Supporting Information

Ligand Dependence of Binding to Three-Coordinate Fe(II) Complexes

Karen P. Chiang, Pamela M. Barrett, Feizhi Ding, Jeremy M. Smith, Savariraj Kingsley, William W. Brennessel, Meghan M. Clark, Rene J. Lachicotte, Patrick L. Holland*

Figure S1. ORTEP drawing of the molecular structure of L^{tBu,iPr2}Fe(SPh). Thermal ellipsoids at 50% probability. Hydrogen atoms omitted for clarity.

Figure S2. ORTEP drawing of the molecular structure of L^{tBu,iPr2}Fe(SPhCF₃). Thermal ellipsoids at 50% probability. Hydrogen atoms omitted for clarity.

Figure S3. UV-Vis plot of $L^{tBu,iPr2}$ FeCl with specified amount of DMF. Values in the key correspond to the concentration of DMF in that sample. The concentration of $L^{tBu,iPr2}$ FeCl was 1 mM for each sample.

Figure S4. UV-Vis plot of L^{tBu,iPr2}FeCl with specified amount of 2-Picoline. The concentration of L^{tBu,iPr2}FeCl was 1 mM for each sample.

Figure S5. UV-Vis plot of $L^{tBu,iPr2}$ Fe(SPh) with specified amount of CN^tBu. The concentration of $L^{tBu,iPr2}$ Fe(SPh) was 1 mM for each sample.

Figure S6. Binding curve of $L^{tBu,iPr2}$ FeCl and PPh₃ in toluene. $K_{eq} = 0.7 \pm 0.08$.

Figure S7. Binding curve of $L^{tBu,iPr2}$ FeCl and THF in toluene. $K_{eq} = 0.8 \pm 0.01$

Figure S8. Binding curve of $L^{tBu,iPr2}$ FeCl and MeCN in toluene. $K_{eq} = 9.8 \pm 0.5$

Figure S9. Binding curve of $L^{tBu,iPr2}$ FeCl and DMF in toluene. $K_{eq} = 390 \pm 20$

Figure S10. Binding curve of $L^{tBu,iPr2}$ FeCl and 2-picoline in toluene. $K_{eq} = 660 \pm 50$

Figure S11. Binding curve of $L^{tBu,iPr2}$ FeCl and pyridine in toluene. $K_{eq} = 41000 \pm 6000$

Figure S12. Binding curve of $L^{tBu,iPr2}$ FeCl and $CN^{t}Bu$ in toluene. $K_{eq} = 73000 \pm 27000$

Figure S13. Binding curve of $L^{tBu,iPr2}$ FeSPh and PPh₃ in toluene. $K_{eq} = 1.0 \pm 0.5$

Figure S14. Binding curve of $L^{tBu,iPr2}$ FeSPh and THF in toluene. $K_{eq} = 0.15 \pm 0.01$

Figure S15. Binding curve of $L^{tBu,iPr2}$ FeSPh and MeCN in toluene. $K_{eq} = 5.2 \pm 0.2$

Figure S16. Binding curve of $L^{tBu,iPr2}FeSPh$ and DMF in toluene. K_{eq} = 160 \pm 5

Figure S17. Binding curve of $L^{tBu,iPr2}$ FeSPh and 2-picoline in toluene. $K_{eq} = 300 \pm 30$

Figure S18. Binding curve of $L^{tBu,iPr2}$ FeSPh and pyridine in toluene. $K_{eq} = 11000 \pm 2000$

Figure S19. Binding curve of $L^{tBu,iPr2}$ Fe(SPhCF₃) and MeCN in toluene. $K_{eq} = 11.7 \pm 0.9$

Figure S20. Binding curve of $L^{tBu,iPr2}$ Fe(SPhCF₃) and DMF in toluene. $K_{eq} = 230 \pm 10$

Figure S21. Binding curve of $L^{tBu,iPr2}$ Fe(OPh) and MeCN in toluene. $K_{eq} = 4.7 \pm 0.4$

Figure S22. Binding curve of $L^{tBu,iPr2}$ Fe(OPh) and DMF in toluene. $K_{eq} = 160 \pm 10$

Figure S23. Voltammogram of $L^{tBu,iPr2}$ Fe(SPh) with corresponding $E_{1/2}$ value of -2.41(2) V. Potential is referenced to the Fc⁺/Fc couple. The sample consisted of 4 mM of $L^{tBu,iPr2}$ Fe(SPh) in Et₂O with 0.1 M NBu₄BArF.

Figure S24. Voltammogram of $L^{tBu,iPr2}$ Fe(SPhCF₃) with corresponding $E_{1/2}$ value of -2.40(2) V. Potential is referenced to the Fc⁺/Fc couple. The sample consisted of 4 mM of $L^{tBu,iPr2}$ Fe(SPhCF₃) in Et₂O with 0.1 M NBu₄BArF.

Figure S25. Voltammogram of $L^{tBu,iPr2}$ Fe(OPh) with corresponding $E_{1/2}$ value of -2.56(3) V. Potential is referenced to the Fc⁺/Fc couple. The sample consisted of 4 mM of $L^{tBu,iPr2}$ Fe(OPh) in Et₂O with 0.1 M NBu₄BArF.

Figure S26 CV of $L^{tBu,iPr2}$ FeCl sweeping in the reduction (left) and oxidation (right) direction. The reduction peak at -320 mV is correlated with the oxidation peak at 430 mV. Potentials are referenced to the Fc⁺/Fc couple.

Figure S27. Voltammogram of $L^{tBu,iPr2}$ Fe(SPh)(NCMe) with corresponding $E_{1/2}$ value of -2.30(6) V. Potential is referenced to the Fc⁺/Fc couple. The sample consisted of 4 mM of $L^{tBu,iPr2}$ Fe(SPh) in MeCN with 0.1 M NBu₄PF₆.

Figure S28. Voltammogram of $L^{tBu,iPr2}$ Fe(SPhCF₃)(NCMe) with corresponding $E_{1/2}$ value of -2.33(1) V. Potential is referenced to the Fc⁺/Fc couple. The sample consisted of 4 mM of $L^{tBu,iPr2}$ Fe(SPhCF₃) in MeCN with 0.1 M NBu₄PF₆.

Figure S29. Voltammogram of $L^{tBu,iPr2}$ Fe(OPh)(NCMe) with corresponding $E_{1/2}$ value of -2.27(6) V. Potential is referenced to the Fc⁺/Fc couple. The sample consisted of 4 mM of $L^{tBu,iPr2}$ Fe(OPh) in MeCN with 0.1 M NBu₄PF₆.

Figure S30. CV of $L^{tBu,iPr2}$ FeCl(NCMe) sweeping in the reduction direction first. Potentials are referenced to the Fc⁺/Fc couple.

Figure S31. CV of L^{tBu,iPr2}FeCl(NCMe) sweeping in the oxidation direction first. An irreversible oxidation ($E_{pa} = 12(9)$ mV) as well as reduction ($E_{pc} = -67(3)$ mV) is observed. Potentials are referenced to the Fc⁺/Fc couple.

Figure S32. CV of the irreversible oxidation and reduction waves of $L^{tBu,iPr2}$ FeCl(NCMe). Potentials are referenced to the Fc⁺/Fc couple.

Table S1. List of compounds in the CSD us	sed to deter	mine solid and	cone angles of	PPh ₃ .	The me	tal of
the complex is iron unless otherwise noted.	"Coord. #"	denotes coordi	nation number	of the	metal c	enter.

Ligand: PPh₃									
Coord. #	Compound	Solid Ang (Ω)	Cone Ang (θ)	P#					
	DPPNFE	3.35	124.34	1					
	CATYOR	3.33	123.96	1					
	GATAOP	3.33	123.96	1A					
4-coord.		3.29	123.07	2					
	GAWFUF	3.39	125.27	3					
	JUQDAA	3.41	125.53	1					
	OJAPOE	3.42	125.77	4					
	CUBDOS	3.29	123.15	1					
	DASFAF	3.19	120.94	1					
	FEHBEA	3.31	123.15	2					
6 coord	GACLOL	3.32	123.66	2					
0-00010.	DEVEII	3.29	123.18	1					
	RETFIL	3.27	122.72	2					
	YAWGUY	3.27	122.76	1					
	YEMYAR	3.29	123.02	1					
	Avg.	3.32	124						
	Std. Dev.	0.06	1						

Table S2. List of compound	ls in the CSD used to determ	ine solid and cone angles of THF
----------------------------	------------------------------	----------------------------------

Ligand: THF									
Coord. #	Compound	Solid Ang (Ω)	Cone Ang (θ)	O#					
	DABPUS	1.81	89.22	1					
	DABQAZ	1.79	88.78	1					
		1.82	89.45	1					
	GOWVOF	1.82	89.41	1F					
		1.79	88.58	2					
4-coord. We We YE	JIALEIT	1.79	88.57	2B					
		1.83	89.72	3					
	IVIEZDOI	1.80	89.02	4					
	VEMYOB	1.78	88.54	1					
		1.67	85.58	1					
	WORFIC	1.67	85.58	1A					
		1.80	88.98	1					
	TECKI	1.79	88.60	2					
		1.81	89.30	1					
	TECROU	1.79	88.76	2					
		1.87	91.66	1					
		1.92	92.13	2					
		1.81	89.27	3					
5 coord		1.87	90.66	1A					
5-coord.		1.92	92.12	2A					
		1.81	89.27	3A					
		1.88	91.05	1					
	NAJIUE	1.80	91.03	1E					
	Avg.	1.81	89						
	Std. Dev.	0.06	2						

Ligand: MeCN									
Coord #	I. # Compound Solid Ang Co (Ω)	Cone Ang	NI#						
C0010. #	Compound	(Ω)	(θ)	IN#					
4-coord.	DABRII	1.60	83.68	4					
		1.60	83.68	5					
	JEVVIOD	1.60	83.74	6					
	LEJQUN	1.60	83.73	1					
		1.60	83.75	1					
	LUGNUQ	1.60	83.68	2					
	NASKEY	1.60	83.68	3					
	MAKCAD	1.60	83.74	3					
5-coord.	YEPDUS	1.60	83.64	11					
	OFACEE	1.60	83.71	3					
	AVINUO	1.60	83.63	6					
		1.60	83.71	5					
	EBORIV	1.60	83.67	6					
	ESUOOV	1.60	83.69	5					
	LOUGUI	1.60	83.66	6					
6-coord.		1.60	83.72	6					
		1.60	83.67	12					
		1.60	83.66	5					
	NELGOG	1.60	83.66	6					
		1.60	83.68	5					
	KITTIC	1.60	83.65	6					
	Avg.	1.60	83.69						
	Std. Dev.	0.00	0.03						

Table S4. List of compounds in the CSD used to determine solid and cone angles of DMF. Holkc01 is $L^{tBu,iPr2}Fe(SPh)(DMF)$ (Figure 4c) reported in this paper. We used the ten complexes in the CSD with Fe-O-C and O-C-N angles closest to those in $L^{tBu,iPr2}Fe(SPh)(DMF)$. The differences in angles from complexes in the database are shown; variations up to 14° did not affect the accuracy of the solid and cone angles (small standard deviation).

Coord. #	Compound	Fe-O-C (°)	∆ Fe-O-C (°)	O-C-N (°)	Δ O-C-N (°)	Solid Ang (Ω)	Cone Ang (θ)	O#
4-coord.	HOLKC01	118.21	0	124.84	0	1.69	86.18	15
	JIWMIL	126.295	8.085	123.916	0.924	1.62	84.15	4
5-coord.	QEKXIO	124.604	6.394	124.375	0.465	1.63	84.46	1
	GIGGIN	124.814	6.604	124.943	0.103	1.62	84.30	1
		127.752	9.542	126.414	1.574	1.60	83.49	1
	DEZMIF	122.61	4.4	123.841	0.999	1.64	84.68	2
		124.329	6.119	125.643	0.803	1.63	84.36	3
		118.366	0.156	125.493	0.653	1.71	86.55	1
		123.371	5.161	128.987	4.147	1.67	85.49	4
	CAZCET	127.452	9.242	128.674	3.834	1.63	84.37	2
	GAZGET	121.441	3.231	127.51	2.67	1.68	85.91	5
		132.071	13.861	121.519	3.321	1.58	83.05	3
		129.566	11.356	125.658	0.818	1.60	83.69	6
	JOHVIL	127.944	9.734	123.629	1.211	1.61	83.92	9
		123.173	4.963	120.805	4.035	1.64	84.73	10
	LOXYIG	116.953	1.257	125.936	1.096	1.70	86.26	1
		132.766	14.556	123.065	1.775	1.56	82.65	1
6-coord.		126.309	8.099	124.523	0.317	1.62	84.05	1
	NADTAN	132.732	14.522	122.211	2.629	1.57	82.67	1
		125.518	7.308	124.144	0.696	1.63	84.33	1
		124.739	6.529	124.045	0.795	1.63	84.43	1
		129.333	11.123	123.66	1.18	1.59	83.40	1
	QEZGUT	125.262	7.052	124.655	0.185	1.63	84.33	2
	WODKIJ	117.23	0.98	124.455	0.385	1.67	85.57	6
		126.042	7.832	125.534	0.694	1.61	84.03	10
		129.682	11.472	122.443	2.397	1.58	83.17	11
		128.207	9.997	129.494	4.654	1.60	83.74	18
		123.958	5.748	129.279	4.439	1.64	84.70	19
	MIJKOG	121.468	3.258	127.766	2.926	1.60	85.21	14
		131.329	13.119	133.167	8.327	1.74	87.28	15
		121.969	3.759	126.884	2.044	1.70	86.38	16
					Avg.	1.63	85	
					Std. Dev.	0.04	1	

Table S5. List of compounds in the CSD used to determine solid and cone angles of 2-picoline. Only two compounds with 2-picoline as a ligand were found. Therefore, cobalt and nickel complexes were also used to calculate the solid and cone angle of 2-picoline.

Ligand: 2-Picoline								
Coord #	Compound	Solid Ang	Cone Ang	NI#				
C0010.#	OMAJUH	(Ω)	(θ)	INT				
		2.39	103.44	1				
	OMAJON	2.39	103.43	1A				
Fe, 6-Coord		2.33	102.10	1				
	QANNAU	2.37	102.96	2				
		2.36	102.66	3				
		2.34	102.37	4				
Co, 4-Coord	WUGTOH	2.40	103.67	2				
Ni 6-Coord		2.34	102.22	1				
NI, 0-C0010	NULIDOL	2.34	102.24	1A				
	Avg.	2.36	102.8					
	Std. Dev.	0.03	0.6					

Table S6. List of compounds in the CSD used to determine solid and cone angles of pyridine.

Ligand: Pyridine								
Coord. #	Compound	Solid Ang (Ω)	Cone Ang (θ)	N#				
		1.89	91.39	1				
	DAVINAO	1.89	91.36	2				
	HEVLAW	1.89	91.23	1				
		1.89	91.39	3				
	RAI IJUZ	1.89	91.36	4				
4-Coord.	MEGHUC	1.90	91.60	3				
	POMZOG	1.94	92.53	1				
	FOIVIZOG	1.95	92.85	2				
		1.90	91.43	1				
	QANNOT	1.89	91.40	2				
		1.90	91.43	1				
		1.90	91.43	1B				
	QEVCEA	1.90	91.53	1				
5-Coord.	RORKUE	1.92	92.03	5				
	SELSEI	1.89	91.36	7				
	Avg.	1.90	91.6					
	Std.Dev.	0.02	0.5					

Table S7. List of compounds in the CSD used to determine solid and cone angles of CN^tBu . Holkc02 is $L^{tBu,iPr2}Fe(SPh)(CN^tBu)$ (Figure 4a) reported in this paper. We used the ten complexes in the CSD with Fe-C-N and C-N-C angles closest to those in $L^{tBu,iPr2}Fe(SPh)(CN^tBu)$. The differences in angles from complexes in the database are shown; variations up to 12° did not affect the accuracy of the solid and cone angles (small standard deviation).

Coord. #	Compound	Fe-C-N	∆ Fe-C-N	C-N-C	∆ C-N-C	Solid Ang	Cone Ang	C#
		(°)	(°)	(°)	(°)	(Ω)	(θ)	•
	HOLKC02	165.46	0	173.58	0	1.66	85.30	C15
	WAHGIV	174.576	9.116	165.018	8.562	1.65	84.92	C21
4-coord.	W/ (101V	177.268	11.808	176.33	2.75	1.65	84.89	C26
		168.668	3.208	176.856	3.276	1.65	84.95	C27
	17100177	168.879	3.419	173.124	0.456	1.65	84.92	C21
		172.582	7.122	163.945	9.635	1.65	85.06	C1
		173.147	7.687	165.925	7.655	1.65	84.91	C2
	PUSYAD	176.203	10.743	173.422	0.158	1.65	84.89	C3
5 coord		175.944	10.484	168.234	5.346	1.65	84.94	C6
5-coord.		175.981	10.521	168.843	4.737	1.65	84.89	C5
-		177.266	11.806	164.159	9.421	1.65	84.98	C1
	SIMVEP	171.762	6.302	165.729	7.851	1.65	84.91	C6
		173.674	8.214	163.326	10.254	1.65	84.91	C11
6-coord.		173.852	8.392	176.222	2.642	1.65	84.93	C15
ENIXEE		174.763	9.303	177.233	3.653	1.65	84.98	C23
	EINIAEE	172.943	7.483	177.484	3.904	1.65	84.94	C31
		176.645	11.185	172.789	0.791	1.65	84.94	C36
		169.91	4.45	162.023	11.557	1.69	86.14	C36
		174.124	8.664	174.126	0.546	1.65	84.95	C84
	FAJLAE	166.334	0.874	166.585	6.995	1.69	86.00	C44
		168.263	2.803	166.328	7.252	1.68	85.81	C89
	GOTFIE	177.651	12.191	172.737	0.843	1.65	84.89	C3
		177.711	12.251	177.333	3.753	1.65	84.91	C1
		179.449	13.989	174.898	1.318	1.65	84.88	C10
		175.959	10.499	172.97	0.61	1.65	84.92	C15
		176.92	11.46	174.407	0.827	1.65	84.92	C20
		167.539	2.079	167.922	5.658	1.65	84.96	C27
	PARKUC	171.938	6.478	175.371	1.791	1.66	85.25	C32
	QATRAE	171.539	6.079	169.462	4.118	1.66	84.96	C17
		173.815	8.355	176.193	2.613	1.65	84.94	C23
	VUPFAIN	176.409	10.949	178.162	4.582	1.65	84.90	C28
	WAHBOW	172.343	6.883	173.252	0.328	1.65	84.93	C20
		170.714	5.254	170.544	3.036	1.65	85.04	C25
							23	

Ligand: CN^tBu

		171.616	6.156	166.735	6.845	1.65	85.08	C30
		174.971	9.511	167.214	6.366	1.65	84.89	C54
		174.399	8.939	174.135	0.555	1.65	84.89	C59
		177.04	11.58	167.737	5.843	1.65	84.85	C64
		177.343	11.883	167.803	5.777	1.65	84.95	C1
		175.084	9.624	173.46	0.12	1.65	84.98	C3
YELVOA	174.383	8.923	162.99	10.59	1.65	84.88	C5	
		178.516	13.056	164.124	9.456	1.65	84.92	C6
		178.49	13.03	171.886	1.694	1.65	84.89	C5
	HBLOK	177.257	11.797	176.064	2.484	1.65	85.00	C13
					Avg.	1.65	85.0	
					Std.			
					Dev.	0.01	0.3	

Figure S12. ¹H NMR spectrum of $L^{tBu,iPr2}$ Fe(SPh)(CN^tBu) in C₆D₆.

Figure S13. ¹H NMR spectrum of $L^{tBu,iPr2}$ Fe(SPh)(DMF) in C₆D₆.

Figure S14. ¹H NMR spectrum of $L^{tBu,iPr2}$ Fe(SPh)(MeIm) in C₆D₆.

