (-)-Berkelic Acid	Wu, Zhou, and Snider	<u>S63</u>
200		13 6985 14 63135 15 53135 16 4913 17 4982 20 4947 21 4925 22 4802 23 4842 24 4802 25 4862 26 3561 30 3561 31 2898 35 11887 36 11958 895 11958	WX - HODEX FREQUENT 209841 209842 175763 175764 164245 153876 143036 14303114358 111329 1016710 10169211 769512 7452
180		.734 69.491 .056 61.029 .371 52.855 .884 49.453 .522 49.453 .160 49.213 .797 49.000 .435 48.567 .917 48.3567 .639 42.602 .652 35.419 .653 35.420 .653 35.420 .657 28.835 .658 26.179 .319 14.407 .319 14.407 .319 14.407	$-\chi_{J} - \delta - CV_{J}$ ENCY PPM II .147 208.742 .096 174.840 .315 173.649 .058 163.380 .986 153.074 .986 153.074 .986 153.074 .980 113.761 .310 110.740 .592 110.740 .109 351 .101 1139 .267 76.550 .267 76.350
160		112621 2020 2020 2020 2020 2020 2020 202	EIGHT 36.2 32.8 39.0 29.1 39.0 29.1 39.0 39.0 49.6 49.6 49.6 49.6 49.6 33.7
140		36 (22-ep 400 MH	
120		i-berkelic acid) tz (CD ₃ OD)	
100		с . 41 С.	
80			
, 6 0			
40			
20			
mđđ			