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Supplementary Figure 1 | Attachment of Rub1 to SCFCdc4 did not change ubiquitylation kinetics of CycE. 
a, The design of CycE and β-Cat. The sequence from Lys1 through pSer23 is derived directly from human cyclin E1. 
b, SCFCdc4 was bound to beads coupled to the anti-Py antibody. Beads were mixed with puri�ed Rub1, Ula1–Uba3, 
Ubc12, and ATP. After washing, the Rub1-conjugated SCFCdc4 was released with the Py peptide and analyzed by 
SDS-PAGE followed by staining with Coomassie Blue.  Lane 1: unmodi�ed SCFCdc4, lane 2: Rub1-conjugated SCFCdc4. 
c, Reaction design: SCFCdc4 or Rub1-conjugated SCFCdc4 (150 nM) was pre-mixed with 32P labeled CycE (10 nM) 
and combined with pre-mixed ubiquitin (60 µM), Uba1 (0.8 µM), Cdc34 (10 µM), and ATP. d, Reactions were evaluated 
by SDS-PAGE followed by phosphor-imaging. 
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Supplementary Figure 2 | Calculation of λ. a, For clarity, Figure 1a is reproduced here. b, The distributions of products in reaction 3 
were subtracted from the distribution of products in reaction 2 at each time point and then normalized. c, The average of the 
distributions shown in b is λCycE. d,  The fractional amounts of each product (S1 – S8) that comprise the distribution λCycE. 
e,  The fractional amounts of each product (S1 – S14) that comprise the distribution λβ-Cat. f, Calculation of the percent CycE 
bound to SCFCdc4 at the beginning of the reaction, based on the reported Kd for binding of CycE to Cdc4.21 Combined with 
the kinetics of Fig. 1a the percent of productive encounters was calculated. g, Calculation of the percent β-Cat bound to SCFβ-TrCP 
at the beginning of the reaction, based on the reported Kd for binding of Ub-β-Cat to β-TrCP.22 Combined with the kinetics of Fig. 1b 
the percent of productive encounters was calculated.
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Supplementary Figure 3 | An example of calculating λ from η and φ. In this example, we assigned 
distributions to η and φ. To calculate λ, we took multiple convolutions of η with itself as governed 
by φ. In our example, 25% of substrates underwent one transfer, for which the η value determines 
that 30% were a single ubiquitin while 70% were diubiquitin. Thus, we weight the distribution η 
by the fraction of a single transfer, φ(1)*η. 50% of substrates underwent two transfers. Each of these
two transfers selects from the pool of pre-assembled chains, thus we must consider the convolution 
of η with itself (η�η) and then weight it by the fraction that receive two transfers, φ(2)*η�η. 
This process is repeated for the all indexes of φ, each time adding an additional convolution. 
These weighted distributions sum to give λ.
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Supplementary Figure 4 | An example of calculating φ from λ and η. Deconvolution took advantage of the constraints existing on the 
lowest index of λ. Here we used λ and η from the example in Supplementary Figure 3. The only way of creating the species in λ that has a single 
ubiquitin attached to substrate was by the single transfer of a single ubiquitin. Thus, φ(1)*η(1) equals λ(1) and φ(1) is calculated by division. 
The contribution of φ(1) to λ was then calculated and subtracted from λ. The only way remaining to form λ(2), is by two transfers of a single 
ubiquitin. Thus φ(2) equals [λ-φ(1)*η](2)/[η(1)*η(1)]. This process is repeated until φ is revealed.
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Supplementary Figure 5 | An example of 
calculating η from λ and φ. a, This example
 is similar to that in Supplementary Figure 4. 
Here, each time we discover another value 
of η we must remember to subtract the 
multi-weighted convolutions (as in 
Supplementary Figure 3) of the incomplete 
η from λ. b, Shown is the explicit example 
of searching a normalized exponential 
distribution of η by varying the rate 
parameter α. When the deconvolution 
was performed with rate parameter α=0.5, 
the �rst negative number appeared at φ(6). 
All larger rate parameters contain negative 
values. The error for this distribution was 
calculated as the di�erence in its sum from 1. 
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Supplementary Figure 6 | Deconvolution of φ from λCycE. a, Considering distributions of η that only contain η(1) and η(2), φ was calculated by 
deconvolution with λCycE. The distribution shown was that which deviated most from η(1)=100% whose φ did not contain values >1 or <0 and that 
when convoluted with φ, the sum fell within 0.95 and 1.05, or an error rate of ± 5%. b, Considering distributions of η that were exponentially distributed 
with rate parameter α. c, Considering distributions of η that were poisson distributed with average α. d, Considering distributions of η that were normal 
distributed varying the mean and SD. Random distributions were also considered (data not shown). 
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Supplementary Figure 7 | Deconvolution of η from λCycE. a, Considering distributions of φ that only contain φ(1) and φ (2), η was calculated by 
deconvolution with λCycE. The distribution shown was that which deviated most from φ(1)=100% whose η did not contain values >1 or <0 and that 
when convoluted with η, the sum fell within 0.95 and 1.05, or an error rate of ± 5%. b, Considering distributions of φ that were exponentially distributed 
with rate parameter α. c, Considering distributions of φ that were poisson distributed with average α. d, Considering distributions of φ that were normal 
distributed varying the mean and SD. Random distributions were also considered (data not shown). 
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Supplementary Figure 8 | Deconvolution of φ from λβ-Cat. a, Considering distributions of η that only contain η(1) and η(2), φ was calculated by 
deconvolution with λβ-Cat. The distribution shown was that which deviated most from η(1)=100% whose φ did not contain values >1 or <0 and 
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0.8

1.0

0.4

0.6

0

0.2

3% Error

η φ λa

0.89

0.11

only considering φ with 1 or 2

fraction of substrates m
odi�ed

# of ubiquitins in pre-assembled chain # of transfers per substrate �nal # of ubiquitins in chain
deconvolution

2.8% Error

λ fraction of substrates m
odi�ed

�nal # of ubiquitins in chain

φ

# of transfers per substrate
deconvolution

0.8

1.0

0.4

0.6

0

0.2

η
b

0.92

0.075

# of ubiquitins in pre-assembled chain

0.005

φ exponentially distributed

α=0.4

deconvolution
# of ubiquitins in pre-assembled chain

φ

# of transfers per substrate

0.8

1.0

0.4

0.6

0

0.2

0.9

0.09
0.006

φ poisson distributed

α=0.2

c
η

3.1% Error

λ fraction of substrates m
odi�ed

�nal # of ubiquitins in chain

deconvolution
# of ubiquitins in pre-assembled chain

φ

# of transfers per substrate

0.8

1.0

0.4

0.6

0

0.2

φ normal distributed

d η

3% Error

λ fraction of substrates m
odi�ed

�nal # of ubiquitins in chain

mean=1.4
SD=0.22

0.89

0.11

1 2 3 4 5 6 7 8 9 1011121314

1 2 3 4 5 6 7 8 9 1011121314

0.12

0.04

0.08

0

0.16

1 2 3 4 5 6 7 8 9 1011121314

0.10

0.14

0.06

0

0.02

1 3 5 7 9 1311 15 17

0.12

0.04

0.08

0

0.16

1 2 3 4 5 6 7 8 9 1011121314 1 2 3 4 5 6 7 8 9 1011121314

0.10

0.14

0.06

0

0.02

1 3 5 7 9 1311 15 17

0.12

0.04

0.08

0

0.16

1 2 3 4 5 6 7 8 9 1011121314 1 2 3 4 5 6 7 8 9 1011121314

0.10

0.14

0.06

0

0.02

1 3 5 7 9 1311 15 17

0.12

0.04

0.08

0

0.16

1 2 3 4 5 6 7 8 9 1011121314

0.10

0.14

0.06

0

0.02

1 3 5 7 9 1311 15 17

Supplementary Figure 9 | Deconvolution of η from λβ-Cat. a, Considering distributions of φ that only contain φ(1) and φ (2), η was calculated by 
deconvolution with λβ-Cat. The distribution shown was that which deviated most from φ(1)=100% whose η did not contain values >1 or <0 and that 
when convoluted with η, the sum fell within 0.95 and 1.05, or an error rate of ± 5%. b, Considering distributions of φ that were exponentially distributed 
with rate parameter α. c, Considering distributions of φ that were poisson distributed with average α. d, Considering distributions of φ that were normal
 distributed varying the mean and SD. Random distributions were also considered (data not shown). 
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Supplementary Figure 10 | Mass spectrometry analysis of Cdc34. a, Chromatograms of mass spectrometry analysis of reaction containing Uba1, 
yeast Cdc34 and ubiquitin in the presence of ATP.  Where possible, species are identi�ed and the masses are compared with the theoretical value.  
Peak 3 contains multiple species including Uba1 and impurities. The theoretical masses for Cdc34~Ub2 (49,338), Cdc34~Ub3 (57,886), Cdc34~Ub4 
(66,433) are not observed. b, Chromatograms of mass spectrometry analysis of reaction containing Uba1, yeast Cdc34 and ubiquitin (Ub) in the 
presence of ATP and SCFCdc4.  Where possible, species are identi�ed and the masses are compared with the theoretical value.  Peak 4 contains 
multiple species including E1 and impurities. c, Analysis of peaks from a. d, Analysis of peaks from b.
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Supplementary Figure 11 | Mass spectrometry analysis of Cdc34 controls. a, Chromatograms of mass spectrometry analysis of reaction containing 
E1, Cdc34 and ubiquitin (Ub) in the presence of ATP, SCF and DTT.  Where possible, species are identi�ed and the masses are compared with the 
theoretical value. b, Chromatograms of mass spectrometry analysis of reaction containing E1, Cdc34 and K48 di-ubiquitin in the presence of ATP. 
 Where possible, species are identi�ed and the masses are compared with the theoretical value.  Peak 4 contains multiple species including E1 
and impurities. c, Chromatograms of mass spectrometry analysis of SCFCdc4 in reaction bu�er. d, Analysis of peaks from a. e, Analysis of peaks 
from b. f, Analysis of peaks from c.
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Supplementary Figure 12 | Millisecond kinetics of a single encounter reaction. a, Samples from the same reaction shown in Fig. 2a were run on a 
12-24% tricine gel to optimize detection and quanti�cation of S2 and S5. The asterisk marks an unreactive contaminant of the labeled CycE. 
b, A zoomed plot of Fig. 3b up to 5 seconds. The error of each �t is shown in Supplementary Figure 14. c, A zoomed plot of Fig. 3e up to 5 seconds. 
The error of each �t is shown in Supplementary Figure 15.
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Supplementary Figure  13 | Closed form solutions to a kinetic model of a single encounter reaction with η(1)=100%. The analytical solutions 
were calculated using the method of Laplace transforms. Each new species contributed two new rate constants to the overall scheme. 
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Supplementary Figure 14 | Comparison of rate constants estimated from analytical solutions and global regression for CycE. Comparison of the 
analytical and globally re�ned rate constants revealed that the global analysis helped to correct for the error accumulation in the analytical regression. 
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Standard Error = 0.00261

Standard Error = 0.0313

Standard Error = 0.627

Standard Error = 0.0299

Standard Error = 1.1

Standard Error = 0.0658

Standard Error = 0.802

Standard Error = 0.0786

Standard Error = 0.481

Standard Error = 0.0661

Standard Error = 0.420

Standard Error = 0.0959

k14 = 0.395 s-1

k13 = 1.21 s-1 Standard Error = 0.382

Standard Error = 0.125

k16 = 0.467 s-1

k15 = 1.01 s-1 Standard Error = 0.571

Standard Error = 0.241
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Supplementary Figure 15 | Comparison of rate constants estimated from analytical solutions and global regression for β-Cat. Comparison of 
the analytical and globally re�ned rate constants revealed that the global analysis helped to correct for the error accumulation in the analytical 
regression. The error for the β-Cat regressions are higher versus the CycE regression because of reduced fraction of substrate converted.
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[S2]Total = [S2]bound + [S2]free = 61.5 k1k3( ((k3+k4)-(k1+k2))((k5+k6)-(k1+k2)) )e-(k1+k2)t

((k1+k2)-(k3+k4))((k5+k6)-(k3+k4))

e-(k3+k4)t
+

((k1+k2)-(k5+k6))((k3+k4)-(k5+k6))

e-(k5+k6)t
+

+ 61.5
k1

k1+k2

k3

k3+k4
( () ) (1-

(k3+k4)(k5+k6)e -(k1+k2)t

)-
k6

k5+k6
( ) ((k3+k4)-(k1+k2))((k5+k6)-(k1+k2)) ((k1+k2)-(k3+k4))((k5+k6)-(k3+k4)) ((k1+k2)-(k5+k6))((k3+k4)-(k5+k6))

-
(k1+k2)(k3+k4)e -(k5+k6)t

(k1+k2)(k5+k6)e -(k3+k4)t

Decomposition of S2 Into SCF Bound and Free

S2 Bound
S2 Total

S2 Free

Supplementary Figure 16 | Overshoot behavior reveals �ux through each species. Using the analytical solutions, the overshoot behavior was 
directly correlated to the amount of �ux through each species. Each curve may be dissected into the substrate that was bound to SCF or free 
at the time of quench. The sum of these two species gives the measured curve. 
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