Synthesis of Structurally Simplified Analogues of Pancratistatin:

Truncation of the Cyclitol Ring

Supplemental Information

Madhuri Manpadi, Artem S. Kireev, Igor V. Magedov,^{*} Jeff Altig, Paul Tongwa, Mikhail Yu. Antipin, Antonio Evidente, Willem A. L. van Otterlo, and Alexander Kornienko^{*}

Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA, Department of Natural Sciences, New Mexico Highlands University, Las Vegas, New Mexico 87701, USA, Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia, Dipartimento di Scienze, del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali,

Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy, Molecular Sciences Institute, Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa

akornien@nmt.edu

Table of Contents

General Experimental Details	S 2
X-ray Data	S2 - S9
DFT Optimization	S9 - S10
¹ H NMR and ¹³ C NMR spectra of all new compounds	S11- S51

General Experimental Details: Unless otherwise noted all commercially obtained reagents were used without purification. THF was distilled from sodium-benzophenone ketyl prior to use. Dichloromethane and methanol were distilled from calcium hydride. Reactions were carried out under a nitrogen atmosphere in oven-dried glassware using standard syringe, cannula and septa techniques. Reactions were monitored by TLC (Silica Gel 60 F254, 250 μ m) and visualized with UV light and ceric ammonium molybdate solution. Flash chromatography was performed on silica gel (32-63 μ m, 60 Å pore size). ¹H and ¹³C NMR spectra were recorded on 300 MHz spectrometer.

X-ray structure determination.

Details of the crystal data, data collection and structure refinement parameters for compound **23** are presented in Table 1. Single crystal X-ray diffraction experiment was carried out with a diffractometer, with CCD area detector at 250K. Semiempirical method SADABS1 was applied for absorption correction. The structure was solved by direct methods and refined by the full-matrix least-squares technique against F2 with the anisotropic temperature parameters for all non-hydrogen atoms. Data reduction and further calculations were performed using SAINT+2 and SHELXTL NT3 program packages.

References

1. Sheldrick G.M. SADABS v.2.03, Bruker/Siemens Area Detector Absorption Correction Program, (2003) Bruker AXS, Madison, Wisconsin, USA.

2. SAINTP+ for NT. Data Reduction and Correction Program v. 6.2, (2001) Bruker AXS, Madison, Wisconsin, USA.

3. Sheldrick G.M. SHELXTL NT v. 6.12, Structure Determination Software Suite, (2001) Bruker AXS, Madison, Wisconsin, USA.

Fuble 1 . Crystal data and structure refinement for 25 .		
Identification code	paul17a	
Empirical formula	C20 H23 N O9	
Formula weight	421.39	
Temperature	273(2) K	
Wavelength	1.54178 Å	

 Table 1
 Crystal data and structure refinement for 23

Crystal system	Monoclinic	
Space group	P2(1)	
Unit cell dimensions	a = 10.0278(2) Å	$\alpha = 90^{\circ}$.
	b = 7.7271(2) Å	β= 92.6880(10)°.
	c = 12.6670(2) Å	$\gamma = 90^{\circ}.$
Volume	980.43(4) Å ³	
Z	2	
Density (calculated)	1.427 Mg/m ³	
Absorption coefficient	0.963 mm ⁻¹	
F(000)	444	
Crystal size	0.40 x 0.19 x 0.14 mm ³	
Theta range for data collection	3.49 to 68.92°.	
Index ranges	-11<=h<=12, -9<=k<=8, -14<=l<=15	
Reflections collected	8357	
Independent reflections	3188 [R(int) = 0.0225]	
Completeness to theta = 68.92°	99.0 %	
Absorption correction	Numerical	
Max. and min. transmission	0.8769 and 0.6993	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3188 / 1 / 271	
Goodness-of-fit on F ²	1.036	
Final R indices [I>2sigma(I)]	R1 = 0.0404, wR2 = 0.1021	
R indices (all data)	R1 = 0.0475, wR2 = 0.1077	
Absolute structure parameter	0.3(2)	
Largest diff. peak and hole	0.172 and -0.177 e.Å ⁻³	

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **23**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
O(1)	-756(4)	-5172(4)	-8921(2)	118(1)
N(1)	-3857(2)	-4995(3)	-7817(2)	57(1)
C(1)	-2921(2)	-2224(3)	-7341(2)	47(1)
O(2)	140(3)	498(3)	-5427(2)	88(1)
C(2)	-3911(2)	-3178(4)	-8071(2)	51(1)

O(3)	-603(2)	-43(2)	-7083(1)	53(1)
C(3)	-3677(2)	-5626(4)	-6835(2)	57(1)
O(4)	-1329(2)	-2464(2)	-8678(1)	52(1)
C(4)	-3472(2)	-4336(3)	-5968(2)	53(1)
O(5)	-6175(2)	-3309(3)	-8744(2)	65(1)
C(5)	-3592(3)	-4870(4)	-4915(2)	62(1)
O(6)	-5616(3)	-1559(4)	-10024(2)	96(1)
C(6)	-3438(3)	-3655(5)	-4158(2)	64(1)
O(7)	-3691(2)	-7172(3)	-6657(2)	75(1)
C(7)	-3205(4)	-2164(6)	-2649(2)	87(1)
O(8)	-3464(3)	-3828(4)	-3077(2)	88(1)
C(8)	-3227(3)	-1960(4)	-4405(2)	59(1)
O(9)	-3171(2)	-988(4)	-3498(2)	78(1)
C(9)	-3092(2)	-1413(4)	-5415(2)	54(1)
C(10)	-3191(2)	-2661(3)	-6209(2)	50(1)
C(11)	-1509(2)	-2757(3)	-7565(2)	48(1)
C(12)	-452(2)	-1862(3)	-6899(2)	51(1)
C(13)	924(3)	-2395(4)	-7155(3)	73(1)
C(14)	-255(3)	989(3)	-6267(2)	55(1)
C(15)	-410(3)	2825(4)	-6570(3)	69(1)
C(16)	-1020(3)	-3813(4)	-9272(2)	65(1)
C(17)	-1090(4)	-3417(6)	-10417(2)	84(1)
C(18)	-5273(3)	-2461(4)	-7999(2)	62(1)
C(19)	-6250(3)	-2748(4)	-9733(2)	66(1)
C(20)	-7166(4)	-3770(5)	-10418(3)	93(1)

O(1)-C(16)	1.166(4)
N(1)-C(3)	1.341(4)
N(1)-C(2)	1.440(4)
N(1)-HN1	0.8600
C(1)-C(2)	1.515(3)
C(1)-C(10)	1.510(3)
C(1)-C(11)	1.514(3)
C(1)-H(1)	0.9800
O(2)-C(14)	1.181(3)
C(2)-C(18)	1.481(4)
C(2)-H(2)	0.9800
O(3)-C(14)	1.339(3)
O(3)-C(12)	1.432(3)
C(3)-O(7)	1.216(3)
C(3)-C(4)	1.490(4)
O(4)-C(16)	1.331(3)
O(4)-C(11)	1.448(3)
C(4)-C(10)	1.363(4)
C(4)-C(5)	1.407(4)
O(5)-C(19)	1.324(3)
O(5)-C(18)	1.436(3)
C(5)-C(6)	1.346(5)
C(5)-H(5)	0.9300
O(6)-C(19)	1.185(4)
C(6)-O(8)	1.377(3)
C(6)-C(8)	1.366(5)
C(7)-O(8)	1.415(5)
C(7)-O(9)	1.410(4)
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(8)-O(9)	1.372(3)
C(8)-C(9)	1.360(4)
C(9)-C(10)	1.393(4)
C(9)-H(9)	0.9300

Table 3. Bond lengths [Å] and angles $[\circ]$ for 23.

C(11)-C(12)	1.493(3)
C(11)-H(11)	0.9800
C(12)-C(13)	1.490(4)
C(12)-H(12)	0.9800
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
C(14)-C(15)	1.476(4)
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-C(17)	1.481(4)
C(17)-H(17A)	0.9600
C(17)-H(17B)	0.9600
C(17)-H(17C)	0.9600
C(18)-H(18A)	0.9700
C(18)-H(18B)	0.9700
C(19)-C(20)	1.466(4)
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(3)-N(1)-C(2)	124.3(2)
C(3)-N(1)-HN1	117.9
C(2)-N(1)-HN1	117.9
C(2)-C(1)-C(10)	109.2(2)
C(2)-C(1)-C(11)	110.18(19)
C(10)-C(1)-C(11)	109.15(19)
C(2)-C(1)-H(1)	109.4
C(10)-C(1)-H(1)	109.4
C(11)-C(1)-H(1)	109.4
N(1)-C(2)-C(18)	112.1(2)
N(1)-C(2)-C(1)	108.8(2)
C(18)-C(2)-C(1)	111.1(2)
N(1)-C(2)-H(2)	108.3
C(18)-C(2)-H(2)	108.3
C(1)-C(2)-H(2)	108.3

C(14)-O(3)-C(12)	115.89(19)
O(7)-C(3)-N(1)	121.8(3)
O(7)-C(3)-C(4)	121.6(3)
N(1)-C(3)-C(4)	116.6(2)
C(16)-O(4)-C(11)	118.1(2)
C(10)-C(4)-C(5)	121.2(3)
C(10)-C(4)-C(3)	119.6(2)
C(5)-C(4)-C(3)	119.2(2)
C(19)-O(5)-C(18)	118.6(2)
C(6)-C(5)-C(4)	117.3(3)
C(6)-C(5)-H(5)	121.3
C(4)-C(5)-H(5)	121.3
C(5)-C(6)-O(8)	129.3(3)
C(5)-C(6)-C(8)	121.3(3)
O(8)-C(6)-C(8)	109.4(3)
O(8)-C(7)-O(9)	107.7(2)
O(8)-C(7)-H(7A)	110.2
O(9)-C(7)-H(7A)	110.2
O(8)-C(7)-H(7B)	110.2
O(9)-C(7)-H(7B)	110.2
H(7A)-C(7)-H(7B)	108.5
C(6)-O(8)-C(7)	106.3(3)
O(9)-C(8)-C(9)	128.0(3)
O(9)-C(8)-C(6)	109.5(3)
C(9)-C(8)-C(6)	122.5(3)
C(8)-O(9)-C(7)	106.5(3)
C(8)-C(9)-C(10)	117.2(3)
C(8)-C(9)-H(9)	121.4
C(10)-C(9)-H(9)	121.4
C(4)-C(10)-C(9)	120.4(2)
C(4)-C(10)-C(1)	118.2(2)
C(9)-C(10)-C(1)	121.4(2)
O(4)-C(11)-C(12)	111.1(2)
O(4)-C(11)-C(1)	107.47(18)
C(12)-C(11)-C(1)	114.4(2)
O(4)-C(11)-H(11)	107.9

C(12)-C(11)-H(11)	107.9
C(1)-C(11)-H(11)	107.9
O(3)-C(12)-C(11)	107.22(19)
O(3)-C(12)-C(13)	109.2(2)
C(11)-C(12)-C(13)	112.9(2)
O(3)-C(12)-H(12)	109.2
C(11)-C(12)-H(12)	109.2
C(13)-C(12)-H(12)	109.2
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
O(2)-C(14)-O(3)	124.7(3)
O(2)-C(14)-C(15)	124.7(3)
O(3)-C(14)-C(15)	110.6(2)
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
O(1)-C(16)-O(4)	123.0(3)
O(1)-C(16)-C(17)	124.1(3)
O(4)-C(16)-C(17)	113.0(3)
C(16)-C(17)-H(17A)	109.5
C(16)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(16)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
O(5)-C(18)-C(2)	110.1(2)
O(5)-C(18)-H(18A)	109.6
C(2)-C(18)-H(18A)	109.6
O(5)-C(18)-H(18B)	109.6

C(2)-C(18)-H(18B)	109.6
H(18A)-C(18)-H(18B)	108.2
O(6)-C(19)-O(5)	122.8(3)
O(6)-C(19)-C(20)	124.3(3)
O(5)-C(19)-C(20)	112.9(3)
C(19)-C(20)-H(20A)	109.5
C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5

Symmetry transformations used to generate equivalent atoms:

DFT Optimizations

Geometry optimizations were carried out using B3LYP method of density functional theory. B3LYP denotes a three-parameter hybrid density functional that combines Becke's exchange functional with the correlation functional by Lee, Yang, and Parr.^[1-3] The basis set 6-31g* was employed for the optimization. The crystallographic molecular structure^[4] was used for the initial geometry of pancratistatin. All calculations were carried out with Gaussian03, Revision B.01.^[5]

References

- [1] A. D. Becke, *Phys. Rev.* **1988**, *A38*, 3098.
- [2] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [3] C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. 1988, B37, 785.
- [4] G. R. Pettit, Y. Meng, D. L. Herald, J. C. Knight, and J. F. Day, J. Nat. Prod. 2005, 68, 1256.
- [5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J.
- A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J.
- Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.
- Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
- Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo,
- J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.

W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.

Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,

K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B.

B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,

M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.

Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

1.00

