A kinetic and thermodynamic understanding of O₂ tolerance in [NiFe]-hydrogenases

James A. Cracknell, Annemarie F. Wait, Oliver Lenz, Bärbel Friedrich, and Fraser A. Armstrong

Supporting information

S1. The Rates of O₂ Reaction

As mentioned in the text, not all O_2 -reaction rate data fit cleanly to a single exponential process. Data were analyzed by three methods: by fitting the entire current decay to a single exponential, by concentrating on the initial rapid decay and fitting a single exponential to this data, or by fitting to two processes, one fast and one slower. Table S1 summarizes the rates thus obtained; whilst the precise values differ significantly between analyses, the *trends* in these values are consistent between data sets.

Table S1. Detailed analysis of the rates of O_2 reaction, using three alternative methods to extract rate constants from current *vs.* time data. The values in bold are shown in the main text.

Potential (V vs. SHE)	+0.192	+0.262	+0.332	+0.402		
Rate of O_2 reaction (s ⁻¹)						
determined by fitting a single	0.06	0.05	0.05	0.06		
exponential curve to all data points						
determined by fitting a single	0.11	0.10	0.10	0.11		
exponential curve to only initial,						
rapid current decay						
determined by fitting two exponential	0.13	0.13	0.14	0.15		
curves to all data points, one with a						
high rate constant, one with a lower	0.03	0.03	0.03	0.03		
rate						
All values were recorded at pH 5.5, 10 $^{\circ}C$						
	•					

рН	4.5	5.5	6.5	
Rate of O_2 reaction (s ⁻¹)				
determined by fitting a single	0.07	0.06	0.06	
exponential curve to all data points				
determined by fitting a single	0.12	0.11	0.11	
exponential curve to only initial,				
rapid current decay				
determined by fitting two exponential	0.15	0.13	0.12	
curves to all data points, one with a				
high rate constant, one with a lower	0.03	0.03	0.03	
rate				

All values were recorded at 10 °C, at a constant overpotential (driving force) of +523 mV relative to the thermodynamic H^+/H_2 cell potential at each pH.

Temperature (°C)	0	10	20	30
Rate of O_2 reaction (s ⁻¹)				
determined by fitting a single	0.04	0.06	0.10	0.09
exponential curve to all data points				
determined by fitting a single	0.06	0.11	0.19	0.31
exponential curve to only initial,				
rapid current decay				
determined by fitting two exponential	0.08	0.13	0.22	0.36
curves to all data points, one with a				
high rate constant, one with a lower	0.02	0.03	0.03	0.02
rate				

All values were recorded at pH 5.5, at a constant overpotential (driving force) of +523 mV relative to the thermodynamic H^+/H_2 cell potential at each temperature.

S2. The rate of anaerobic inactivation

Typical experiments to measure the rate of anaerobic inactivation are shown in Figure S2. An electrode modified with *Re* H16 MBH was initially held at -0.508 V *vs*. SHE to ensure that all the enzyme was active. The electrode was then stepped to a high potential, causing the enzyme to anaerobically inactivate. Stepping the electrode back to -0.508 V reactivated the enzyme, allowing multiple experiments to be performed on the same enzyme film. The inactivation traces fitted well to a single exponential decay corresponding to an inactivation rate ~ 0.003 s⁻¹; the rate was independent of the electrode potential in the range 0.242 V - 0.542 V.

Figure S2. A typical experiment to determine the rate of anaerobic inactivation of *Re* MBH. The electrode potential was stepped between a low value (-0.508 V, indicated *) to activate the enzyme, and a high value (indicated in the figure) at which potential the enzyme anaerobically inactivates. Experimental conditions were: pH 5.5, 10 °C, 100% H₂, electrode rotation rate = 2500 rpm.

S3. The Derivation of Equation 1

Equation 1 was derived as follows, starting from the catalytic scheme shown in the text and reproduced below (Figure S3).

Figure S3. The kinetic scheme used to model O_2 tolerance. *Re* MBH is abbreviated, for clarity, to the single initial 'E', and is described as being in its reduced, active form (E_{act}), forming an adduct with either H₂ or O_2 (E_{act}-H₂ and E_{act}-O₂, respectively) or being in either the Ready state (E_{Ready}) or the Unready (E_{Unready}) state.

For ease of notation, we make the following substitutions:

$$\begin{bmatrix} \mathbf{E}_{act} \end{bmatrix} = \boldsymbol{\beta} \qquad \begin{bmatrix} \mathbf{E}_{act} \end{bmatrix}_{0} = \boldsymbol{\beta}_{0}$$
$$\begin{bmatrix} \mathbf{E}_{act} - \mathbf{H}_{2} \end{bmatrix} = \boldsymbol{\alpha} \qquad \begin{bmatrix} \mathbf{E}_{act} - \mathbf{O}_{2} \end{bmatrix} = \boldsymbol{\sigma} \qquad [1]$$
$$\begin{bmatrix} \mathbf{E}_{Ready} \end{bmatrix} = \boldsymbol{\varepsilon} \qquad \begin{bmatrix} \mathbf{E}_{Unready} \end{bmatrix} = \boldsymbol{\omega}$$

The steady state approximation is applied to all intermediate species, generating the following expressions for the concentrations of each:

$$\frac{d\alpha}{dt} = k_1 [H_2] \beta - (k_{-1} + k_{cat}) \alpha = 0 \qquad \Rightarrow \qquad \alpha = \frac{k_1 [H_2] \beta}{k_{-1} + k_{cat}}$$
[2]

$$\frac{d\sigma}{dt} = k_2 \left[O_2 \right] \beta - \left(k_{\rm B} + k_{\rm A} + k_{-2} \right) \sigma = 0 \qquad \Rightarrow \qquad \sigma = \frac{k_2 \left[O_2 \right] \beta}{k_{\rm B} + k_{\rm A} + k_{-2}} \qquad [3]$$

$$\frac{d\varepsilon}{dt} = k_{\rm p}\beta + k_{\rm B}\sigma - k_{\rm -B}\varepsilon = 0 \qquad \Rightarrow \qquad \varepsilon = \frac{k_{\rm p}\beta + k_{\rm B}\sigma}{k_{\rm -B}}$$
[4]

$$\frac{d\omega}{dt} = k_{\rm A}\sigma - k_{\rm -A}\omega = 0 \quad \Longrightarrow \qquad \omega = \frac{k_{\rm A}\sigma}{k_{\rm -A}} \tag{5}$$

The total concentration of active enzyme is given by the difference between the initial concentration of enzyme, $[E_{act}]_0 = \beta_0$, and the concentration of all intermediate species, *i.e.*:

$$\beta = \beta_0 - \alpha - \sigma - \varepsilon - \omega \tag{6}$$

The Michaelis constant for H₂, $K_M^{H_2}$, is defined as:

$$K_{\rm M}^{\rm H_2} = \frac{k_{-1} + k_{\rm cat}}{k_1}$$
[7]

and an inhibition constant for O_2 inhibition, $K_I^{O_2}$, is defined as:

$$K_{\rm I}^{\rm O_2} = \frac{k_{\rm B} + k_{\rm A} + k_{-2}}{k_2}$$
[8]

From equation 2:

$$\alpha = \frac{\left[H_{2}\right]}{K_{M}^{H_{2}}} \left(\beta_{0} - \alpha - \sigma - \varepsilon - \omega\right)$$
[9]

and thus

$$\alpha = \frac{\beta_0 - \sigma - \varepsilon - \omega}{1 + \frac{K_M^{H_2}}{[H_2]}}$$
[10]

Substituting in, we obtain:

$$\alpha = \frac{\beta_0 - \sigma - \left(\frac{k_{\rm P}\beta + k_{\rm B}\sigma}{k_{\rm -B}}\right) - \left(\frac{k_{\rm A}\sigma}{k_{\rm -A}}\right)}{1 + \frac{K_{\rm M}^{\rm H_2}}{[\rm H_2]}}$$
[11]

Solving for $\boldsymbol{\sigma}$ leads to

$$\sigma = \frac{\beta_0 - \alpha \left(1 + \frac{K_M^{H_2}}{[H_2]} + \frac{k_P}{k_{-B}} \frac{K_M^{H_2}}{[H_2]}\right)}{1 + \frac{k_B}{k_{-B}} + \frac{k_A}{k_{-A}}}$$
[12]

Similarly, from equation 3, we obtain:

$$\sigma = \frac{\left[O_{2}\right]}{K_{1}^{O_{2}}} \left(\beta_{0} - \alpha - \sigma - \varepsilon - \omega\right)$$
[13]

and thus

$$\sigma = \frac{\beta_0 - \alpha - \varepsilon - \omega}{1 + \frac{K_1^{O_2}}{[O_2]}}$$
[14]

From Equation 10, by substituting in Equations 4 and 5, we obtain:

$$\sigma = \frac{\beta_0 - \alpha \left(1 + \frac{k_{\rm P}}{k_{\rm -B}} \frac{K_{\rm M}^{\rm H_2}}{[\rm H_2]}\right)}{1 + \frac{K_{\rm I}^{\rm O_2}}{[\rm O_2]} + \frac{k_{\rm B}}{k_{\rm -B}} + \frac{k_{\rm A}}{k_{\rm -A}}}$$
[15]

As equations 12 and 15 are both expressions for σ , they must be equal to one another, and so we write

$$\frac{\beta_{0} - \alpha \left(1 + \frac{K_{M}^{H_{2}}}{[H_{2}]} + \frac{k_{P}}{k_{-B}} \frac{K_{M}^{H_{2}}}{[H_{2}]}\right)}{1 + \frac{k_{B}}{k_{-B}} + \frac{k_{A}}{k_{-A}}} = \frac{\beta_{0} - \alpha \left(1 + \frac{k_{P}}{k_{-B}} \frac{K_{M}^{H_{2}}}{[H_{2}]}\right)}{1 + \frac{K_{I}^{O_{2}}}{[O_{2}]} + \frac{k_{B}}{k_{-B}} + \frac{k_{A}}{k_{-A}}}$$
[16]

Solving for α yields

$$\alpha = \frac{\beta_0 \frac{K_1^{O_2}}{[O_2]}}{\frac{K_M^{H_2}}{[H_2]} \left(1 + \frac{K_1^{O_2}}{[O_2]} + \frac{k_B}{k_{-B}} + \frac{k_A}{k_{-A}}\right) + \frac{K_1^{O_2}}{[O_2]} \left(1 + \frac{K_M^{H_2}}{[H_2]} \frac{k_P}{k_{-B}}\right)}$$
[17]

The overall rate of reaction, v, is defined as

$$v = k_{\rm cat} \alpha \tag{18}$$

and the maximum rate of reaction is obtained when $\alpha = \beta_0$

$$v_{\rm max} = k_{\rm cat} \beta_0$$
 [19]

The relationship between the rate of catalysis and the catalytic current, i, is given by

$$i = nFA\Gamma k_{cat}$$
^[20]

and we thus arrive at the final equation:

$$\frac{i}{i_{\max}} = \frac{\frac{K_{1}^{O_{2}}}{[O_{2}]}}{\frac{K_{M}^{H_{2}}}{[H_{2}]} \left(1 + \frac{K_{1}^{O_{2}}}{[O_{2}]} + \frac{k_{B}}{k_{-B}} + \frac{k_{A}}{k_{-A}}\right) + \frac{K_{1}^{O_{2}}}{[O_{2}]} \left(1 + \frac{K_{M}^{H_{2}}}{[H_{2}]} \frac{k_{P}}{k_{-B}}\right)$$
[21]