Supplementary data

Supplementary figure 1. A *Hyou1* transgene confers constitutively elevated cerebellar expression. Cerebellar sections from 1-month-old (A, B), 2-month-old (C, D) $Sil1^{-/-}$ and 1-month-old $Sil1^{-/-}$; Tg-*Hyou1* (E, F) mice were immunostained with antibodies to HYOU1 (A, C, E) and calbindin-D28 (Calb; B, D, F). Images of lobule II are shown. Camera exposure times are equal for images of the same channel. Scale bar=100 µm.

Supplementary figure 2. Cerebellar overexpression of HYOU1 in cerebella prevents ER stress caused by loss of SIL1 function. A-F. Activation of CHOP is suppressed by expression of *Hyou1* transgene in the *Sil1*^{-/-} cerebellum. Cerebellar sections from 2-month-old wild type (A, B), *Sil1*^{-/-} (C, D), and *Sil1*^{-/-}; Tg-*ORP150* (E, F) mice were incubated with antibodies against CHOP (A, C, E) and calbindin-D28 (B, D, F), respectively. Images of lobule II are shown. Camera exposure times are equal for images of the same channel. Scale bar: 100 µm. G-H. Overexpression of HYOU1 suppresses formation of protein inclusions caused by *Sil1* deficiency. Cerebellar sections from 3-month-old *Sil1*^{-/-} (G) and *Sil1*^{-/-}; Tg-*Hyou1* (H) mice were immunostained with antibodies against ubiquitin (Ub; red) and calbindin-D28 (Calb; green). Merged images are shown. Note the ubiquitin-positive protein inclusions (G; arrowheads) in *Sil1*^{-/-} Purkinje cells. Inclusions were not observed in *Sil1*^{-/-}; Tg-*Hyou1* neurons (H). Scale bar: 50 µm.

Supplementary figure 3. Reduced *Hyou1* expression aggravates ER stress caused by loss of SIL1 function. A-L. CHOP upregulation in lobule II or lobule X of 2-month-old wild type (+/+; A-D), 2-month-old $Sil1^{-/-}$ (E-H), and 1-month-old (I-L) $Sil1^{-/-}$; $Hyou1^{+/-}$ cerebella. Sections were immunostained with antibodies against BiP and calbindin-D28 (Calb). Camera exposure times are equal for images of the same channel. Scale bar: 100 µm. M-N. Reduced *Hyou1* expression accelerates formation of protein inclusions caused by *Sil1* deficiency. Cerebellar sections from 2-month-old $Sil1^{-/-}$ (M) and $Sil1^{-/-}$; $Hyou1^{+/-}$ (N) mice were immunostained with antibodies to ubiquitin (Ub; green) and calbindin-D28 (Calb; red). Merged images are shown. Note the presence of ubiquitin-positive protein inclusions (N; arrowheads) in $Sil1^{-/-}$; $Hyou1^{+/-}$ Purkinje cells at this age. Inclusions were not observed in Purkinje cells of age-matched $Sil1^{-/-}$ mice (M). Scale bar: 50 µm.

Supplementary figure 4. Depletion of DNAJC3 activity does not suppress CHOP upregulation caused by *Sill* deficiency. A-F. Expression of CHOP in cerebellar Purkinje cells of 3-month-old wild type (A, B), $Sil1^{-/-}$ (C, D) and $Sil1^{-/-}$; $Dnajc3^{-/-}$ (E, F) mice. Sections were stained with antibodies against CHOP (A, C, E) and calbindin-D28 (Calb; B, D, F). Images of lobule II are shown. Scale bar: 100 µm. G-H. Loss of DNAJC3 function suppresses formation of protein inclusions caused by *Sil1*-deficiency. Cerebellar sections from 3-month-old $Sil1^{-/-}$ (G) and $Sil1^{-/-}$; $Dnajc3^{-/-}$ (H) mice were immunostained with antibodies to ubiquitin (Ub; red) and calbindin-D28 (Calb; green). Merged images are shown. Note the presence of ubiquitin-positive protein inclusions in (G; arrowheads) $Sil1^{-/-}$ Purkinje cells. Fewer inclusions (H; arrowhead) are observed in $Sil1^{-/-}$; $Dnajc3^{-/-}$ Purkinje cells. Scale bar: 50 µm.

Supplementary figure 5. Deletion of *Chop* does not alter Purkinje cell degeneration caused by ER stress. Cerebella from 4-month-old *Sil1*^{-/-} (A) and 4- or 8-month old *Sil1*^{-/-} *Dnajc3*^{-/-} (C, D) mice were immunostained with antibodies to calbindin D-28. Scale bar: 100 μ m.