Supporting Information

Chemoenzymatic synthesis and lectin array characterization of a class of N-glycan clusters

Wei Huang¹, Denong Wang², Masao Yamada³ and Lai-Xi Wang^{1*}

¹Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA

² Stanford Tumor Glycome Laboratory, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA

³GP Biosciences Ltd, 1-3-3 Azamino-minami, Aoba-ku, Yokohama 225-0012, JAPAN

Complete Ref. 4a:

Blixt, O.; Head, S.; Mondala, T.; Scanlan, C.; Huflejt, M. E.; Alvarez, R.; Bryan, M. C.; Fazio,

F.; Calarese, D.; Stevens, J.; Razi, N.; Stevens, D. J.; Skehel, J. J.; van Die, I.; Burton, D. R.;

Wilson, I. A.; Cummings, R.; Bovin, N.; Wong, C. H.; Paulson, J. C. Proc. Natl. Acad. Sci. USA **2004**, *101*, 17033-17038.

Figure S1: Assignment of the two mono-glycosylated products (**10a** and **10b**) by specific enzymatic transformation coupled with MS analysis.

The attachment of the new glycan at the 6-arm (in **10a**) or at the 3-arm (in **10b**) of the GlcNAc2Man3GlcNAc2-core was confirmed by the following enzymatic transformations coupled with MS analysis. Briefly, compound **10a** or **10b** (20 µg) and BSA (3 µg) was dissolved in a sodium citrate buffer (50 mM, pH 6.0, 30 µL) and the solution was incubated with β -N-acetylglucosaminidase (6 U) from *Xanthomonas manihotis* at 37°C for 2h. The reaction was monitored by MALDI-TOF MS until complete removal of the terminal GlcNAc residue at the non-reducing end. Then the reaction medium was adjusted to pH 5.5 and was incubated with an α -1,2/ α -1,3-mannosidase (50 U) from *Xanthomonas manihotis* at 37°C overnight. This enzymatic treatment of **10a** gave product **16**: Analytical HPLC: t_R = 10.9 min; MALDI-TOF-MS: found, 2734.10 [M + Na]⁺, calculated for C₁₀₆H₁₇₆N₁₀O₆₈S, M = 2710.62 Da. These results indicated that the GlcNAc residue at the α -1,3-Man arm in the core should be un-substituted,

resulting in sequential removal of the GlcNAc by the β -N-acetylglucosaminidase and then the exposed α -1,3-linked Man residue by the α -1,2/ α -1,3-mannosidase to give **16**. On the other hand, the same treatment on compound **10b** gave product **17**: Analytical HPLC: $t_R = 11.1$ min; MALDI-TOF-MS: calculated for $C_{112}H_{186}N_{10}O_{73}S$, M = 2872.76 Da, found, 2895.56 [M + Na]⁺. The MS analysis indicated that only a GlcNAc residue was removed from 10b by sequential enzymatic treatment, confirming that the α -1,3-arm was blocked by the attachment of newly introduced glycan. The α -1,6-Man residue exposed would not be hydrolyzed by the α -1,2/ α -1,3-mannosidase.

Figure S2. Characterization of mono-glycosylated product **12a** generated from the reaction of Man9GlcNAc-oxazoline (**11**) and acceptor **7**.

The sequential treatment of **12a** by the β -N-acetylglucosaminidase and the α -1,2/ α -1,3mannosidase was performed in the same way as the characterization of 10a and 10b. The enzymatic transformation gave compound 18: Analytical HPLC: $t_R = 10.8$ min; MALDI-TOF-MS: calculated for C₇₈H₁₃₀N₈O₄₈S, M = 1978.77 Da, found, 2002.16 [M + Na]⁺. The MS data of 18 indicated the removal of a GlcNAc and a Man residue from **12a**. These results confirm that the α -1,3-arm was open and the α -1,6-arm in 12a was blocked by the newly introduced Nglycan.

Figure S3. Lectin specificity

Lectin No.	Lectin	Reported specific ity
1	LTL	Fuc 1-3 Gal 1-4)G kNAc, Fuc 1-2Gal 1-4G kNAc
2	PSA	Fuc 1-6G kNAc, -D-G k, -D-M an
3	LCA	Fuc 1-6G kNAc, -D-G k, -D-M an
4	UEA-I	Fuc 1-2Gal 1-4G LNAc
5	AOL	Fuc 1-6G kNAc (core fucose)
6	AAL	Fuc 1-6G kNAc, Fuc 1-3 G al 1-4)G kNAc
7	MAL	Sia 2-3Gal 1-4G kNAc
8	SNA	Sia 2-6GaVGaNAc
9	SSA	Sia 2-6Gal/GaNAc
10	TIA-I	Sia 2-6Gal/GaNAc
10	DHAI	tri/tatra-antannary com n hv-typa N-akcan
12	FCA	Gal 1-4G hNAc
13	RCA120	Gal 1–46 hNAc
10	PHAE	his anton nor non-type N-alican with outer Galand breating G bNAc
14	DSA	(G ENAc 1-4)n. Gal 1-4G ENAc
16	GSI –II	agaketosyktod tri/totra antonnary glycans GkNA c
17	NPA	High-Mannose, Man 1-6Man
18	ConA	High-Mannose, Man 1–6 (Man 1–3) Man
10	GNA	High-Mannose, Man 1–3Man
20	HHI	High-Mannose Man 1-3Man Man 1-6Man
21	ACG	Sig 2-3G al 1-4G kNAc
21	TVICI	Man 1-3 Man 1-6)Man bi and triantennary complex-type N-glycan GaNAc
23	RPI	Gal 1-3GaNAc. GaNAc
20	TIA-Π	Fuc $1-2Gal (1-)$ or $GaNAc (1-)$ groups at their nonreducing term in as
25	FFI	bhod group B antigen Gal 1–3Gal
26	ABA	Gal 1-3GaNAc
27	IFI	G kNAc trim ars/tatram ars_chitin
28	STL	G LNAc oligomers, oligosaccharide containing G LNAc and MurNAc
29	UDA	b-1.4-linked G kNAc oligomens
30	PWM	(G ENAc 1-4)n
31	Jacalin	Gal 1-3GaNAc,GaNAc
32	PNA	Gal 1-3GaNAc
33	WFA	GaNAc 1-4GENAc, Gal 1-3(-6)GaNAc
34	ACA	Gal 1-3GaNAc
35	MPA	Gal 1-3GaNAc,GaNAc
36	HPA	a-linked term inalGaNAc
37	VVA	a-linked term inalGaNAc, GaNAc 1-3Gal
38	DBA	bbod group A antigen, GaNAc 1-3GaNAc
39	SBA	a-or -linked temn incalGaNAc,GaNAc 1-3Gal
40	Calsepa	M annose, M altose
41	PTL-I	a-linked term inalGaNAc
42	MAH	Sia 2-3Gal 1-3(Sia 2-6)GaNAc
43	WGA	chitin oligomers, Sia
44	GSL-IA4	a-linked G a NA c
45	GSL-IB4	a-linked G al

¹H NMR of GlcNAc-LC-Biotin (4)

¹³C NMR of GlcNAc-LC-biotin (4)

¹H-¹H COSY NMR of GlcNAc-LC-biotin (4)

¹H NMR of CT-GlcNAc₂-LC-biotin (6)

¹³C NMR of CT-GlcNAc₂-LC-biotin (6)

¹H-¹³C HSQC NMR of CT-GlcNAc₂-LC-biotin (6)

¹H-¹H COSY NMR of CT-GlcNAc₂-LC-biotin (6)

¹H NMR of GlcNAc₂Man₃GlcNAc₂-LC-biotin (7)

¹³C NMR of GlcNAc₂Man₃GlcNAc₂-LC-biotin (7)

¹H-¹³C HSQC NMR of GlcNAc₂Man₃GlcNAc₂-LC-biotin (7)

¹H-¹H COSY NMR of GlcNAc₂Man₃GlcNAc₂-LC-biotin (7)

MALDI-TOF MS spectrum of CT-GlcNAc₂-LC-biotin (6)

MALDI-TOF MS spectrum of GlcNAc₂Man₃GlcNAc₂-LC-biotin (7)

MALDI-TOF MS spectrum of Man₃GlcNAc₂Man(1,6)-[Man₃GlcNAc₂Man(1,3)]-

ManGlcNAc₂-LC-biotin (9)

MALDI-TOF MS spectrum of CT-GlcNAc₂Man(1,6)-[GlcNAcMan(1,3)]-ManGlcNAc₂-LC-

biotin (10a)

LC-biotin (12a)

MALDI-TOF MS spectrum of Man₉GlcNAc₂Man(1,6)-[GlcNAcMan(1,3)]-ManGlcNAc₂-

22

MALDI-TOF MS spectrum of CT-GlcNAc₂Man(1,6)-[CT-GlcNAc₂Man(1,3)]-

ManGlcNAc₂-LC-biotin (10c)

MALDI-TOF MS spectrum of CT-GlcNAc₂Man(1,6)-[Man₃GlcNAc₂Man(1,3)]-

ManGlcNAc₂-LC-biotin (13)

MALDI-TOF MS spectrum of GlcNAc₂Man₃GlcNAc₂Man(1,6)-

HPLC profiles of (a) glycan 6; (b) glycan 7; (c) glycan 9; (d) glycan 10c; (e) glycan 13; (f) glycan 14.