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Supplementary Figure 1 | Attachment of Rub1 to SCFCdc4 did not change ubiquitylation kinetics of CycE.

a, The design of CycE and 3-Cat. The sequence from Lys1 through pSer23 is derived directly from human cyclin E1.

b, SCFCdc4 was bound to beads coupled to the anti-Py antibody. Beads were mixed with purified Rub1, Ula1-Uba3,
Ubc12, and ATP. After washing, the Rub1-conjugated SCFCdc4 was released with the Py peptide and analyzed by
SDS-PAGE followed by staining with Coomassie Blue. Lane 1: unmodified SCFCdc4, lane 2: Rub1-conjugated SCFCdc4.
¢, Reaction design: SCFCdc4 or Rub1-conjugated SCFCdc4 (150 nM) was pre-mixed with 32P labeled CycE (10 nM)
and combined with pre-mixed ubiquitin (60 pM), Uba1 (0.8 uM), Cdc34 (10 uM), and ATP. d, Reactions were evaluated
by SDS-PAGE followed by phosphor-imaging.
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Kd =90 nM; [SCF<] =150 nM; [CyCEO] =10nM;

[SCF:S,] = 0.5 * (K, + SCF +5,) - [ 0.25 * (Kd + SCF + S)2 - (SCF*S ) I°5

[SCF:S1=6.15nM or 61.5% of S ;

On average 17% of S is modified

17% /61.5% = 27.6% of bound S, at the beginning of the reaction goes on to get modified

72.4% of bound S at the beginning of the reaction does not get modified

K, =480 nM; [SCFFT™"] =500 nM; [B-cat ] =100 nM;
[SCF:S,] =0.5* (K, + SCF +S,) - [0.25 * (Kd + SCF + S ) - (SCF*S ) 1°*

[SCF:S,] =48.5nMor48.5% of S;; On average 3.7% of S is modified
3.7% / 48.5% = 7.6% of bound S at the beginning of the reaction goes on to get modified

92.4% of bound S at the beginning of the reaction does not get modified

Supplementary Figure 2 | Calculation of A. a, For clarity, Figure 1a is reproduced here. b, The distributions of products in reaction 3
were subtracted from the distribution of products in reaction 2 at each time point and then normalized. ¢, The average of the
distributions shown in b is )\Cch. d, The fractional amounts of each product (S, - S,) that comprise the distribution )\Cch.

e, The fractional amounts of each product (S, -

S,,) that comprise the distribution A

-Cat”

f, Calculation of the percent CycE

bound to SCF®* at the beginning of the reaction, based on the reported K for binding of CycE to Cdc4.' Combined with
the kinetics of Fig. 1a the percent of productive encounters was calculated. g, Calculation of the percent 3-Cat bound to SCFB-TrCP
at the beginning of the reaction, based on the reported K, for binding of Ub-B-Cat to 3-TrCP.»> Combined with the kinetics of Fig. 1b
the percent of productive encounters was calculated.
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Supplementary Figure 3 | An example of calculating A from n and ¢. In this example, we assigned 5
distributions to n and ¢. To calculate A, we took multiple convolutions of n with itself as governed 0.4
by @. In our example, 25% of substrates underwent one transfer, for which the n value determines ’
that 30% were a single ubiquitin while 70% were diubiquitin. Thus, we weight the distribution n 0.3
by the fraction of a single transfer, @(1)*n. 50% of substrates underwent two transfers. Each of these 0.2
two transfers selects from the pool of pre-assembled chains, thus we must consider the convolution 04
of n with itself (n¥n) and then weight it by the fraction that receive two transfers, @(2)*nXn. ’
This process is repeated for the all indexes of ¢, each time adding an additional convolution. 0
These weighted distributions sum to give A.

1 2 3 4 5 6
final # of ubiquitins
in chain



_n_
1.0
0.8 0.7
In this example, 0.6
we use a fake n 04103
and A and calulate ¢ .
0.2
0
1 2 3

# of ubiquitins in
pre-assembled chain

2 3 4 5 6

_@
1.0
0.8
0.6
0.4
0.2
0
T2 3

# of transfers events
to a single substrate

The only way to end up with 1 ubiquitin on

substrate is from a single transfer of a single ubiquitin.

Thus, n(1)*e(1) =\1)

final # of ubiquitins
in chain

(1) n_
1.0 1.0
0.8 0.8 0.7
0.6 * 0.6
0.4 025 04103
0.2 0.2

0
o T 3 T 2 3

@(1)
05

0.3
0.2
0.1

0.5
Subtractthe 04 0.29225
contribution 0.3 0.2167
of (1) from A .

0.2
0.1

After substracting the contribution of single transfers, 1.0 — 0.5 05 e@nen
the only way to end up with 2 ubiquitins on
R . Lo 0.8 0.4 04
substrate is from two transfers of a single ubiquitin. *
0.6 0.5 03 - 03
Thus,  n(1)*n(1)*¢(2) = - o(1)*n](2) 04 02 =
- o(1)*n1(2) 0.045 0.2 0.1 0.1 0.045
Q)= = =05 0 0 0
n(M*n(1) 0.3%0.3 1 2 3
A-¢(1)*n $Qnen A- (1) -9(2)*n@n
0.5 0.5
Subtract the 0.4 0.4
contribution 0.29225
of @(2) from A already 03 — 03
corrected for (1) 0.2 0.2 - 02 0.11025
0.1 0.1 0.045 0.04725 ___0.08575
0.00675
0 0
After substracting the contribution of single and 10 9B
double transfers, the only way to end up with 3 ’ 0.5
ubiquitins on substrate is from three transfers 0.8
of a single ubiquitin.
Thus, 06 0.25 * 0.3
* * *, — * * 0'4 0.2
n(M*n(M* M(M*eB3) = [\ - 9(1)*n - 2)*n@nI(3)
0.2 0.1
A-o(1)*n - () 0.00675 0 0
9(3) = P N enl® . =025 T2 3
n(M*n(1)*n(1) 0.3*0.3*0.3
A-¢(1)*n - ¢(2)'n®n e3rn®nen
0.5
0.4
0.3 - _ Thus,
0.2 0.11025 . O
0.1 0.04725 ___0.08575
0 0.00675




Supplementary Figure 4 | An example of calculating ¢ from A and n. Deconvolution took advantage of the constraints existing on the
lowest index of A. Here we used A and n from the example in Supplementary Figure 3. The only way of creating the species in A that has a single
ubiquitin attached to substrate was by the single transfer of a single ubiquitin. Thus, @(1)*n(1) equals A(1) and ¢(1) is calculated by division.
The contribution of ¢(1) to A was then calculated and subtracted from A. The only way remaining to form A(2), is by two transfers of a single
ubiquitin. Thus @(2) equals [A-¢(1)*n1(2)/[n(1)*n(1)]. This process is repeated until ¢ is revealed.
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Supplementary Figure 6 | Deconvolution of ¢ from A_ .. a, Considering distributions of n that only contain n(1) and n(2), ¢ was calculated by
deconvolution with A_ .. The distribution shown was that which deviated most from n(1)=100% whose ¢ did not contain values >1 or <0 and that
when convoluted with @, the sum fell within 0.95 and 1.05, or an error rate of + 5%. b, Considering distributions of n that were exponentially distributed
with rate parameter a. ¢, Considering distributions of n that were poisson distributed with average a. d, Considering distributions of n that were normal
distributed varying the mean and SD. Random distributions were also considered (data not shown).
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Supplementary Figure 7 | Deconvolution of n from )\cch. a, Considering distributions of ¢ that only contain ¢(1) and ¢ (2), n was calculated by
deconvolution with )\Cch. The distribution shown was that which deviated most from ¢(1)=100% whose n did not contain values >1 or <0 and that
when convoluted with ), the sum fell within 0.95 and 1.05, or an error rate of + 5%. b, Considering distributions of ¢ that were exponentially distributed
with rate parameter a. ¢, Considering distributions of ¢ that were poisson distributed with average a. d, Considering distributions of ¢ that were normal
distributed varying the mean and SD. Random distributions were also considered (data not shown).
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. a, Considering distributions of n that only contain n(1) and n(2), ¢ was calculated by
deconvolution with A, __ . The distribution shown was that which deviated most from n(1)=100% whose ¢ did not contain values >1 or <0 and

that when convoluted with ¢, the sum fell within 0.95 and 1.05, or an error rate of + 5%. b, Considering distributions of n that were exponentially
distributed with rate parameter a. ¢, Considering distributions of n that were poisson distributed with average a. d, Considering distributions of n
that were normal distributed varying the mean and SD. Random distributions were also considered (data not shown).
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Supplementary Figure 9 | Deconvolution of n from Aa_cm. a, Considering distributions of ¢ that only contain ¢(1) and ¢ (2), n was calculated by
deconvolution with )\Brcm.The distribution shown was that which deviated most from ¢(1)=100% whose n did not contain values >1 or <0 and that
when convoluted with n, the sum fell within 0.95 and 1.05, or an error rate of + 5%. b, Considering distributions of ¢ that were exponentially distributed
with rate parameter a. ¢, Considering distributions of ¢ that were poisson distributed with average a. d, Considering distributions of ¢ that were normal
distributed varying the mean and SD. Random distributions were also considered (data not shown).
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Supplementary Figure 10 | Mass spectrometry analysis of Cdc34. a, Chromatograms of mass spectrometry analysis of reaction containing Uba1,
yeast Cdc34 and ubiquitin in the presence of ATP. Where possible, species are identified and the masses are compared with the theoretical value.
Peak 3 contains multiple species including Uba1 and impurities. The theoretical masses for Cdc34~Ub2 (49,338), Cdc34~Ub3 (57,886), Cdc34~Ub4
(66,433) are not observed. b, Chromatograms of mass spectrometry analysis of reaction containing Uba1, yeast Cdc34 and ubiquitin (Ub) in the
presence of ATP and SCF4, Where possible, species are identified and the masses are compared with the theoretical value. Peak 4 contains

multiple species including E1 and impurities. ¢, Analysis of peaks from a. d, Analysis of peaks from b.
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Supplementary Figure 11 | Mass spectrometry analysis of Cdc34 controls. a, Chromatograms of mass spectrometry analysis of reaction containing
E1, Cdc34 and ubiquitin (Ub) in the presence of ATP, SCF and DTT. Where possible, species are identified and the masses are compared with the
theoretical value. b, Chromatograms of mass spectrometry analysis of reaction containing E1, Cdc34 and K48 di-ubiquitin in the presence of ATP.
Where possible, species are identified and the masses are compared with the theoretical value. Peak 4 contains multiple species including E1

and impurities. ¢, Chromatograms of mass spectrometry analysis of SCF¢* in reaction buffer. d, Analysis of peaks from a. e, Analysis of peaks

from b. f, Analysis of peaks from c.
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Supplementary Figure 12 | Millisecond kinetics of a single encounter reaction. a, Samples from the same reaction shown in Fig. 2a were runon a
12-24% tricine gel to optimize detection and quantification of S2 and S5. The asterisk marks an unreactive contaminant of the labeled CycE.

b, A zoomed plot of Fig. 3b up to 5 seconds. The error of each fit is shown in Supplementary Figure 14. ¢, A zoomed plot of Fig. 3e up to 5 seconds.
The error of each fit is shown in Supplementary Figure 15.
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Supplementary Figure 13 | Closed form solutions to a kinetic model of a single encounter reaction with n(1)=100%. The analytical solutions
were calculated using the method of Laplace transforms. Each new species contributed two new rate constants to the overall scheme.
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Supplementary Figure 14 | Comparison of rate constants estimated from analytical solutions and global regression for CycE. Comparison of the

analytical and globally refined rate constants revealed that the global analysis helped to correct for the error accumulation in the analytical regression.
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Supplementary Figure 15 | Comparison of rate constants estimated from analytical solutions and global regression for B-Cat. Comparison of
the analytical and globally refined rate constants revealed that the global analysis helped to correct for the error accumulation in the analytical
regression. The error for the B-Cat regressions are higher versus the CycE regression because of reduced fraction of substrate converted.
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Supplementary Figure 16 | Overshoot behavior reveals flux through each species. Using the analytical solutions, the overshoot behavior was
directly correlated to the amount of flux through each species. Each curve may be dissected into the substrate that was bound to SCF or free
at the time of quench. The sum of these two species gives the measured curve.



	Processive Figure S1
	Processive Figure S2
	Processive Figure S3
	Processive Figure S4a
	Processive Figure S4b
	Processive Figure S5
	Processive Figure S6
	Processive Figure S7
	Processive Figure S8
	Processive Figure S9
	Processive Figure S10
	Processive Figure S11a
	Processive Figure S11b
	Processive Figure S12
	Processive Figure S13
	Processive Figure S14
	Processive Figure S15
	Processive Figure S16

