Text S2: Computing the Fisher's Exact Test to Assess Overenrichment

For the 10 stimulus-induced genes by ATRA or DMSO (PTEN, Akt1, p27, RXR-α, p21, CITED2, RARRES3, MBN, CD38, SMYD5), 9 out of 10 were classified as transient genes.

	Stimulus-Induced Genes	Non-Stimulus Induced Genes	
Transient Genes	<i>X</i> = 9	1461	k = 1462
Core Genes	1	1419	N - k = 1428
	M = 10		N = 2890

The quantity *X* can be modeled as a hypergeometric random variable:

$$P(X = x) = \frac{\binom{M}{x} \binom{N - M}{k - x}}{\binom{N}{k}}$$

The statistical significance of seeing 9 out of 10 stimulus-induced genes represented in the transient group of genes corresponds to calculating the sum of probabilities greater than equal to what we observed.

$$P(X \ge 9) = \sum_{x=9}^{10} \frac{\binom{M}{x} \binom{N-M}{k-x}}{\binom{N}{k}} = 0.0117.$$

For the sixteen genes identified by [15, 16], thirteen were classified as core genes.

	Myeloid-Specific Differentiation Genes	Non-Myeloid-Specific Differentiation Genes	
Core Genes	<i>X</i> = 13	1415	k = 1428
Transient Genes	3	1459	N - k = 1462
	M = 16		N = 2890

The statistical significance of seeing 13 out of 16 myeloid-specific differentiation genes represented in the core group of genes corresponds to calculating the sum of probabilities greater than equal to what we observed.

$$P(X \ge 13) = \sum_{x=13}^{16} \frac{\binom{M}{x} \binom{N-M}{k-x}}{\binom{N}{k}} = 0.00924.$$

Similarly, for the apoptosis-related genes:

Cara	Conoc

	Apoptosis-Related Genes	Non-Apoptosis-Related Genes	
Core Genes	X = 10	1418	k = 1428
Transient Genes	3	1459	N - k = 1462

$$P(X \ge 10) = \sum_{x=13}^{13} \frac{\binom{M}{x} \binom{N-M}{k-x}}{\binom{N}{k}} = 0.0418.$$

M = 13