Palladium-Catalyzed Enantioselective Addition of Two Distinct Nucleophiles across Alkenes Capable of Quinone Methide Formation

Supporting Information

Table of Contents

General information	Page 2
Substrate synthesis	Pages 2-7
Procedure for optimization	Pages 7-10
Substrate scope	Pages 10-16
Inverse electron demand Diels-Alder reaction	Pages 16-17
Determination of enantiomeric ratio	Pages 18-27
Dearomatization of phenol	Page 28
Mosher ester analysis	Page 29
Derivatization of Diels Alder product via Jones oxidation	Page 30
Synthesis of $Pd((S)^{-i}PrQuinox)Cl_2$ and $Cu((S)^{-i}PrQuinox)Cl_2$	Page 31
X-ray data	Pages 32-62
References	Page 63
NMR Spectra	Pages 64-119

General Information: Unless otherwise noted, all reactions were performed under a nitrogen atmosphere with stirring. Toluene, dichloromethane, dichloroethane and THF were dried before use by passing through a column of activated alumina. Methanol was distilled from magnesium methoxide. Triethylamine was distilled from CaH₂. 3Å molecular sieves were powdered and activated by flame heating under vacuum (ca. 3 n-Butanol, n-Butenol and etheleneglycol monomethylether were purified by min). distillation from MgSO₄. All other reagents were purchased from commercial sources and used without further purification. Yields were calculated for material judged homogeneous by thin-layer chromatography and NMR. Thin-layer chromatography was performed with EMD silica gel 60 F254 plates eluting with the solvents indicated, visualized by a 254 nm UV lamp, or stained either with potassium permanganate, panisaldehyde, phosphomolybdic acid, or ninhydrin. Flash column chromatography was performed with EcoChrom MP Silitech 32-63D 60Å silica gel, or with Brockmann I activated basic alumina (pH 9-10), slurry packed with solvents indicated in glass columns. Nuclear magnetic resonance spectra were acquired at 300, 400, or 500 MHz for ¹H, and 75, 100, or 125 MHz for ¹³C. Chemical shifts for proton nuclear magnetic resonance (¹H NMR) spectra are reported in parts per million downfield relative to the line of CHCl₃ singlet at 7.26 ppm. Chemical shifts for carbon nuclear magnetic resonance (¹³C NMR) spectra are reported in parts per million downfield relative to the center-line of the CDCl₃ triplet at 77.23 ppm. The abbreviations s, d, t, dd, td, ddd, and m stand for the resonance multiplicities singlet, doublet, triplet, doublet of doublets, triplet of doublets, doublet of doublets of doublets, and multiplet, respectively. Optical rotations were obtained (Na D line) using a Perkin Elmer Model 343 Polarimeter fitted with a micro cell with a 1 dm path length; concentrations are reported in g/100 mL. IR spectra were recorded using a Nicolate FTIR instrument. GC (gas chromatography) analysis was performed using a Hewlett Packard HP 6890 Series GC system fitted with a HP-Chiral permethylated β-cyclodextrin column. HPLC (high pressure liquid chromatography) analysis was performed using a Hewlett Packard Series 1100 instrument fitted with a chiral stationary phase (as indicated). SFC (supercritical fluid chromatography) analysis was performed at 40 °C, using a Thar instrument fitted with a chiral stationary phase (as indicated). HRMS (high resolution mass spectrometry) analysis was performed using Waters LCP Premier XE. Glassware for all reactions was oven-dried at 110 °C and cooled in a dry atmosphere prior to use.

Substrate Synthesis:

Synthesis of 2 and S3:

Preparation of (4-ethoxy-4-oxobutyl)triphenylphosphonium bromide (S1):

The ¹H NMR spectrum matched with previously reported ¹H NMR.¹

Preparation of ethyl 5-(2-hydroxyphenyl)pent-4-enoate (S2):

To an oven-dried 500 mL round bottom flask equipped with a stir bar was added 23.4 g of **S1** (51.0 mmol, 2.30 equiv.) and 200 mL toluene. To this was added a solution of 5.80 g KO'Bu (51.2 mmol, 2.33

equiv.) in 40 mL of THF dropwise *via* cannulation. The reaction mixture slowly turned a deep red color over 4 h. The mixture was cooled to -78 °C and 2.70 g of salicylaldehyde (22.2 mmol, 1.00 equiv.), dissolved in 20 mL of toluene was added dropwise via cannulation. The mixture was allowed to slowly warm to ambient temperature and stirred 48 hours then quenched with 50 mL of saturated NH₄Cl solution. The mixture was diluted with 100 mL of diethyl ether and washed with 100 mL (2 x 50 mL) of water and 60 mL of brine. The organic layer was dried over MgSO₄, filtered, and the solvent The crude mixture was purified by flash silica-gel column removed in vacuo. chromatography with 10%-20% EtOAc/Hexanes as eluent to give 4.15 g of S2 (85% vield, average of two reactions). Isomeric ratio (E/Z): 10:1, Major isomer: $R_f = 0.52 \text{ w/}$ 33% EtOAc/Hexane, colorless oil, ¹H-NMR (300 MHz, CDCl₃) δ = 7.02-7.28 (m, 2 H), 6.85-6.95 (m, 2 H), 6.38-6.48 (d, J = 11.2 Hz, 2 H), 5.89 (s, 1 H), 5.74-5.86 (m, 1 H), 4.08-4.16 (m, 2 H), 2.37-2.48 (m, 4 H), 1.18-1.29 (m, 3 H). ¹³C-NMR {¹H} (75 MHz, $CDCl_3$) $\delta = 173.3, 153.1, 134.4, 129.9, 128.8, 125.1, 123.8, 120.5, 116.1, 60.9, 33.9,$ 24.3, 14.3. IR 3392, 2981, 1705, 1450, 1269, 1195, 1154, 754 cm⁻¹. HRMS C₁₃H₁₆O₃ $(M+Na)^+$ calcd. 243.0997, obsvd. 243.0996.

Preparation of 2-(5-hydroxy-5-methylhex-1-enyl)phenol (2):

5.34 (s, 1 H), 2.28-2.19 (m, 2 H), 1.67-1.57 (m, 2 H), 1.19 (s, 6 H). ¹³C-NMR {¹H} (100 MHz, CDCl₃): δ 152.9, 137.0, 129.8, 128.8, 123.9, 123.4, 120.4, 115.5, 71.3, 43.3, 29.4, 24.1. IR 3410, 3013, 2971, 1604, 1448, 1377, 1261, 1210, 1147, 1131, 904, 755 cm⁻¹. HRMS C₁₃H₁₈O₂ (M+Na)⁺ calcd. 229.1204, obsvd. 229.1201.

Preparation of (*E*)-2-(5-hydroxypent-1-enyl)phenol (S3):

To a 100 mL oven dried round bottom flask equipped with a stir bar OH was added 1.6 g S2 (7.27 mmol, 1 equiv.) followed by 40 mL THF ЮΗ under a nitrogen atmosphere. The reaction mixture was cooled to 0 °C. To this was added 544 mg LiAlH₄ portion wise (14.5 mmol, 2 equiv.). The reaction mixture was allowed to slowly warm to ambient temperature and stirred overnight. The reaction mixture was cooled to 0 °C, and quenched by the sequential addition of 544 µL of water, 544 µL 15% NaOH, and 1630 µL water. The reaction mixture was warmed to room temperature, MgSO₄ was added, and the mixture was stirred for 15 min and then filtered. The filtrate was concentrated *in vacuo* and the crude mixture was purified by silica gel column chromatography with 1:3 EtOAc:Hexanes to give 777 mg of **S3** (60% yield, average of two reactions). Isomeric ratio (E/Z): 10:1, Major isomer: $R_f = 0.20 \text{ w}/33\%$ EtOAc/Hexanes, white solid. MP = 45-47 °C. ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta = 7.06-7.21 \text{ (m, 2 H)}, 6.83-6.94 \text{ (m, 2 H)}, 6.38-6.46 \text{ (d, } J = 11.2 \text{ Hz},$ 1 H), 5.82-5.95 (m, 1 H), 3.59-3.68 (t, J = 6.4Hz, 2 H), 2.17-2.25 (m, 2 H), 1.62-1.74 (m, 2 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) δ = 135.9, 130.0, 128.8, 124.1, 120.4, 115.6, 62.7, 32.1, 25.5. IR 3404, 2938, 2881, 1604, 1448, 1358, 1269, 1225, 1036, 841 cm⁻¹. HRMS $C_{11}H_{14}O_2$ (M+Na)⁺ calcd. 201.0886, obsvd. 201.0886.

Synthesis of S8:

S4, 2 **S5**, 3 and Pd(PPh₃)₂Cl₂⁴ were prepared according to literature procedure.

Synthesis of 2-(6-acetoxyhex-1-ynyl)phenyl acetate (S6):

OAC To an oven-dried 100 mL Schlenk flask was added 2.096 g of S4 (8.000 mmol, 1 equiv.) and 40 mL of triethylamine. The solution was degassed by 2 cycles of freeze-pump-thaw. To a second ovendried Schlenk flask was added 1.256 g of S5 (8.96 mmol, 1.120 equiv.), 20 mL of triethylamine and 40 mL of THF. The solution was degassed by 2 cycles of freeze-pump-thaw. To an oven-dried 250 mL round bottom flask equipped with stir bar was added 169 mg of Pd(PPh_3)_2Cl_2 (0.240 mmol, 0.0300 equiv.) and 91.4 mg of CuI (0.480 mmol, 0.0600 equiv.). The solutions of S4 and S5 were sequentially cannulated into the flask containing the catalysts. The reaction mixture was then stirred at rt overnight. The reaction mixture was diluted with 50 mL of diethyl ether and then 50 mL of 1 M HCl was added and the mixture was allowed to stir for 30 min. The organic layer was washed with 50 mL of 1 M HCl (2 x 25 mL) and 20 mL of brine. The organic extract was dried over MgSO₄, filtered, and the solvent was removed *in vacuo*. The crude mixture was purified by flash silica-gel column chromatography with 10% to 20% Hexane/EtOAc as eluent to give 2.0265 g of **S6** (92.3% yield, average of two reactions). $R_f = 0.20 \text{ w/ } 20\%$ EtOAc/Hexane, colorless oil, ¹H-NMR (300 MHz, CDCl₃) $\delta = 7.44$ (dd, J = 7.6 Hz, J = 1.7 Hz, 1 H), 7.30 (ddd, J = 8.0 Hz, J = 7.6 Hz, J = 1.7 Hz, 1 H), 7.17 (ddd, J = 7.6 Hz, J = 7.6 Hz, J = 1.4 Hz, 1 H), 7.05 (dd, J = 8.1 Hz, J = 1.4 Hz, 1 H), 4.11 (t, J = 6.5 Hz, 2 H), 2.47 (t, J = 6.9 Hz, 2 H), 2.33 (s, 3 H), 2.06 (s, 3 H), 1.84-1.76 (m, 2 H), 1.71-1.63 (m, 2 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) $\delta = 171.4$, 169.1, 151.7, 133.3, 129.0, 126.1, 122.3, 118.0, 94.7, 76.2, 64.1, 28.0, 25.4, 21.2, 21.1, 19.4. IR: 1761, 1733, 1487, 1366, 1237, 1207, 1180, 1037, 907, 755 cm⁻¹. HRMS C₁₆H₁₈O₄ (M+Na)⁺ calcd. 297.1103, obsvd. 297.1097.

Synthesis of (*E*)-2-(6-acetoxyhex-1-enyl)phenyl acetate (S7):

To an oven dried 50 mL Schlenk flask equipped with a stir bar was added 261 mg of 5% Pd/BaSO₄, 150 μ L of quinoline (1.27 mmol, 0.42 equiv.) and 5 mL of MeOH. A three-way joint fitted with a balloon of H₂ was attached and the flask. To a separate, oven-dried

50 mL round bottom flask was added 823 mg of S6 (3.00 mmol) and 10 mL MeOH. The solution of S6 is transferred via cannula to the Schlenk flask. An additional 5 mL of MeOH was used for rinsing. The Schlenk flask was evacuated and refilled with H₂ three times. Upon completion as determined by TLC (four days), the reaction mixture was filtered through plug of celite[®] using 50 mL of MeOH. The filtrate was concentrated in vacuo and dissolved in 100 mL of dichloromethane, washed with 100 mL 0.2 M HCl (2 x 50 mL) and 50 mL brine, dried over Na_2SO_4 , filtered, and the solvent was removed in *vacuo*. The crude mixture was purified by flash silica-gel column chromatography with 1:4 EtOAc:Hexanes as eluent to give 576 mg of S6 as a 10:1 mixture of alkene isomers (75% yield, average of 2 reactions). $R_f = 0.60 \text{ w}/2:3 \text{ EtOAc:Hexanes, colorless oil.}$ Maior isomer: ¹H-NMR (300 MHz, CDCl₃) δ = 7.30-7.15 (m, 3 H), 7.08-6.98 (m, 1 H), 6.30 (d, J = 11.5 Hz, 1H), 5.72 (ddd, J = 14.7 Hz, J = 11.5 Hz, J = 7.3 Hz, 1 H), 4.03 (t, J) = 6.6 Hz, 2 H), 2.27 (s, 3 H), 2.21 (ddd, J = 14.7 Hz, J = 7.4 Hz, J = 1.7 Hz, 2 H), 2.06 (s, 3 H), 1.68-1.40 (m, 4 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) δ = 171.4, 169.4, 148.6, 134.4, 130.6, 130.5, 128.2, 125.9, 123.9, 122.4, 64.5, 28.4, 28.3, 26.2, 21.2, 21.1. IR: 1762, 1733, 1483, 1448, 1367, 1237, 1197, 1170, 1037, 1010, 912, 760 cm⁻¹. HRMS $C_{12}H_{16}O_2$ (M+Na)⁺ calcd. 299.1254, obsvd. 299.1257.

Synthesis of (*E*)-2-(6-hydroxyhex-1-enyl)phenol (S8):

To an oven-dried 50 mL round bottom flask equipped with stir bar was added 300 mg of **S7** (1.09 mmol, 1 equiv.), 300 mg of K_2CO_3 (2.18 mmol, 2.00 equiv.) and 5 mL of MeOH. The reaction mixture was allowed to stir for 10 h. Upon completion by TLC analysis, the

reaction mixture was diluted with 20 mL of dichloromethane and washed with 20 mL of 1 M HCl, 20 mL of water, and 20 mL of brine, dried over Na₂SO₄, filtered, and the

solvent was removed *in vacuo*. The crude mixture was purified by flash silica-gel column chromatography with 2:3 EtOAc:Hexanes as eluent to give 188 mg of **S8** as a 10:1 mixture of alkene isomers (83% yield, average of two reactions). $R_f = 0.45 \text{ w/ }1:1$ EtOAc:Hexanes, light yellow oil. Major isomer:, ¹H-NMR (300 MHz, CDCl₃) $\delta = 7.18$ -7.08 (m, 2 H), 6.93-6.84 (m, 2 H), 6.41 (d, J = 11.3 Hz, 1H), 5.86 (dddd, J = 11.3 Hz, J = 7.3 Hz, J = 7.3 Hz, J = 1.1 Hz, 1 H), 5.71 (bs, 1 H), 3.59 (t, J = 6.3 Hz, 2 H), 2.15 (ddd, J = 14.6 Hz, J = 7.3 Hz, J = 1.6 Hz, 2 H), 1.85 (bs, 1 H), 1.64-1.36 (m, 4 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) $\delta = 153.0$, 136.1, 129.9, 128.7, 124.1, 123.8, 120.3, 115.4, 62.8, 32.2, 28.4, 25.7. IR 3303, 2934, 2859, 1604, 1451, 1228, 1037, 753 cm⁻¹. HRMS C₁₂H₁₆O₂ (M+Na)⁺ calcd. 215.1043, obsvd. 215.1058.

Synthesis of S11:

S4, 2 **S9**, 5 and Pd(PPh₃)₂Cl₂⁴ were prepared according to literature procedure.

Preparation of 2-(3-(2-hydroxyethoxy)prop-1-ynyl)phenyl acetate (S10):

OAc OAC

OH

To an oven-dried 100 mL round bottom flask was added 2.90 g of **S4** (11.1 mmol, 1 equiv.), 10 mL of THF, and 10 mL of triethylamine. The solution was degassed by 2 cycles of freeze-pump-thaw. To a second dried round bottom flask was added 1.24 g of **S9** (12.4 mmol,

1.12 equiv.), 10 mL of THF, and 10 mL of triethylamine. The solution was degassed by 2 cycles of freeze-pump-thaw. To an oven-dried round bottom flask equipped with stir bar was added 233 mg of Pd(PPh₃)₂Cl₂ (0.332 mmol, 0.0300 equiv.) and 127 mg of CuI (0.664 mmol, 0.0600 equiv.). Solutions of S4 and S9 were sequentially cannulated into the flask containing the catalysts. The reaction mixture was stirred at rt for 1 h. The reaction mixture was diluted with 50 mL of dichloromethane and washed with 100 mL (2 x 50 mL) of 1 M HCl, 50 mL of saturated NH₄Cl, and 50 mL of brine. The organic phase was dried over Na₂SO₄, filtered, and the solvent was removed *in vacuo*. The crude mixture was purified by flash silica-gel column chromatography with 1:2EtOAc: Hexanes to 1:1 EtOAc: Hexanes as eluent to give 1.848 g of **S10** (71.3% yield, average of two reactions). $R_f = 0.20 \text{ w}/1.1 \text{ EtOAc:Hexanes, colorless oil.}^{1}\text{H-NMR}$ (300) MHz, CDCl₃) δ = 7.49 (dd, J = 7.6 Hz, J = 1.7 Hz, 1 H), 7.36 (ddd, J = 7.6 Hz, J = 7.6 Hz, J = 1.7 Hz, 1 H), 7.20 (ddd, J = 7.6 Hz, J = 7.6 Hz, J = 1.2 Hz, 1 H), 7.09 (dd, J = 8.1Hz, J = 1.2 Hz, 1 H), 4.43 (s, 2 H), 3.78 (bdd, J = 9.1 Hz, J = 5.2 Hz, 2 H), 3.70 (m, 2 H), 2.34 (s, 3 H), 2.07 (bs, 1 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) δ = 169.2, 151.8, 133.4, 130.0, 126.1, 122.5, 116.8, 90.0, 81.7, 71.3, 62.0, 59.3, 21.1. IR 3426, 2935, 1760, 1486, 1446, 1368, 1180, 1102, 1010, 908, 756, 733 cm⁻¹. HRMS $C_{13}H_{14}O_4$ (M+Na)⁺ calcd. 257.0784, obsvd. 257.0789.

Preparation of 2-(3-(2-hydroxyethoxy)prop-1-enyl)phenol (S11):

OH OH OH OH OH To an oven-dried 50 mL round bottom flask was added 300 mg of **S10** (1.28 mmol, 1 equiv.) and 5 mL THF. The mixture is cooled to 0 °C in an ice bath. In a separate oven-dried round bottom flask 1.6 mL of Red-Al solution (65% by weight in toluene, 5.3 mmol, 4.0

equiv.) was diluted with 5 mL of THF. The solution of Red-Al was transferred dropwise *via* cannula to the reaction mixture. The reaction mixture was stirred at 0 °C for 1 h, and then warmed to rt. To this was slowly added 20 mL of 0.5 M HCl (gas evolution observed) followed by 20 mL of CH₂Cl₂. The phases were separated, and the aqueous phase was extracted with 80 mL of dichloromethane (4 x 20 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and the solvent was removed in vacuo. The crude mixture was purified by flash silica-gel column chromatography with 2% MeOH/CH₂Cl₂ as eluent to give 201 mg of **S11** (1:1 mixture of alkene isomers) (81% yield, average of two reactions). $R_f = 0.40 \text{ w}/10\% \text{ MeOH/CH}_2\text{Cl}_2$, colorless oil. ¹H-NMR (300 MHz, CDCl₃) δ = 7.37 (dd, J = 7.6 Hz, J = 1.7 Hz, 1 H), 7.19 (dddd, J = 7.7 Hz, J = 7.4 Hz, J = 1.6 Hz, J = 0.7 Hz, 1 H), 7.13 (ddd, J = 8.0 Hz, J = 7.4 Hz, J = 1.7Hz, 1 H), 7.05 (ddd, J = 8.0 Hz, J = 1.9 Hz, J = 0.7 Hz, 1 H), 6.93-6.85 (m, 4 H), 6.78 (dd, J = 8.0 Hz, J = 1.0 Hz, 1 H), 6.65 (d, J = 11.4 Hz, 1 H), 6.30 (dt, J = 16.1 Hz, J = 6.0Hz, 1 H), 6.07 (dt, J = 11.4 Hz, J = 7.1 Hz, 1 H), 5.99 (bs, 1 H), 5.61 (bs, 1 H), 4.22 (dd, J = 6.0 Hz, J = 1.4 Hz, 2 H), 4.07 (dd, J = 7.1 Hz, J = 1.1 Hz, 2 H), 3.82-3.71 (m, 4 H), 3.64 (ddd, J = 4.3 Hz, J = 4.3 Hz, J = 1.5 Hz, 2 H), 3.57 (ddd, J = 3.4 Hz, J = 2.1 Hz,1.5 Hz, 2 H), 2.38-2.26 (bm, 2 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) δ = 153.4, 153.1, 130.2, 130.0, 129.4, 129.0, 128.7, 127.8, 127.7, 127.1, 124.0, 123.0, 120.9, 120.6, 116.2, 116.2, 72.2, 72.1, 71.5, 67.7, 62.1, 61.9, IR 3301, 2932, 2867, 1656, 1603, 1455, 1357, 1251, 1093, 1054, 976, 753 cm⁻¹. HRMS $C_{11}H_{14}O_3$ (M+Na)⁺ calcd. 217.0835, obsvd. 217.0845.

Procedure for Optimization:

For optimization, four reactions were run simultaneously in separate 5 mL side-arm flasks attached to a four-neck cow.

(S)-^{*i*}PrQuinox was prepared according to literature procedure.⁶

A standard solution was prepared by the addition of 412.6 mg of the substrate 2 and 63.3 mg of the internal standard 2-methoxynaphthalene to a 2 mL volumetric flask, followed by the addition of MeOH. The flask was briefly sonicated to dissolve 2 and stirred to give a solution with [2] = 1.00 M and [2-methoxynaphthalene] = 0.20 M.

Reaction samples were passed through a short silica plug eluting with 2 mL of EtOAc and analyzed by GC and referenced against a time zero sample containing the standard solution of **2** and 2-methoxynaphthalene. GC yields were calculated based on the ratio of product to internal standard corrected for the response factor. Enantiomeric and diastereomeric ratios were determined using GC with a column equipped with a chiral stationary phase.

Table 1. Optimization of reaction conditions.

	ı J	\ 2	Х У ОН <u>х</u> +	mol% P Y mol <u>-Y+2 mc</u> 40 mol 50 eq. M	d(MeCN) <u>;</u> % CuCl ₂ <u>I% ⁽PrQu</u> % KHCO; leOH, O ₂ ,	2Cl2 inox→ ³ rt	OH O	Me
entry	Х	Y	solvent	time	%conv ^a	%yield ^a	er ^b	dr ^b
1 ^c	10		MeOH	15 h	100	2	88:12	2.4:1
2	10		MeOH	15 h	74	8	92:8	2.7:1
3	10	20	MeOH	10 min	100	95	92:8	9.4:1
4	4	8	MeOH	30 min	100	87	92:8	9.6:1
5	4	8	THF	2 h	79	54	98:2	7.8:1
6	4	8	toluene	2 h	96	68	97:3	5.1:1
7	4	8	1:1 THF:toluene	95h	100	67	97:3	6.7:1
8 ^d	4	8	1:1 THF:toluene	e 2.h	99	80	98:2	8.9:1
Reactions run on 0.1 mmol scale with [2]=0.1 M. ^a Determined by GC analysis using an internal standard. ^b Determined by GC with a column equipped with a chiral stationary phase. ^o With 50 mg 3 Å MS and without KHCO ₃ . ^d CuCl was used in place of CuCl ₂ PrQuinox								

Entry 1: To a 5 mL side-arm round bottom flask equipped with a stir bar was added 2.6 mg Pd(MeCN)₂Cl₂ (0.010 mmol, 0.10 equiv.), 2.9 mg (*S*)-^{*i*}PrQuinox (0.012 mmol, 0.12 equiv), 50 mg of freshly activated 3Å molecular sieves, and 900 μ L of MeOH, and the flask was attached to a four-neck cow. A three-way joint fitted with a balloon of O₂ was attached and the apparatus was evacuated (using house vacuum) and refilled with oxygen three times. The mixture was stirred vigorously for 20 minutes at room temperature under O₂. A 100 μ L portion of the standard solution of **2** (0.100 mmol, 1 equiv.) and 2-methoxy naphthalene (0.020 mmol, 0.20 equiv.) was added dropwise to the reaction mixture. Aliquots (ca. 50 μ L) of the reaction were taken periodically via syringe.

Entry 2: To a 5 mL side-arm round bottom flask equipped with a stir bar was added 2.6 mg Pd(MeCN)₂Cl₂ (0.010 mmol, 0.10 equiv.), 2.9 mg (*S*)-^{*i*}PrQuinox (0.012 mmol, 0.12 equiv), 4.0 mg of KHCO₃ (0.040 mmol, 0.40 equiv.), and 900 μ L of MeOH, and the flask was attached to a four-neck cow. A three-way joint fitted with a balloon of O₂ was attached and the apparatus was evacuated (using house vacuum) and refilled with oxygen three times. The mixture was stirred vigorously for 20 minutes at room temperature under O₂. A 100 μ L portion of the standard solution of **2** (0.100 mmol, 1 equiv.) and 2-methoxy naphthalene (0.020 mmol, 0.20 equiv.) was added dropwise to the reaction mixture. Aliquots (ca. 50 μ L) of the reaction were taken periodically via syringe.

Entry 3: To a 5 mL side-arm round bottom flask equipped with a stir bar was added 2.6 mg Pd(MeCN)₂Cl₂ (0.010 mmol, 0.10 equiv.), 2.7 mg of CuCl₂ (0.020 mmol, 0.20 equiv.), 7.7 mg (*S*)-^{*i*}PrQuinox (0.032 mmol, 0.32 equiv), 4.0 mg of KHCO₃ (0.040 mmol, 0.40 equiv.), and 900 μ L of MeOH, and the flask was attached to a four-neck cow. A three-way joint fitted with a balloon of O₂ was attached and the apparatus was evacuated (using house vacuum) and refilled with oxygen three times. The mixture was stirred vigorously for 20 minutes at room temperature under O₂. A 100 μ L portion of the standard solution of **2** (0.100 mmol, 1 equiv.) and 2-methoxy naphthalene (0.020 mmol, 0.20 equiv.) was added dropwise to the reaction mixture. Aliquots (ca. 50 μ L) of the reaction were taken periodically via syringe.

Entry 4: To a 5 mL side-arm round bottom flask equipped with a stir bar was added 1.0 mg Pd(MeCN)₂Cl₂ (0.0040 mmol, 0.040 equiv.), 1.1 mg of CuCl₂ (0.0080 mmol, 0.080 equiv.), 3.4 mg (S)-^{*i*}PrQuinox ligand (0.014 mmol, 0.14 equiv), 4.0 mg of KHCO₃ (0.040 mmol, 0.40 equiv.), and 900 µL of MeOH, and the flask was attached to a four-neck cow. A three-way joint fitted with a balloon of O₂ was attached and the apparatus was evacuated (using house vacuum) and refilled with oxygen three times. The mixture was stirred vigorously for 20 minutes at room temperature under O₂. A 100 µL portion of the standard solution of **2** (0.100 mmol, 1 equiv.) and 2-methoxy naphthalene (0.020 mmol, 0.20 equiv.) was added dropwise to the reaction mixture. Aliquots (ca. 50 µL) of the reaction were taken periodically via syringe.

Entry 5: To a 5 mL side-arm round bottom flask equipped with a stir bar was added 1.0 mg Pd(MeCN)₂Cl₂ (0.0040 mmol, 0.040 equiv.), 1.1 mg of CuCl₂ (0.0080 mmol, 0.080 equiv.), 3.4 mg (*S*)-^{*i*}PrQuinox (0.014 mmol, 0.14 eqiuv), 4.0 mg of KHCO₃ (0.040 mmol, 0.40 equiv.), 100 μ L of MeOH, and 800 μ L of THF, and the flask was attached to a fourneck cow. A three-way joint fitted with a balloon of O₂ was attached and the apparatus was evacuated (using house vacuum) and refilled with oxygen three times. The mixture was stirred vigorously for 20 minutes at room temperature under O₂. A 100 μ L portion of the standard solution of **2** (0.100 mmol, 1 equiv.) and 2-methoxy naphthalene (0.020 mmol, 0.20 equiv.) was added dropwise to the reaction mixture. Aliquots (ca. 50 μ L) of the reaction were taken periodically via syringe.

Entry 6: To a 5 mL side-arm round bottom flask equipped with a stir bar was added 1.0 mg Pd(MeCN)₂Cl₂ (0.0040 mmol, 0.040 equiv.), 1.1 mg of CuCl₂ (0.0080 mmol, 0.080 equiv.), 3.4 mg (S)-^{*i*}PrQuinox (0.014 mmol, 0.14 eqiuv), 4.0 mg of KHCO₃ (0.040 mmol, 0.40 equiv.), 100 µL of MeOH, and 800 µL of toluene, and the flask was attached to a four-neck cow. A three-way joint fitted with a balloon of O₂ was attached and the apparatus was evacuated (using house vacuum) and refilled with oxygen three times. The mixture was stirred vigorously for 20 minutes at room temperature under O₂. A 100 µL portion of the standard solution of **2** (0.100 mmol, 1 equiv.) and 2-methoxy naphthalene (0.020 mmol, 0.20 equiv.) was added dropwise to the reaction mixture. Aliquots (ca. 50 µL) of the reaction were taken periodically via syringe.

Entry 7: To a 5 mL side-arm round bottom flask equipped with a stir bar was added 1.0 mg Pd(MeCN)₂Cl₂ (0.0040 mmol, 0.040 equiv.), 1.1 mg of CuCl₂ (0.0080 mmol, 0.080 equiv.), 3.4 mg (S)-^{*i*}PrQuinox (0.014 mmol, 0.14 eqiuv), 4.0 mg of KHCO₃ (0.040 mmol, 0.40 equiv.), 100 µL of MeOH, 400 µL of toluene, and 400 µL of THF, and the flask was attached to a four-neck cow. A three-way joint fitted with a balloon of O₂ was attached and the apparatus was evacuated (using house vacuum) and refilled with oxygen three times. The mixture was stirred vigorously for 20 minutes at room temperature under O₂. A 100 µL portion of the standard solution of **2** (0.100 mmol, 1 equiv.) and 2-methoxy naphthalene (0.020 mmol, 0.20 equiv.) was added dropwise to the reaction mixture. Aliquots (ca. 50 µL) of the reaction were taken periodically via syringe.

Entry 8: To a 5 mL side-arm round bottom flask equipped with a stir bar was added 1.0 mg Pd(MeCN)₂Cl₂ (0.0040 mmol, 0.040 equiv.), 0.8 mg of CuCl (0.0080 mmol, 0.080

equiv.), 3.4 mg (*S*)-^{*i*}PrQuinox (0.014 mmol, 0.14 equiv), 4.0 mg of KHCO₃ (0.040 mmol, 0.40 equiv.), 100 μ L of MeOH, 400 μ L of toluene, and 400 μ L of THF, and the flask was attached to a four-neck cow. A three-way joint fitted with a balloon of O₂ was attached and the apparatus was evacuated (using house vacuum) and refilled with oxygen three times. The mixture was stirred vigorously for 20 minutes at room temperature under O₂. A 100 μ L portion of the standard solution of **2** (0.100 mmol, 1 equiv.) and 2-methoxy naphthalene (0.020 mmol, 0.20 equiv.) was added dropwise to the reaction mixture. Aliquots (ca. 50 μ L) of the reaction were taken periodically via syringe.

Substrate Scope:

2-((*R*)-((*R*)-5,5-dimethyltetrahydrofuran-2-yl)(methoxy)methyl)phenol (3a):

To a 100 mL Schlenk flask equipped with a stir bar was added 5.2 mg Pd(MeCN)₂Cl₂ (0.020 mmol, 0.040 equiv.), 4.0 mg of CuCl (0.040 mmol, 0.080 equiv.), 16.8 mg of (S)-ⁱPrQuinox (0.700 mmol, 0.140 equiv.), 20.0 mg of KHCO₃ (0.200 mmol, 0.400 equiv.), 1 mL of MeOH (25 mmol, 50 equiv.), 2 mL of THF, and 2 mL toluene. A three-way joint fitted with a balloon of O₂ was attached and flask was evacuated and refilled with O₂ three times. The mixture was stirred for 20 minutes at room temperature under an atmosphere of O₂. To the reaction mixture, 103.1 mg of 2 (0.5000 mmol, 1 equiv.) was added. The reaction mixture was stirred for 3 h and diluted with 10 mL of EtOAc. The reaction mixture was then washed with 10 mL 1 M NH₄Cl, 10 mL brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude mixture was purified by flash silica-gel column chromatography with 2% to 10% EtOAc/Hexanes as eluent to give 85.7 mg of product (72% yield, average of two reactions). Diastereomeric ratio: 10:1. $R_f = 0.70 \text{ w}/33\%$ EtOAc/Hexane, white solid. Melting point = 81-84 °C. $[\alpha]^{20}_{D} = -31.5^{\circ}$ (c = 3.53, CHCl₃). Major diastereomer: ¹H-NMR (400 MHz, CDCl₃): δ 8.12 (s, 1 H), 7.20 (ddd, J = 8.9, J = 7.2, J = 1.6, 1 H), 7.09 (dd, J = 7.6 Hz, J = 1.8 Hz, 1 H), 6.91-6.82 (m, 2 H), 4.42-4.32 (m, 2 H), 3.36 (s, 3 H),1.83 (ddd, J = 14.4 Hz, J = 7.0 Hz, J = 1.4 Hz, 2 H), 1.72-1.49 (m, 2 H), 1.24 (s, 3 H), 1.22 (s, 3 H). ¹³C-NMR {¹H} (100 MHz, CDCl₃): δ 155.8, 129.5, 129.3, 123.5, 119.9, 117.7, 85.5, 82.8, 81.1, 57.9, 38.3, 28.3, 28.2, 27.9, 27.7, IR 3285, 2869, 2930, 1487, 1456, 1367, 1236, 1102, 1056, 754 cm⁻¹. HRMS $C_{14}H_{20}O_3$ (M+Na)⁺ calcd. 259.1310, obsvd. 259.1308. For x-ray crystal structure data, used to determine relative stereochemistry, see page S31.

2-((*R*)-butoxy((*R*)-5,5-dimethyltetrahydrofuran-2-yl)methyl)phenol (3b):

To a 100 mL side-arm round bottom flask equipped with a stir bar was added 5.3 mg Pd(MeCN)₂Cl₂ (0.020 mmol, 0.040 equiv.), 4.0 mg of CuCl (0.040 mmol, 0.080 equiv.), 16.8 mg of (S)-^{*i*}PrQuinox (0.700 mmol, 0.140 equiv.), 20 mg of KHCO₃ (0.20 mmol, 0.40 equiv.) and 2.6 mL of toluene.

A three-way joint fitted with a balloon of O_2 was attached and flask was evacuated and refilled three times with O_2 . The mixture was stirred for 20 minutes at room temperature under balloon of O_2 . To the reaction mixture, a 2.3 mL of *n*-butanol (25 mmol, 50 equiv.) and 103.1 mg of **2** (0.5000 mmol, 1.000 equiv.) were added. The reaction mixture was stirred for 12 h and diluted with 10 mL of EtOAc. The reaction mixture was then washed with 1 M NH₄Cl (10 mL) followed by brine (10 mL). Organic layer was

dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified with flash silica-gel column chromatography with Hexane/EtOAC as eluent to give 87.5 mg of product (63% yield, average of two reactions, *Note: 53% yield in THF:toluene (1:1) as solvent*). Diastereomeric ratio: 5:1, Major diastereomer: $R_f = 0.75$ w/ 33% EtOAc/Hexane (Silica), colorless liquid, $[\alpha]^{20}_{D} = -8.2^{\circ}$ (c = 1.0, CHCl₃), ¹H-NMR (500 MHz CDCl₃): δ 8.31 (s, 1 H), 7.22 (*dd*, *J* = 1.6 Hz, 8.7 Hz, 1 H), 7.09 (*dd*, *J* = 1.6 Hz, 7.5 Hz, 1 H), 6.91-6.83 (m, 2 H), 4.43 (d, J = 4.1 Hz, 1 H), 4.3 (*ddd*, J = &.01, 4.2 Hz, 1 H), 3.47 (*ddd*, J = 9.3 Hz, 6.7 Hz, 1.0 Hz, 1 H), 3.37 (*ddd*, J = 9.3 Hz, 6.5 Hz, 1.0 Hz, 1 H), 2.02-1.82 (m, 2 H), 1.70-1.29 (m, 6 H), 1.24 (s, 3 H), 1.21 (s, 3 H), 0.90 (t, *J* = 7.14 Hz, 3 H). ¹³C-NMR (100 MHz CDCl₃): δ 155.9, 129.2, 124.4, 119.7, 117.7, 83.3, 82.8, 81.7, 70.0, 38.4, 31.9, 28.1, 28.0, 27.9, 19.5, 14.0, IR: 3289, 2962, 2931, 1455, 1367, 1237, 1095 cm⁻¹. HRMS C₁₇H₂₆O₃ (M+Na)⁺ calcd. 301.1780, obsvd. 301.1777.

2-((*R*)-(but-3-enyloxy)((*R*)-5,5-dimethyltetrahydrofuran-2-yl)methyl)phenol (3c):

Followed the procedure described for **3b** except 2.9 mL toluene and 2.1 mL of 3-butene-1-ol (25 mmol, 50 equiv.) were used. Yield = 57%, average of two reactions (78.6 mg, *Note:* 50% yield in THF:toluene (1:1) as solvent), Diastereomeric ratio: 4:1, Major diastereomer: $R_f = 0.75$ w/

3% EtOAc/Hexane, colorless liquid, $[α]^{20}{}_D = +11.0^\circ$ (c = 0.1, CHCl₃), ¹H-NMR (500 MHz CDCl₃) δ 8.28 (s, 1 H), 7.20 (td, J = 1.8 Hz, 7.7 Hz, 1 H), 7.04 (dd, J = 1.5 Hz, 7.7 Hz, 1 H), 6.90-6.83 (m, 2 H), 5.82 (ddd, J = 6.5 Hz, 3.3 Hz, 7.0 Hz, 1 H), 5.02-4.98 (m, 2 H), 4.44 (d, j = 3.94, 1 H), 4.38 (ddd, J = 6.9 Hz, 4.1 Hz, 1 H), 3.52 (ddd, J = 9.2 Hz, 6.8 Hz, 1 H), 3.42 (ddd, J = 9.3 Hz, 6.6 Hz, 1 H), 2.38 (dd, J = 6.2 Hz, 8.2 Hz, 1 H), 2.09-1.82 (m, 2 H), 1.71-1.4 (m, 2 H), 1.23 (s, 3 H), 1.21 (s, 3 H). ¹³C-NMR (125 MHz, CDCl₃): δ 155.8, 135.2, 129.3, 129.3, 124.3, 119.7, 117.7, 116.8, 83.3, 82.9, 81.7, 69.3, 38.3, 34.4, 28.1, 28.0, 27.9. IR: 3284, 2971, 1733, 1652, 1558, 1487, 1054 cm⁻¹. HRMS C₁₇H₂₄O₃ (M+Na)⁺ calcd. 299.1623, obsvd. 299.1615.

2-((*R*)-((*R*)-5,5-dimethyltetrahydrofuran-2-yl)(2-methoxyethoxy)methyl)phenol (3d):

Followed the procedure described for **3a** except 1.5 mL of THF and 1.5 mL toluene (1:1) and 2.0 mL of 2-methoxyethanol (25 mmol, 50 equiv.) were used. Yield = 53%, average of two reactions (74.2 mg, *Note:* 40% yield in toluene as solvent), Diastereometic ratio: 9:1, Major diastereometic

R_f = 0.35 w/ 33% EtOAc/Hexane, colorless liquid, $[α]^{20}_{D} = -35.0^{\circ}$ (c = 0.15, CHCl₃), ¹H-NMR (400 MHz CDCl₃): δ 8.20 (s, 1 H), 7.20 (dd, J = 1.8 Hz, 6.9 Hz, 1 H), 7.11 (dd, J = 7.7 Hz, 1 H), 6.91-6.85 (m, 2 H), 4.54 (d, J = 4.4 Hz, 1 H), 4.43 (ddd, J = 7.0 Hz, 4.3 Hz, 4.3 Hz, 1 H), 3.65-3.51 (m, 4 H), 3.33 (s, 3 H), 2.00-1.83 (m, 2 H), 1.74-1.61 (m, 1 H), 1.56-1.49 (m, 1 H), 1.24 (s, 3 H), 1.20 (s, 3 H). ¹³C-NMR (100 MHz, CDCl₃): δ 155.9, 129.5, 129.4, 124.3, 119.9, 118.0, 83.3, 82.9, 81.7, 72.1, 69.1, 59.2, 38.4, 28.1, 28.0, 28.0. IR: 3266, 2968, 2872, 1486, 1097, 753 cm⁻¹. HRMS C₁₆H₂₄O₄ (M+Na)⁺ calcd. 303.1572, obsvd. 303.1566.

2-((*R*)-(2-chloroethoxy)((*R*)-5,5-dimethyltetrahydrofuran-2-yl)methyl)phenol (3e):

Followed the procedure described for **3b** except 3.3 mL toluene and 1.7 mL of 2-chloroethanol (25 mmol, 50 equiv.) were used. Yield = 61%, average of two reactions (86.6 mg, *Note:* 58% yield in THF:toluene (1:1) as solvent). Diastereometric ratio: 5:1. Major diastereometric $[\alpha]^{20}_{D} = -38.0^{\circ}$

(c = 0.6, CHCl₃) $R_f = 0.50 \text{ w}/20\%$ EtOAc/Hexane, Colorless liquid, ¹H-NMR (400 MHz CDCl₃): δ 8.29 (s, 1 H), 7.22 (ddd, J = 7.5 Hz, 0.9 Hz Hz, 1 H), 7.13-7.09 (m, 1 H), 6.93-6.85 (m, 2 H), 4.50 (d, J = 3.4 Hz, 1 H), 4.43 (td, J = 6.98 Hz, 3.45 Hz, 1 H), 3.76-3.55 (m, 4 H), 3.33 (s, 3 H), 2.01 (m, 2 H), 1.74-1.58 (m, 2 H), 1.26 (s, 3 H), 1.24 (s, 3 H). ¹³C-NMR (100 MHz, CDCl₃): δ 155.7, 129.8, 129.4, 124.2, 120.0, 118.1, 83.4, 81.9, 69.7, 43.3, 38.3, 28.1, 27.9, 27.8, IR: 3265, 2966, 1490, 1461, 1364, 1190, 1104, 1049, 754 cm⁻¹. HRMS C₁₅H₂₁ClO₃ (M+Na)⁺ calcd. 307.1077, obsvd. 307.1079.

2-((*R*)-benzyloxy((*R*)-5,5-dimethyltetrahydrofuran-2-yl)methyl)phenol (3f):

Followed the procedure described for **3a** except 0.7 mL of THF and 0.7 mL toluene (1:1) and 1.6 mL of Benzylalcohol (15 mmol, 50 equiv.) were used. Yield = 51%, average of two reactions (47.7 mg), Diastereomeric ratio: 6:1, Major diastereomer: $R_f = 0.50 \text{ w}/20\%$ EtOAc/Hexane, colorless liquid, $[\alpha]^{20}_{D} = -49.5^{\circ}$ (c = 0.39, CHCl₃),¹H-NMR (300 MHz CDCl₃): δ 8.33 (s, 1 H), 7.36-7.29 (m, 5 H), 7.22 (td, J = 7.7 Hz, 1.4 Hz Hz, 1 H), 7.11 (dd, J = 7.5 Hz, 1.5 Hz, 1 H), 6.94 (dd, J = 8.0. 1.0 Hz, 1 H), 6.88 (td, J = 7.4 Hz, 1.1 Hz, 1 H), 4.64 (d, J = 12.0 Hz, 1 H), 4.54 (d, J = 3.9 Hz, 1 H), 4.43 (td, J = 7.04 Hz, 3.95 Hz, 1 H), 4.34 (d, J = 12.0 Hz, 1 H), 1.99-1.88 (m, 2 H), 1.66 (dt, J = 12.0 Hz, 7.32 Hz, 1 H), 1.59-1.51 (m, 1 H), 1.22 (s, 3 H), 1.20 (s, 3 H). ¹³C-NMR (75 MHz, CDCl₃): δ 155.9, 137.9, 129.5, 129.4, 128.5, 128.1, 127.9, 124.0, 119.9, 118.0, 83.0, 81.7, 81.6, 71.2, 38.3, 28.0, 27.9, 27.8. IR: 3285, 2970, 2870, 1717, 1615, 1506, 1455, 1180, 1097, 1027, 756 cm⁻¹. HRMS C₂₀H₂₄O₃ (M+Na)⁺ calcd. 335.1623, obsvd. 335.3925.

2-((*R*)-((*R*)-5,5-dimethyltetrahydrofuran-2-yl)(2(trimethylsilyl)ethoxy)methyl) $\downarrow_{si'}$ phenol (3g):

Followed the procedure described for **3b** except 1.9 mL toluene and 1.1 mL of 2-(trimethylsilyl)ethanol (7.5 mmol, 25 equiv.) were used. Yield = 64%, average of two reactions (62.1 mg), Diastereomeric ratio: 5:1, Major diastereomer: $R_f = 0.85 \text{ w}/20\%$ EtOAc/Hexane, colorless liquid, $[\alpha]^{20}_D = -21^{\circ}$ (c = 0.25, CHCl₃),¹H-NMR (300 MHz CDCl₃): δ 8.31 (s, 1 H), 7.18 (td, J = 7.7 Hz, 1.1 Hz Hz, 1 H), 7.10 (dd, J = 7.54 Hz, 1.52 Hz, 1 H), 6.89-6.84 (m, 2 H), 4.50 (d, J = 4.5 Hz, 1 H), 4.37 (td, J = 7.08 Hz, 4.58 Hz, 1 H), 3.63-3.57 (m, 1 H), 3.50-3.45 (m, 1 H), 1.91-1.80 (m, 2 H), 1.63 (dt, J = 12.1 Hz, 7.50 Hz, 1 H), 1.46 (ddd, J = 12.08 Hz, 8.20 Hz, 6.25 Hz, 1 H), 1.21 (s, 3 H) 1.16 (s, 3 H), 1.04 (m, 1 H), 0.92 (m, 1 H), -0.02 (s, 9 H). ¹³C-NMR (75 MHz, CDCl₃): δ 155.9, 129.1, 129.0, 124.3, 119.7, 117.6, 82.6, 82.2, 81.5, 67.6, 38.3, 28.1, 27.8, 27.7, 18.5, 1.2, IR: 3304, 2966, 2894, 1586, 1486, 1384, 1248, 1096, 859, 836, 755 cm⁻¹. HRMS C₁₈H₃₀O₃Si (M+Na)⁺ calcd. 345.1862, obsvd. 345.1861.

2-((*R*)-(((1*R*,5*S*)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)methoxy)((*R*)-5,5-dimethyltetrahydrofuran-2-yl)methyl)phenol (3h):

Followed the procedure described for **3b** except 3.0 mL toluene and 2.0 mL of (–)-myrtenol (12.5 mmol, 25.0 equiv.) were used. Yield = 55%, average of two reactions (97.9 mg), Diastereomeric ratio: 9:1, Major diastereomer: $[\alpha]^{20}_{D} = -31.3^{\circ}$ (c = 0.7, CHCl₃) R_f = 0.76 w/ 33% EtOAc/Hexane, colorless liquid, ¹H-NMR (400 MHz CDCl₃): δ 8.28 (s, 1 H), 7.20-7.16 (m, 1 H), 7.08 (dd, J = 7.54 Hz, 1.40 Hz, 1 H), 6.89-6.83 (m, 2 H), 5.46 (dt, J = 2.85 Hz, 1.43 Hz, 1 H) 4.51 (d, J = 3.94 Hz, 1 H), 4.38

(td, J = 5.38 Hz, 3.20 Hz, 1 H), 3.90 (dd, J = 12.31 Hz, 1.65 Hz, 1H), 3.75-3.72 (m, 1 H), 2.33 (dt, J = 8.62 Hz, 5.61Hz, 1 H), 2.24 (m, 2 H), 2.12 (t, J = 5.60 Hz, 1 H), 2.01 (m, 1 H), 1.94-1.88 (m, 2 H), 1.66-1.61 (m, 1 H) 1.54-1.50 (m, 1 H), 1.27 (s, 3 H), 1.21 (s, 3 H), 1.19 (s, 3 H) 1.07 (d, J = 8.6 Hz, 1 H), 0.86 (s, 3 H). ¹³C-NMR (100 MHz, CDCl₃): δ 155.7, 144.9, 129.1, 129.2, 129.0, 124.1, 120.1, 119.5, 117.5, 82.6, 81.6, 81.5, 81.5, 76.7, 72.4, 43.4, 41.0, 40.8, 38.1, 37.9, 31.5, 31.3, 31.2, 28.0, 27.7, 27.6, 26.2, 21.1, 20.9, IR: 3303, 2969, 2914, 1615, 1486, 1381, 1282, 1126, 1035, 887, 753 cm⁻¹. HRMS C₂₃H₃₂O₃ (M+Na)⁺ calcd. 379.2249, obsvd. 379.2254

2-((*R*)-((*R*)-5,5-dimethyltetrahydrofuran-2-yl)(hydroxy)methyl)phenol (3i):

To a 100 mL side-arm round bottom flask equipped with a stir bar was added 8.3 mg Pd((S)-^{*i*}PrQuinox)Cl₂ (0.020 mmol, 0.040 equiv.), 15.0 mg of Cu((S)-^{*i*}PrQuinox)Cl₂ (0.040 mmol, 0.080 equiv.), 1.2 mg of (S)-^{*i*}PrQuinox (0.0050 mmol, 0.010 equiv.), 4.4 mg of NaHCO₃ (0.050 mmol, 0.10

equiv.) and 4.5 mL tAmylOH. A three-way joint fitted with a balloon of O₂ was attachedand flask was evacuated and refilled three times with O2. The mixture was stirred for 20 minutes at room temperature under balloon of O₂. To the reaction mixture, a 450 µL of water (25 mmol, 50 equiv.) and 103.1 mg of 2 (0.5000 mmol, 1.000 equiv.) were added. The reaction mixture was stirred for 24 h and diluted with 10 mL of EtOAc. The reaction mixture was then washed with 1 M NH₄Cl (10 mL) followed by brine (10 mL). Organic layer was dried over Na₂SO₄ and concentrated in vacuo. The crude mixture was purified with flash silica-gel column chromatography with EtOAc/ Hexanes (4% to 10%) as eluent to give 69.9 mg of product (63% yield, average of two reactions). Diastereomeric ratio: 5:1, Major diastereomer: $R_f = 0.60$ w/ 33% EtOAc/Hexane, colorless solid, $[\alpha]^{20}_{D} = -17.0^{\circ}$ (c = 0.1, CHCl₃), ¹H-NMR (300 MHz, CDCl₃): δ 8.40 (s, 1 H), 7.20 (ddd, J = 8.1 Hz, 7.4 Hz, 1.7 Hz, 1 H), 7.04 (dd, J = 7.6 Hz, 1.7 Hz, 1 H), 6.89 (dd, J = 8.1 Hz, 1.1 Hz, 1 H), 6.84 (td, J = 7.4 Hz, 1.2 Hz, 1 H), 4.58 (d, J = 6.8 Hz, 1 H),4.27 (apparent q, J = 6.8 Hz, 1 H), 3.31 (bs, 1 H), 1.95-1.83 (m, 2 H), 1.81-1.75 (m, 2 H), 1.33 (s, 3 H), 1.27 (s, 3 H). ¹³C-NMR (75 MHz, CDCl₃): δ 156.1, 129.7, 128.8, 124.4, 119.9, 118.0, 83.3, 81.1, 78.9, 38.5, 29.1, 28.3, 28.2, IR: 3297, 2968, 1237, 752 cm⁻¹, HRMS $C_{13}H_{18}O_3$ (M+Na)⁺ calcd. 245.1154, obsvd. 245.1146.

2-((*R*)-((*R*)-5,5-dimethyltetrahydrofuran-2-yl)(2-hydroxyethoxy)methyl)phenol (3j):

Followed the procedure described for **3i** except 3.6 mL *t*AmylOH and 1.4 mL of ethylene glycol (25 mmol, 50 equiv.) were used. Yield = 59%, average of two reactions (78.5 mg), Diastereomeric ratio: 10:1, Major diastereomer: $R_f = 0.30$ w/ 66% EtOAc/Hexane, colorless liquid, $[\alpha]^{20}_{D} =$

-100° (c = 0.1, CHCl₃), ¹H-NMR (400 MHz, CDCl₃): δ 8.27 (s, 1 H), 7.21 (td, J = 7.7 Hz, 1.2 Hz, 1 H), 7.07 (dd, J = 7.5 Hz, 1.6 Hz, 1 H), 6.91 (dd, J = 8.1 Hz, 0.9 Hz, 1 H), 6.87 (td, J = 7.4 Hz, 1.1 Hz, 1 H), 4.44-4.38 (m, 2 H), 3.81-3.64 (m, 3 H), 3.58 (ddd, J = 10.7 Hz, 5.9 Hz, 3.0 Hz, 1 H), 2.89 (bs, 1 H), 1.93-1.87 (m, 2 H), 1.75-1.65 (m, 2 H), 1.29 (s, 3 H), 1.27 (s, 3 H). ¹³C-NMR (100 MHz, CDCl₃): δ 155.9, 129.8, 129.3, 124.1, 118.1, 85.1, 83.1, 81.7, 71.5, 61.9, 38.5, 28.5, 28.3, 28.0, IR: 3263, 2967, 2869, 1454, 1041, 754 cm⁻¹. HRMS C₁₅H₂₂O₄ (M+Na)⁺ calcd. 289.1416, obsvd. 289.1417

2-((*R*)-azido((*R*)-5,5-dimethyltetrahydrofuran-2-yl)methyl)phenol (3k):

OH N₃

OH N₃

To a 100 mL side-arm round bottom flask equipped with a stir bar was added 8.3 mg Pd((S)-^{*i*}PrQuinox)Cl₂ (0.020 mmol, 0.040 equiv.), 15.0 mg of Cu((S)-^{*i*}PrQuinox)Cl₂ (0.040 mmol, 0.080 equiv.), 1.2 mg of (S)-^{*i*}PrQuinox (0.0050 mmol, 0.010 equiv.), 4.4 mg of NaHCO₃ (0.050 mmol, 0.10

equiv.) and 5.0 mL *t*AmylOH. A three-way joint fitted with a balloon of O₂ was attached and flask was emptied and refilled three times with O₂. The mixture was stirred for 20 minutes at room temperature under balloon of O₂. To the reaction mixture, 65 mg of NaN₃ (1.0 mmol, 2.0 equiv.) and 103.1 mg of **2** (0.2000 mmol, 1.000 equiv.) were added. The reaction mixture was stirred for 48 h at 30 °C and diluted with 10 mL of EtOAc. The reaction mixture was then washed with 1.0 M NH₄Cl (10 mL) followed by brine (10 mL). Organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The product was purified with flash silica-gel column chromatography with 2% to 10% EtOAc/Hexanes as eluent to give 62.9 mg of product (50% yield, average of two reactions). $[\alpha]^{20}_{D}$ = +22.1° (c = 0.25, CHCl₃), ¹H-NMR for Major Diastereomer (400 MHz CDCl₃): δ 8.21 (s, 1 H), 7.28-7.23 (m, 1H), 7.18-7.15 (dd, *J* = 1.5 Hz, 7.5 Hz, 1 H), 7.01-6.88 (m, 2 H), 4.70-4.65 (d, *J* = 3.2 Hz, 1 H), 4.35-4.25 (td, *J* = 3.2 Hz, 6.7 Hz, 1 H), 1.9-1.8 (m, 2 H), 1.78-1.62 (m, 2 H), 1.23 (s, 6 H).¹³C-NMR (125 MHz, CDCl₃): δ 155.3, 130.3, 129.9, 123.3, 120.4, 118.8, 84.3, 81.5, 66.9, 38.1, 28.4, 28.0, 27.8. HRMS C₁₃H₁₇N₃O₂ (M+Na)⁺ calcd. 270.1216, obsvd. 270.1214.

¹H-NMR for Minor Diastereomer (400 MHz CDCl₃): δ 8.34 (s, 1 H), 7.28-7.23 (m, 1H), 7.18-7.15 (dd, J = 1.5 Hz, 7.5 Hz, 1 H), 7.01-6.88 (m, 2 H), 4.78-4.75 (d, J = 3.2 Hz, 1 H), 4.44-4.38 (td, J = 3.2 Hz, 6.7 Hz, 1 H), 2.1-1.9 (m, 2 H), 1.78-1.62 (m, 2 H), 1.31 (s, 3 H), 1.27 (s, 3 H). ¹³C-NMR

 $(125 \text{ MHz}, \text{CDCl}_3)$: δ 155.4, 130.6, 130.5, 120.2, 118.8, 83.9, 81.6, 68.5, 38.1, 28.8, 28.0, 27.8, IR: 3264, 2971, 2100, 1456, 1251, 754 cm⁻¹.

2-((*R*)-methoxy((*R*)-tetrahydrofuran-2-yl)methyl)phenol (3l):

Followed the procedure described for **3a**; 89.0 mg of **S3** (0.500 mmol, 1.00 equiv.) was added. Reaction was stirred for 7 h. Yield = 68%, average of two reactions, Diastereomeric ratio: 10:1, Major diastereomer: $R_f = 0.40 \text{ w/}$ 33% EtOAc/Hexane, white solid. MP = 64-65 °C. $[\alpha]^{20}{}_D = -62.0^\circ (c = 0.1, CHCl_3)$, ¹H-NMR (400 MHz, CDCl_3): δ 8.09 (s, 1 H), 7.22 (dd, J = 1.6 Hz, 8.3 Hz, 1 H), 7.09 (dd, J = 7.5 Hz, 1.9 Hz, 1 H), 6.94-6.84 (m, 2 H), 4.39-4.20 (m, 2 H), 3.98-3.78 (m, 2 H), 3.39 (s, 3 H), 1.89-1.65 (m, 4 H). ¹³C-NMR {¹H} (100 MHz, CDCl_3): δ 155.9, 129.7, 129.4, 123.0, 119.9, 117.6, 86.2, 81.5, 69.2, 57.9, 28.2, 26.0, IR 3282, 2933, 2874, 1486, 1456, 1149, 1057, 753 cm⁻¹. HRMS C₁₂H₁₆O₃ (M+Na)⁺ calcd. 231.0997, obsvd. 231.0990.

2-((*R*)-methoxy((*R*)-tetrahydro-2*H*-pyran-2-yl)methyl)phenol (3m):

OMe To a 100 mL side-arm round bottom flask equipped with a stir bar was added 5.2 mg Pd(MeCN)₂Cl₂ (0.020 mmol, 0.040 equiv.), 4.0 mg of CuCl (0.040 mmol, 0.080 equiv.), 16.8 mg of (S)-'PrQuinox (0.070 mmol, 0.140 equiv.), 20.0 mg of KHCO₃ (0.200 mmol, 0.400 equiv.), 1 mL of MeOH (25 mmol, 50 equiv.), 1 mL of THF, and 2 mL toluene. A three-way joint fitted with a balloon of O₂ was attached, and flask was evacuated and refilled with O_2 three times. The mixture was stirred for 20 minutes at room temperature under an atmosphere of O₂. To the reaction mixture, 96.1 mg of **S8** (0.5000 mmol, 1 equiv.) in a solution in 1 mL THF was added. The reaction mixture was stirred for 24 h and diluted with 10 mL of EtOAc. The reaction mixture was then washed with 1 M NH₄Cl (10 mL) followed by brine (10 mL). Organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was purified with flash silica-gel column chromatography with 2% to 10% EtOAc/Hexanes as eluent to give 55.0 mg of product (50% yield, average of two reactions). Diastereomeric ratio: 6:1, Major diastereomer: $R_f = 0.66$ w/ 1:1 EtOAc:Hexanes, white solid. MP = 98-103 °C. $[\alpha]_{D}^{20} = -14.0^{\circ}$ (c = 0.28, CHCl₃), ¹H-NMR (300 MHz, CDCl₃) δ 7.97 (s, 1 H), 7.22 (ddd, J = 7.7 Hz, J = 7.7 Hz, J = 1.7 Hz, 1 H), 7.03 (dd, J = 7.5 Hz, J = 1.7 Hz, 1 H),6.91-6.83 (m, 2 H), 4.23 (d, J = 5.6 Hz, 1 H), 4.16-4.05 (m, 1 H), 3.75-3.68 (m, 1 H), 3.49 (ddd, J = 11.5 Hz, J = 11.5 Hz, J = 2.7, 1 H), 3.38 (s, 3H), 1.85-1.75 (m, 1H), 1.65-1.15 (m, 5 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) δ 155.8, 129.9, 129.7, 122.9, 119.9, 117.6, 87.3, 80.0, 69.1, 57.9, 28.1, 25.9, 23.1. IR 3326, 2937, 2855, 1506, 1457, 1241, 1082, 756 cm⁻¹. HRMS $C_{13}H_{18}O_3$ (M+Na)⁺ calcd. 245.1148, obsvd. 245.1152.

2-((*R*)-((*R*)-1,4-dioxan-2-yl)(methoxy)methyl)phenol (3n):

To a 200 mL side-arm round bottom flask equipped with a stir bar was QH QMe added 5.2 mg Pd(MeCN)₂Cl₂ (0.020 mmol, 0.040 equiv.), 4.0 mg of CuCl (0.040 mmol, 0.080 equiv.), 16.8 mg of (S)-ⁱPrQuinox (0.070 mmol, 0.140 equiv.), 42.0 mg of NaHCO₃ (0.500 mmol, 1.00 equiv.), 1 mL of MeOH (25 mmol, 50 equiv.), 1 mL of THF, and 2 mL toluene. A three-way joint fitted with a balloon of O_2 was attached, and flask was evacuated and refilled with O_2 three times. The mixture was stirred for 20 minutes at room temperature under an atmosphere of O_2 . To the reaction mixture, 97.1 mg of S11 (0.5000 mmol, 1 equiv.) in a solution in 1 mL THF was added. The reaction mixture was stirred for 24 h and diluted with 10 mL of CH₂Cl₂. The reaction mixture was then washed with 1 M NH₄Cl (10 mL) followed by brine (10 mL). Organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The crude mixture was passed through a plug of alumina with 200 mL of 1:1 EtOAc:hexanes followed by 10% MeOH/EtOAc (to separate the product from ligand, which are inseparable by silica chromatography). The portion eluted with 10% MeOH/EtOAc was concentrated *in vacuo*, then purified with flash silica-gel column chromatography with 1% MeOH/CH₂Cl₂ as eluent to give 39.5 mg of the product (30% yield, average of two Diastereomeric ratio: 6:1, Major diastereomer: $R_f = 0.60$ w/ 10% reactions). MeOH/CH₂Cl₂, clear oil. $[\alpha]^{20}_{D} = -26.3^{\circ}$ (c = 1.88, CHCl₃), ¹H-NMR (300 MHz, CDCl₃) δ 7.64 (s, 1 H), 7.23 (dd, J = 8.5 Hz, J = 1.5 Hz, 1 H), 6.98 (dd, J = 7.6 Hz, J = 1.8 Hz, 1 H), 6.93-6.83 (m, 2 H), 4.27 (d, J = 6.0 Hz, 1 H), 3.97 (ddd, J = 9.3 Hz, J = 6.1 Hz, J =3.4 Hz, 1 H), 3.90 (bdd, J = 9.9 Hz, J = 2.1 Hz, 1 H), 3.77 (ddd, J = 11.2 Hz, J = 11.2 Hz, J = 2.8 Hz, 1 H), 3.69 (bdd, J = 9.9 Hz, J = 2.8 Hz, 1 H), 3.59 (ddd, J = 11.2 Hz, J = 11.2

Hz, J = 2.8 Hz, 1 H), 3.51-3.41 (m, 2 H), 3.39 (s, 3 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) δ 155.8, 130.2, 129.2, 121.5, 120.2, 117.6, 84.3, 68.3, 67.1, 66.4, 57.9, 29.9, IR 3363, 3054, 2859, 1489, 1457, 1265, 1242, 1123, 1083, 731, 702 cm⁻¹. HRMS C₁₂H₁₆O₄ (M+Na)⁺ calcd. 247.0941, obsvd. 247.0945.

Inverse Electron Demand Diels Alder Reaction:

(2*R*,3*S*,4*R*)-4-((*R*)-5,5-dimethyltetrahydrofuran-2-yl)-2-ethoxy-3-methylchroman (5a):

To a 250 mL side-arm round bottom flask equipped with a stir bar was added 5.2 mg Pd(MeCN)₂Cl₂ (0.020 mmol, 0.040 equiv.), 4.0 mg of CuCl (0.040 mmol, 0.080 equiv.), 16.8 mg of (*S*)-^{*i*}PrQuinox (0.070 mmol, 0.140 equiv.), 20.0 mg of KHCO₃ (0.200 mmol, 0.40 equiv.), and 2.2 mL toluene. A three-way joint fitted with a balloon of O₂ was attached, and

flask was evacuated and refilled with O₂ three times. The mixture was stirred for 20 minutes at room temperature under an atmosphere of O_2 . To the reaction mixture, 103.1 mg of 2 (0.5000 mmol, 1 equiv.) as a solution in 2.8 mL of ethyl propenyl ether (25 mmol, 50 equiv., Z:E = 10:1) was added (*Note*: ethyl propenyl ether was purchased as a 3:1 mixture of isomers and enriched through multiple fractional distillations). The reaction flask was evacuated and refilled with O₂ twice more. The reaction mixture was stirred for 24 h and passed through a plug of silica with 50 mL EtOAc and concentrated in vacuo, then purified with flash alumina column chromatography with hexanes followed by 1% EtOAc/hexanes to 2% EtOAc/hexanes as eluent to give 104.1 mg of the product (72% vield). Diastereomeric ratio: 33:5:1, major diastereomer: $R_f = 0.60 \text{ w}/1:4$ EtOAc:hexanes, clear oil. $[\alpha]^{20}_{D} = -30.8^{\circ}$ (c = 1.73, CHCl₃), ¹H-NMR (300 MHz, CDCl₃) δ 7.31-7.28 (m, 1 H), 7.13 (ddd, J = 7.7 Hz, J = 7.7 Hz, J = 1.7 Hz, 1 H), 6.87-6.81 (m, 2 H), 5.04 (d, J = 2.6 Hz, 1 H), 4.34 (ddd, J = 6.8 Hz, J = 6.8 Hz, J = 4.6 Hz, 1 H), 3.98 (dg, J = 9.5 Hz, J = 7.1 Hz, 1 H), 3.60 (dg, J = 9.5 Hz, J = 7.1 Hz, 1 H), 3.09 (dd, J = 5.0 Hz, J = 5.0 Hz, 1 H), 2.42 (add, J = 7.1 Hz, J = 5.5 Hz, J = 2.5 Hz, 1 H),2.18-2.07 (m, 1 H), 1.71-1.50 (m, 3 H), 1.31 (s, 3 H), 1.23 (t, J = 7.1 Hz, 3 H), 1.20 (s, 3 H), 1.07 (d, J = 7.1 Hz, 3 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) δ 153.2, 129.4, 127.8, 123.1, 120.3, 116.6, 101.6, 79.7, 77.8, 64.6, 43.4, 39.0, 33.8, 30.7, 29.0, 27.3, 15.3, 10.6, IR 2969, 2879, 1581, 1487, 1454, 1376, 1365, 1222, 1149, 1093, 1040, 978, 932, 752 cm^{-1} . HRMS $C_{18}H_{26}O_3$ (M+Na)⁺ calcd. 313.1780, obsvd. 313.1775. Relative stereochemistry assigned by a combination of coupling constants, as compared to reported Diels Alder adducts with ethyl propenyl ether and a related quinone methide.⁷ and x-ray crystal structure analysis of the lactone derivative (see page S42).

(2R,3S,4R)-2-ethoxy-3-methyl-4-((R)-tetrahydrofuran-2-yl)chroman (5b):

To a 250 mL side-arm round bottom flask equipped with a stir bar was added 5.2 mg Pd(MeCN)₂Cl₂ (0.020 mmol, 0.040 equiv.), 4.0 mg of CuCl (0.040 mmol, 0.080 equiv.), 16.8 mg of (S)-^{*i*}PrQuinox (0.070 mmol, 0.140 equiv.), 20.0 mg of KHCO₃ (0.200 mmol, 0.40 equiv.), and 2.2 mL toluene. A three-way joint fitted with a balloon of O₂ was attached, and flask was

evacuated and refilled with O₂ three times. The mixture was stirred for 20 minutes at room temperature under an atmosphere of O_2 . To the reaction mixture, 89.1 mg of S3 (0.5000 mmol, 1 equiv.) as a solution in 2.8 mL of ethyl propenyl ether (25 mmol, 50 equiv., Z:E = 10:1) was added (*Note*: ethyl propenyl ether was purchased as a 3:1 mixture of isomers and enriched through multiple fractional distillations). The reaction flask was evacuated and refilled with O₂ twice more. The reaction mixture was stirred for 24 h and passed through a plug of silica with 50 mL EtOAc and concentrated in vacuo, then purified with flash alumina column chromatography with 1% EtOAc/hexanes to 2% EtOAc/hexanes as eluent to give 88.2 mg of the product (67% yield). Diastereomeric ratio: 33:8:1, major diastereomer: $R_f = 0.70 \text{ w}/1:3 \text{ EtOAc:hexanes, clear}$ oil. $[\alpha]_{D}^{20} = -36.1^{\circ}$ (c = 0.58, CHCl₃), ¹H-NMR (300 MHz, CDCl₃) δ 7.26-7.22 (m, 1 H), 7.13 (ddd, J = 7.7 Hz, J = 7.7 Hz, J = 1.7 Hz, 1 H), 6.88-6.81 (m, 2 H), 5.07 (d, J = 2.5Hz, 1 H), 4.22 (ddd, J = 7.1 Hz, J = 7.1 Hz, J = 5.5 Hz, 1 H), 3.98 (dq, J = 9.6 Hz, J = 7.1Hz, 1 H), 3.90 (ddd, J = 7.3 Hz, J = 5.3 Hz, J = 5.3 Hz, 1 H), 3.65 (dd, J = 7.3 Hz, J = 7.1Hz, 1 H), 3.61 (dq, J = 9.6 Hz, J = 7.1 Hz, 1 H), 3.15 (dd, J = 5.3 Hz, J = 5.3 Hz, 1 H), 2.43 (gdd, J = 7.0 Hz, J = 5.5 Hz, J = 2.5 Hz, 1 H), 2.13-2.03 (m, 1 H), 1.94-1.71 (m, 2 H), 1.65-1.53 (m, 1 H), 1.24 (t, J = 7.1 Hz, 3 H), 1.06 (d, J = 7.0 Hz, 3 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) δ 153.3, 129.1, 127.9, 122.7, 120.5, 116.7, 101.7, 79.1, 67.4, 64.7, 43.4, 33.7, 30.4, 26.7, 15.3, 10.1, IR 2977, 2875, 1581, 1487, 1454, 1375, 1352, 1237, 1222, 1159, 1064, 1041, 981, 931, 754 cm⁻¹. HRMS $C_{16}H_{22}O_3$ (M+Na)⁺ calcd. 285.1467, obsvd. 285.1472.

Determination of enantiomeric ratio:

Table 3. Seperation conditions to determine enantiomeric ratio.

entry	Compound	Conditions	Retention time	er
1	OH OMe	GC, β-cyclodextrin column 120 °C for 20 min, increase to 140 °C at 0.4 °C/min hold at 140 °C for 2 min, increase to 200 °C at 5 °C/min hold at 200 °C for 8 min	56.8 and 57.9 min	97.9:2.1
2		SFC, 1% Methanol, 3 mL/min Whelko chiral column	3.9 and 4.5 min	96.4:3.6 ^a
3		SFC, 1% Methanol, 1 mL/min Whelko chiral column	11.6 and 12.7 min	96.0:4.0 ^a
4		SFC, 1% Methanol, 3 mL/min 5 μm Cellucoat chiral column	4.9 and 5.7 min	97.7:2.3
5		SFC, 1% Methanol, 3 mL/min Whelko chiral column	3.7 and 4.3 min	94.0:6.0 ^a
6	OH O Ph	SFC, 1% Methanol, 3 mL/min Whelko chiral column	7.4 and 8.1 min	96.9:3.1 ^a
7	OH O TMS	HPLC, 0.5% IPA/Hex, 1 mL/min OJ-H chiral column	29.8 and 32.6 min	99.4:0.6 ^b
8	OH OH	HPLC, 0.5% IPA/Hex, 1 mL/min OJ-H chiral column	29.8 and 32.6 min	98.4:1.6
9	OH O OH	SFC, 1% MeCN, 3 mL/min Cellucoat chiral column	2.5 and 3.9 min	94.9:5.1
10	OH N3	HPLC, 1% IPA:Hex, 1 mL/min OD chiral column	10.0 and 13.7 min for major 18.5 and 32.9 min for minor	91.9:8.1 91.9:8.1
11	OH OMe	SFC, 1% Methanol, 1 mL/min AD-H chiral column	12.2 and 13.7 min	94.8:5.2
12	OH OMe	SFC, 1% Ethanol, 1.5 mL/min Whelko chiral column	12.5 and 14.1 min	94.3:5.7
13	OH OMe	SFC, 1% Methanol, 1.5 mL/min Whelko chiral column	12.3 and 14.1 min	92.0:8.0
14		GC, β-cyclodextrin column 122 °C for 270 min	246.2 and 252.3 min	93.3:6.7
15		GC, β-cyclodextrin column 122 °C for 330 min	276.5 and 286.6 min	95.9:4.1

Separations were performed on the major diastereomer of the product. (a) Product was converted to the corresponding methoxy phenol derivative using KOH and MeI. (b) Product was converted to the free alcohol (31) via deprotection using BF_3OEt_2 .

Table 3, Entry 2 (3b):

% Peak Area	Retention Time	% Peak Area	Retention Time
50.0469	3.925 min	3.6201	3.925 min
49.9531	4.55 min	96.3799	4.525 min

Table 3, Entry 3 (3c):

🗞 Peak Area	Retention Time	% Peak Area	Retention Time
49.4443	11.5667 min	3.9623	11.725 min
50.5557	12.6917 min	96.0377	12.8167 min

Table 3, Entry 4 (3d):

Table 3, Entry 5 (3e):

Table 3, Entry 6 (3f):

% Peak Area	Retention Time	% Peak Area	Retention Time
49.4885	7.4088 min	3.1361	7.4005 min
50.5115	8.1255 min	96.8639	8.1005 min

Table 3, Entry 7 (3g):

Table 3, Entry 8 (3i):

Table 3, Entry 9 (3j):

Table 3, Entry 10 (3k):

Table 3, Entry 12 (3m):

0.012 -

S 0.01 E 0.008 -

0.006

₹ 0.004 0.002 -

0-1

RT: Ret. Time A: Area A%: Area Perc PN: Peak Name

Absorbance at 274 nm

Table 3, Entry 13 (3n):

 % Peak Area
 Retention Time

 48.8871
 12.4086 min

 51.1129
 14.1169 min

% Peak Area
92.0187
7.9813

12.2583 min 14.0667 min

Table 3, Entry 14 (5a):

Dearomatization of Phenol:⁸

To an oven-dried 50 mL round bottom flask equipped with a stir bar was added 240.0 mg of **3a** (1.010 mmol, 1.000 equiv.) in 7.5 mL MeOH. To the reaction mixture cooled to 0 °C in an ice bath, 720.0 mg of PhI(OAc)₂ (2.230 mmol, 2.200 equiv.) in 5 mL of MeOH was added dropwise and warmed to room temperature. After stirring for 90 min, the reaction mixture was then cooled to 0 °C and solution of sat. Na₂CO₃ was added until precipitate was observed. To this 20 mL of EtOAc and 5 mL of water was added. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The product was purified with flash silica-gel column chromatography with 10% to 30% EtOAc/Hexanes as eluent to give 215.5 mg of product (73% yield, average of two reactions).

2-((*R*)-((*R*)-5,5-dimethyltetrahydrofuran-2-yl)(methoxy)methyl)-4,4dimethoxycyclohexa-2,5-dienone (4a):

 $\begin{array}{c} R_{\rm f} = 0.4 \ \text{w}/\ 33\% \ \text{EtOAc/Hexane, colorless liquid, } [\alpha]^{20}{}_{\rm D} = -42.3^{\circ} \ (\text{c} = 6.3, \ \text{CHCl}_3), \ ^1\text{H-NMR} \ (500 \ \text{MHz, CDCl}_3): \ \delta \ 6.83 \ (\text{dd}, \ J = 3.29 \ \text{Hz}, \ 0.9 \ \text{Hz}, \ 1 \ \text{H}), \ 6.76 \ (\text{dd}, \ J = 10.2 \ \text{Hz}, \ 3.3 \ \text{Hz}, \ 1 \ \text{H}), \ 6.23 \ (\text{d}, \ J = 10.2 \ \text{Hz}, \ 1 \ \text{H}), \ 4.24 \ (\text{dd}, \ J = 6.2, \ 0.8 \ \text{Hz}, \ 1 \ \text{H}), \ 3.90 \ (\text{q}, \ J = 6.5 \ \text{Hz}, \ 1 \ \text{H}), \ 3.35 \ (\text{s}, \ 3 \ \text{H}), \ 3.33 \ (\text{s}, \ 3 \ \text{H}), \ 3.22 \ (\text{s}, \ 3 \ \text{H}), \ 1.70 \ (\text{m}, \ 4 \ \text{H}), \ 1.20 \ (\text{s}, \ 3 \ \text{H}), \ 1.16 \ (\text{s}, \ 3 \ \text{H}). \ ^{13}\text{C-NMR} \ (125 \ \text{MHz}, \ \text{CDCl}_3): \ \delta \ 185.0, \ 143.1, \ 140.6, \ 137.8, \ 130.0, \ 93.0, \ 81.6, \ 81.0, \ 79.1, \ 57.4, \ 50.5, \ 50.4, \ 38.3, \ 28.8, \ 28.2, \ 28.0, \ \text{IR}: \ 2967, \ 2936, \ 1678, \ 1644, \ 1458, \ 1364, \ 1109, \ 1038, \ 962, \ 843 \ \text{cm}^{-1}. \ \text{HRMS} \ C_{16}\text{H}_{24}\text{O}_{5} \ (\text{M+Na})^+ \ \text{calcd}. \ 319.1521, \ \text{obsvd}. \ 319.1526. \end{array}$

4,4-dimethoxy-2-((*R*)-methoxy((*R*)-tetrahydrofuran-2-yl)methyl)cyclohexa-2,5-dienone (4b):

Same procedure as **4a**. 192.4 mg of product (71% yield, average of two reactions). $R_f = 0.45 \text{ w}/33\%$ EtOAc/Hexane, colorless liquid, $[\alpha]^{20}_D = -57.3^{\circ}$ (c = 1.4, CHCl₃),¹H-NMR (500 MHz, CDCl₃): δ 6.92 (dd, J = 3.2 Hz, 0.8 Hz, 1 H), 6.82 (dd, J = 10.3 Hz, 3.3 Hz, 1 H), 6.27 (d, J = 10.2 Hz, 1 H), 4.30 (dd, J = 5.1 Hz, 0.9 Hz, 1 H), 3.87 (m, 2 H), 3.35 (ddd, J = 4.2 Hz, 1 H), 3.40 (s, 3 H), 3.37 (s, 3 H), 3.30 (s, 3 H), 1.80 (m, 4 H). ¹³C-NMR (125 MHz, CDCl₃): δ 185.2, 143.4, 140.5, 137.6, 130.1, 93.2, 80.9, 78.3, 68.7, 57.8, 50.7, 50.5, 27.6, 26.0, IR: 2940, 2830, 1678, 1644, 1461, 1375, 1116, 962, 843 cm⁻¹. HRMS C₁₄H₂₀O₅ (M+Na)⁺ calcd. 291.1208, obsvd. 291.1202.

Determination of absolute configration by Mosher ester analysis:⁹

To an oven dried 5 mL round bottom flask equipped with a stir bar was added 38.0 mg of **3i** (0.170 mmol, 1.00 equiv.) in 1.7 mL THF. To the reaction mixture, 10.0 mg of KOH (0.170 mmol, 1.00 equiv.) and 21 µL of MeI (0.34 mmol, 2.0 equiv.) were added at room temperature. After 2 h the solution was diluted with EtOAc and washed with water (2 x 5 mL). The organic layer was dried over Na_2SO_4 and concentrated *in vacuo*. The product was used without further purification.

To an oven dried 5 mL round bottom flask equipped with a stir bar was added 20.2 mg of compound S12 (0.085 mmol, 2.0 equiv.) in 400 μ L CH₂Cl₂. To the reaction mixture, a 19.2 mg of DCC (0.0920 mmol, 2.20 equiv.) 1.5 mg of DMAP (0.3 equiv.) and 10 mg of (R)-MTPA (0.043 mmol, 1.0 equiv.) was added at room temperature. After 2 days, the solution was diluted with EtOAc and washed with solution of sat. NH₄Cl (2 mL) followed by water (2 x 5 mL). The organic layer was dried over Na_2SO_4 and concentrated in vacuo. The product was purified with flash silica-gel column chromatography with EtOAc/Hexanes as eluent to give the product in 40% yield.

(*R*)-((*R*)-5,5-dimethyltetrahydrofuran-2-yl)(2-methoxyphenyl)methyl) 3,3,3trifluoro-2-methoxy-2-phenylpropanoate (S13):

(*R*)-enantiomer of Mosher ester: ¹H-NMR (500 MHz, CDCl₃): δ 7.56 (d, 2 H), 7.40-7.31 (m, 4 H), 7.05 (dd, J = 7.6 Hz, J = 1.6 Hz, 1 H), 6.90-6.84 (m, 2 H), 6.32 (d, J = 8.5 Hz, 1 H), 4.32-4.28 (m, 1 H), 3.87 (s, 3 H), 3.63(s, 3 H), 1.83-1.67 (m, 4 H), 1.30 (s, 3 H), 1.23 (s, 3 H).

(S)-((R)-((R)-5,5-dimethyltetrahydrofuran-2-yl)(2-methoxyphenyl)methyl) 3,3,3trifluoro-2-methoxy-2-phenylpropanoate (S14)

(S)- Enantiomer of Mosher ester: ¹H-NMR (500 MHz, CDCl₃): δ 7.56 (m, 2 H), 7.40-7.27 (m, 4 H), 6.93 (td, J = 7.5 Hz, J = 1.0 Hz, 1 H), 6.89 (dd, J = 8.3 Hz, 0.9 Hz, 1 H), 6.44 (d, J = 7.3 Hz, 1 H), 4.26 (ddd, J = 7.2 Hz, 1 Hz, 1 Hz), 4.26 (ddd, J = 7.2 Hz), 4.26 (ddd, J = 7.2Hz, 6.0 Hz, 1 H), 3.86 (s, 3 H), 3.51 (s, 3 H), 1.82-1.57 (m, 4 H), 1.26 (s, 3 H), 1.14 (s, 3 H).

The Mosher ester analysis revealed that absolute configuration of major diastereomer at benzylic position is *R*.

Derivatization of Diels-Alder product via Jones oxidation:¹⁰

Synthesis of (3*S*,4*R*)-4-((*R*)-5,5-dimethyltetrahydrofuran-2-yl)-3-methylchroman-2-one (S15):

The Jones Reagent was prepared by addition of 2.5 mL of conc. H_2SO_4 to 2.5 g of CrO₃. The solution was cooled to 0 °C and 7.5 mL of cold H_2O was added slowly with rapid stirring. 132 mg of **5a** in a 100 mL round bottom flask was dissolved in 5 mL of acetone under an atmosphere of nitrogen. The reaction flask was cooled to 0 °C and 800 µL of Jones

Reagent (2.0 mmol, 4.0 equiv.) was added dropwise. The reaction mixture was slowly warmed to rt and stirred for 3 h. The reaction was guenched by the dropwise addition of isopropanol until the reaction mixture turned from orange to green. Approximately 10 mL of brine was added, and the mixture was extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo, then purified by flash silica-gel column chromatography with 4% EtOAc/hexanes to 10% EtOAc/hexanes as eluent to give 69 mg of product (53% yield). $R_f = 0.40 \text{ w}/1.4 \text{ EtOAc:hexanes, colorless solid, MP} = 79-86 \text{ °C.}$ $[\alpha]^{20}_{D} = +43.5^{\circ} \text{ (c} = -43.5^{\circ})^{1/2}$ 0.45, CHCl₃), ¹H-NMR (300 MHz, CDCl₃) δ 7.30-7.24 (m, 2 H), 7.08 (ddd, J = 7.5 Hz, J= 7.5 Hz, J = 1.3 Hz, 1 H), 7.04 (dd, J = 8.4 Hz, J = 1.5 Hz, 1 H), 4.22 (ddd, J = 9.4 Hz, J= 5.5 Hz, J = 4.9 Hz, 1 H), 3.27 (dd, J = 6.4 Hz, J = 5.0 Hz, 1 H), 3.04 (dq, J = 6.9 Hz, J = 6.9 Hz, 1 H), 1.80-1.71 (m, 1 H), 1.68-1.59 (m, 1 H), 1.49 (dd, J = 7.8 Hz, J = 3.0 Hz, 1 H), 1.41 (d, J = 7.0 Hz, 3 H), 1.44-1.34 (m, 1 H), 1.22 (s, 3 H), 0.89 (m, 1 H). ¹³C-NMR {¹H} (75 MHz, CDCl₃) δ 171.9, 152.0, 130.9, 128.8, 124.1, 123.9, 116.6, 80.6, 77.4, 44.4, 38.7, 37.1, 28.7, 28.6, 27.8, 12.8. IR 2968, 2871, 1767, 1487, 1457, 1379, 1215, 1142, 1083, 1056, 757 cm⁻¹. HRMS $C_{16}H_{20}O_3$ (M+Na)⁺ calcd. 283.1310, obsvd. 283.1315. X-ray quality single crystals were obtained by recrystallization from cold pentane (see page S42).

Synthesis of Pd((*S*)-^{*i*}PrQuinox)Cl₂: To an oven dried 100 mL round bottom flask equipped with stir bar was added 380.9 mg of Pd(MeCN)₂Cl₂ (1.470 mmol, 1.000 equiv.), 300 mg of (*S*)-^{*i*}PrQuinox ligand (1.47 mmol, 1.00 equiv.) and 80 mL of DCE under a nitrogen atmosphere. The reaction mixture was heated at reflux for 10 h. The reaction mixture was then allowed to cool to room temperature and concentrated to ca. 2 mL. To this mixture, 3 mL of CH₂Cl₂ was added, and precipitation was observed. The remaining solvent was removed *in vacuo* and dried overnight under vacuum to give the desired complex in quantitative yield (680 mg). $[\alpha]^{20}_{D} = -57^{\circ}$ (c = 0.19, CHCl₃), ¹H-NMR (400 MHz, CDCl₃) δ 9.59 (d, *J* = 8.7 Hz, 1 H), 8.39 (d, *J* = 8.0 Hz, 1 H), 7.83 (d, *J* = 8.4 Hz, 1 H), 7.71 (d, *J* = 8.4 Hz, 1 H), 7.56 (m, 2 H), 5.07 (t, *J* = 10.6 Hz, 1 H), 4.76-4.71 (m, 2 H), 2.89-2.74 (m, 1 H), 0.95 (d, *J* = 6.9 Hz, 3 H), 0.81 (d, *J* = 6.6 Hz, 3 H). ¹³C-NMR (100 MHz, CDCl₃): δ 169.9, 148.7, 145.9, 141.6, 132.3, 131.3, 129.8, 129.5, 127.9, 120.7, 72.1, 67.7, 29.3, 18.8, 14.5. IR: 2958, 1651, 1589, 1371, 923, 839 cm⁻¹.

Synthesis of Cu((*S*)-^{*i*}PrQuinox)Cl₂: To an oven dried 50 mL round bottom flask equipped with stir bar was added 45.3 mg of CuCl₂ (0.340 mmol, 1.00 equiv.), 81 mg of (*S*)-^{*i*}PrQuinox ligand (0.34 mmol, 1.00 equiv.) and 16 mL of MeOH under a nitrogen atmosphere. The reaction mixture was heated at reflux for 10 h. The reaction mixture was then allowed to cool to room temperature and concentrated to ca. 2 mL. 3 mL of CH₂Cl₂ was added, and precipitation was observed. The remaining solvent was removed *in vacuo* and dried overnight under vacuum to give complex in quantitative yield (126.3 mg). $[\alpha]^{20}_{D} = +229^{\circ}$ (c = 0.17, CHCl₃), IR: 1651, 1590, 1510, 1254, 1165, 758 cm⁻¹, HRMS C₁₆H₂₄O₅ (M+Na)⁺ calcd. 338.0247, obsvd. 338.0249.

X-Ray crystal structure data for dialkoxylation product 3a:

Crystal Structure Report

Experimental:

A colorless prism shaped crystal 0.35 x 0.33 x 0.20 mm in size was mounted on a glass fiber with traces of viscous oil and then transferred to a Nonius KappaCCD diffractometer equipped with Mo K α radiation ($\lambda = 0.71073$ Å). Ten frames of data were collected at 105(1)K with an oscillation range of *1* deg/frame and an exposure time of 20 sec/frame. [REF1] Indexing and unit cell refinement based on all observed reflection from those ten frames, indicated a hexagonal *P* lattice. A total of 3395 reflections ($\Theta_{max} =$ 27.45°) were indexed, integrated and corrected for Lorentz, polarization and absorption effects using DENZO-SMN and SCALEPAC. [REF 2] Post refinement of the unit cell gave *a* = 16.7018(5) Å, b = 16.7018(5) Å, c = 9.6419(2) Å, and V = 2329.27(11) Å³. Axial photographs and systematic absences were consistent with the compound having crystallized in the hexagonal space group *P*6₂.

The structure was solved by a combination of direct methods and heavy atom using SIR 97. [REF 3]

All of the non-hydrogen atoms were refined with anisotropic displacement coefficients. Hydrogen atoms were either located, refined isotropically or assigned isotropic displacement coefficients U(H) = 1.2U(C) or 1.5U(Cmethyl), and their coordinates were allowed to ride on their respective carbons using SHELXL97. [REF 4] The five-member ring carbon atoms (C10, C11) exhibit orientation disorder 50:50. There are also disordered hexanes solvent molecules in the lattice. The weighting scheme employed was w = $1/[\sigma^2(F_o^2) + (0.0992P)^2 + 1.0242P]$ where P = $(F_o^2 + 2F_c^2)/3$. The refinement converged to R1 = 0.0635, wR2 = 0.1640, and S = 1.036 for 2676 reflections with 1> 2σ (I), and R1 = 0.0861, wR2 = 0.1819, and S = 1.036 for 3395 unique reflections and 257 parameters. [REF 5] The maximum Δ/σ in the final cycle of the least-squares was 0, and the residual peaks on the final difference-Fourier map ranged from -0.196 to 0.393 e/Å³. Scattering factors were taken from the International Tables for Crystallography, Volume C. [REF 6, REF 7]

REF 1 COLLECT Data Collection Software. Nonius B.V. 1998.

REF 2 Otwinowski, Z.; Minor, W., "Processing of X-ray Diffraction Data Collected in Oscillation Mode", Methods Enzymol. 1997, 276, 307-326.

REF 3 SIR97 (Release 1.02) - A program for automatic solution and refinement of crystal structure. A. Altomare, M.C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A.G. G. Moliteni, G. Polidori, and R. Spagna.

REF 4 SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB] - Sheldrick, G. M. (1997). Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen, Germany.

REF 5 R1 = $\Sigma(||F_o| - |F_c||) / \Sigma |F_o|$, wR2 = $[\Sigma(w(F_o^2 - F_c^2)2) / \Sigma(F_o^2)^2]^{1/2}$, and S = Goodness-of-fit on $F^2 = [\Sigma(w(F_o^2 - F_c^2)^2 / (n-p))]^{1/2}$, where n is the number of reflections and p is the number of parameters refined.

REF 6 Maslen, E. N.; Fox, A. G.; O'Keefe, M. A., International Tables for Crystallography: Mathemetical, Physical and Chemical Tables, Vol. C, Chapter 6, Wilson, A. J. C., Ed.; Kluwer, Dordrecht, The Netherlands, 1992; pp. 476-516.

REF 7 Creagh, D. C.; McAuley, W. J., International Tables for Crystallography: mathematical, Physical and Chemical tables, Vol. C, Chapter 4 Wilson, A. J. C., Ed.; Kluwer, Dordrecht, The Netherlands, 1992; pp. 206-222.

REF8 ORTEP3 for Windows - L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.

REF9 WinGX A Windows Program for Crystal Structure Analysis. L. J. Farrugia, University of Glasgow, Glasgow, 1998.

Identification code	mss032			
Empirical formula	C15.50 H23.50 O3			
Formula weight	257.84			
Temperature	105(1) K			
Wavelength	0.71069 Å			
Crystal system	Hexagonal			
Space group	P 6 ₂			
Unit cell dimensions	a = 16.7018(5) Å	⟨= 90°.		
	b = 16.7018(5) Å	®=90°.		
	c = 9.6419(2) Å	© = 120°.		
Volume	2329.27(11) Å ³			
Z	6			
Density (calculated)	1.103 Mg/m ³			
Absorption coefficient	0.075 mm ⁻¹			
F(000)	843			
Crystal size	0.35 x 0.33 x 0.20 mm ³	0.35 x 0.33 x 0.20 mm ³		
Theta range for data collection	2.54 to 27.45°.			
Index ranges	-21<=h<=21, -18<=k<=	-21<=h<=21, -18<=k<=18, -10<=l<=12		
Reflections collected	3395	3395		
Independent reflections	3395 [R(int) = 0.0000]			
Completeness to theta = 27.45°	99.7 %			
Absorption correction	Multi-scan			
Max. and min. transmission	0.9852 and 0.9743			
Refinement method	Full-matrix least-square	s on F ²		
Data / restraints / parameters	3395 / 4 / 257			
Goodness-of-fit on F ²	1.029			
Final R indices [I>2sigma(I)]	R1 = 0.0635, wR2 = 0.1	640		
R indices (all data)	R1 = 0.0861, wR2 = 0.1	R1 = 0.0861, $wR2 = 0.1819$		
Absolute structure parameter	0.1(18)			
Extinction coefficient	0.018(5)			
Largest diff. peak and hole	0.393 and -0.196 e.Å ⁻³			

Table 1. Crystal data and structure refinement for mss032.

	х	у	Z	U(eq)
O(1)	3818(2)	1488(1)	-421(3)	48(1)
O(2)	3603(2)	3777(2)	3(2)	45(1)
O(3)	3815(2)	3556(2)	2783(2)	42(1)
C(1)	4476(2)	2268(2)	-1069(3)	35(1)
C(2)	5068(2)	2238(2)	-2068(3)	37(1)
C(3)	5726(2)	3040(2)	-2714(3)	37(1)
C(4)	5794(2)	3883(2)	-2361(3)	37(1)
C(5)	5213(2)	3909(2)	-1359(3)	36(1)
C(6)	4550(2)	3112(2)	-700(3)	34(1)
C(7)	3929(2)	3162(2)	411(3)	35(1)
C(8)	4447(2)	3552(2)	1756(3)	35(1)
C(9)	4842(2)	2994(2)	2412(3)	43(1)
C(10)	4577(8)	2857(9)	3884(10)	57(3)
C(11)	3645(6)	2830(7)	3865(8)	47(2)
C(12)	2862(6)	1955(6)	3442(10)	66(3)
C(13)	3481(9)	3168(11)	5216(10)	69(3)
C(10')	4954(7)	3399(8)	3907(9)	53(2)
C(11')	4102(6)	3501(6)	4147(7)	47(2)
C(12')	4348(6)	4403(6)	4877(8)	69(2)
C(13')	3337(9)	2687(8)	4838(14)	72(3)
C(14)	2924(3)	3409(4)	-1044(5)	68(1)
C(15)	1666(4)	845(4)	2063(8)	53(2)
C(16)	1338(4)	743(5)	480(7)	51(2)
C(17)	1546(17)	434(14)	-1036(15)	49(5)
C(18)	1573(7)	951(6)	-2456(9)	43(2)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for mss032. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.
O(1)-C(1)	1.365(4)
O(2)-C(14)	1.410(4)
O(2)-C(7)	1.436(3)
O(3)-C(11')	1.419(7)
O(3)-C(8)	1.450(3)
O(3)-C(11)	1.515(7)
C(1)-C(6)	1.398(4)
C(1)-C(2)	1.399(4)
C(2)-C(3)	1.385(4)
C(3)-C(4)	1.398(4)
C(4)-C(5)	1.385(4)
C(5)-C(6)	1.390(4)
C(6)-C(7)	1.522(4)
C(7)-C(8)	1.514(4)
C(8)-C(9)	1.522(4)
C(9)-C(10)	1.471(10)
C(9)-C(10')	1.563(9)
C(10)-C(11)	1.535(12)
C(11)-C(12)	1.449(14)
C(11)-C(13)	1.498(14)
C(10')-C(11')	1.533(10)
C(11')-C(13')	1.478(14)
C(11')-C(12')	1.522(11)
C(15)-C(16)	1.602(10)
C(16)-C(17)	1.645(15)
C(17)-C(18)	1.607(15)
C(14)-O(2)-C(7)	113.3(3)
C(11')-O(3)-C(8)	111.2(3)
C(11')-O(3)-C(11)	40.8(4)
C(8)-O(3)-C(11)	108.2(3)
O(1)-C(1)-C(6)	117.9(2)
O(1)-C(1)-C(2)	121.8(2)
C(6)-C(1)-C(2)	120.3(3)
C(3)-C(2)-C(1)	120.5(3)

Table 3. Bond lengths [Å] and angles [°] for mss032.

C(2)-C(3)-C(4)	119.4(3)
C(5)-C(4)-C(3)	119.8(3)
C(4)-C(5)-C(6)	121.6(3)
C(5)-C(6)-C(1)	118.4(3)
C(5)-C(6)-C(7)	120.5(2)
C(1)-C(6)-C(7)	121.1(2)
O(2)-C(7)-C(8)	105.5(2)
O(2)-C(7)-C(6)	111.1(2)
C(8)-C(7)-C(6)	111.6(2)
O(3)-C(8)-C(7)	109.0(2)
O(3)-C(8)-C(9)	105.0(2)
C(7)-C(8)-C(9)	115.0(2)
C(10)-C(9)-C(8)	107.9(5)
C(10)-C(9)-C(10')	30.5(4)
C(8)-C(9)-C(10')	96.5(4)
C(9)-C(10)-C(11)	102.4(7)
C(12)-C(11)-C(13)	112.5(9)
C(12)-C(11)-O(3)	109.0(6)
C(13)-C(11)-O(3)	107.1(8)
C(12)-C(11)-C(10)	115.0(8)
C(13)-C(11)-C(10)	110.7(8)
O(3)-C(11)-C(10)	101.7(6)
C(11')-C(10')-C(9)	105.7(6)
O(3)-C(11')-C(13')	108.2(8)
O(3)-C(11')-C(12')	107.3(5)
C(13')-C(11')-C(12')	112.5(8)
O(3)-C(11')-C(10')	103.3(5)
C(13')-C(11')-C(10')	112.9(7)
C(12')-C(11')-C(10')	111.9(7)
C(16)-C(15)-C(17)#1	86.0(6)
C(15)-C(16)-C(17)	140.0(9)
C(18)-C(17)-C(16)	122.8(12)
C(18)-C(17)-C(15)#2	109.9(11)
C(16)-C(17)-C(15)#2	110.7(10)

#1 x-y,x,z+1/3 #2 y,-x+y,z-1/3

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	52(1)	30(1)	56(1)	2(1)	17(1)	17(1)
O(2)	52(1)	59(1)	40(1)	-5(1)	-5(1)	41(1)
O(3)	50(1)	56(1)	32(1)	3(1)	7(1)	37(1)
C(1)	37(2)	33(1)	35(2)	-2(1)	1(1)	17(1)
C(2)	44(2)	34(2)	35(2)	-4(1)	1(1)	21(1)
C(3)	39(2)	45(2)	31(1)	-4(1)	0(1)	23(1)
C(4)	41(2)	40(2)	30(1)	4(1)	0(1)	22(1)
C(5)	43(2)	33(1)	37(2)	-1(1)	-2(1)	24(1)
C(6)	36(1)	38(2)	33(2)	-1(1)	-2(1)	22(1)
C(7)	38(2)	36(2)	37(2)	0(1)	1(1)	24(1)
C(8)	37(2)	40(2)	36(1)	4(1)	6(1)	26(1)
C(9)	46(2)	51(2)	42(2)	7(1)	2(1)	30(2)
C(10)	64(6)	85(7)	43(4)	22(6)	18(4)	51(6)
C(11)	60(5)	61(6)	34(4)	21(4)	16(3)	41(4)
C(12)	67(5)	55(5)	63(5)	28(4)	14(4)	22(4)
C(13)	77(7)	107(10)	32(5)	17(5)	13(4)	53(8)
C(10')	67(6)	85(6)	35(3)	0(4)	-1(4)	58(5)
C(11')	67(4)	59(5)	37(3)	10(3)	6(3)	48(4)
C(12')	97(6)	85(6)	50(4)	-22(4)	-20(4)	66(5)
C(13')	88(7)	75(7)	75(8)	22(6)	11(6)	57(7)
C(14)	66(2)	101(3)	64(2)	-20(2)	-19(2)	61(2)
C(15)	42(3)	23(3)	91(5)	-5(3)	27(3)	15(2)
C(16)	34(3)	42(3)	62(4)	-23(3)	8(3)	8(3)
C(18)	56(5)	36(4)	39(5)	-13(3)	8(4)	23(4)

Table 4. Anisotropic displacement parameters (Å²x 10³)for mss032. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	у	Z	U(eq)
H(10A)	5036	3375	4459	69
H(10B)	4509	2269	4237	69
H(12A)	2979	1791	2518	98
H(12B)	2305	2010	3415	98
H(12C)	2774	1474	4106	98
H(13A)	4031	3754	5466	103
H(13B)	3355	2709	5941	103
H(13C)	2949	3262	5125	103
H(10C)	4979	2975	4600	64
H(10D)	5527	4006	3978	64
H(12D)	4835	4923	4356	103
H(12E)	4568	4397	5816	103
H(12F)	3799	4472	4927	103
H(13D)	3202	2126	4329	108
H(13E)	2785	2751	4853	108
H(13F)	3517	2645	5791	108
H(14A)	2729	3858	-1276	103
H(14B)	2389	2836	-712	103
H(14C)	3180	3278	-1871	103
H(15A)	2345	1188	2191	63
H(15B)	1373	258	2592	63
H(16A)	1432	1366	280	61
H(16B)	660	341	564	61
H(17A)	2191	546	-943	59
H(18A)	1719	665	-3230	65
H(18B)	2048	1605	-2390	65
H(18C)	969	898	-2615	65
H(1)	3870(30)	940(30)	-840(60)	83(15)
H(2)	5040(30)	1680(30)	-2330(50)	55(10)
H(3)	6140(20)	2990(20)	-3360(40)	33(8)
H(4)	6260(30)	4450(30)	-2920(50)	70(12)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for mss032.

H(5)	5230(20)	4460(20)	-1130(30)	30(7)
H(7)	3380(20)	2540(20)	670(40)	41(9)
H(8)	4990(20)	4260(20)	1540(30)	30(7)
H(9A)	5470(20)	3110(20)	1950(30)	36
H(9B)	4360(20)	2290(20)	2220(40)	36

Table 6. Torsion angles [°] for mss032.

O(1)-C(1)-C(2)-C(3)	179.7(3)
C(6)-C(1)-C(2)-C(3)	-0.7(4)
C(1)-C(2)-C(3)-C(4)	-0.2(4)
C(2)-C(3)-C(4)-C(5)	0.9(4)
C(3)-C(4)-C(5)-C(6)	-0.8(4)
C(4)-C(5)-C(6)-C(1)	0.0(4)
C(4)-C(5)-C(6)-C(7)	179.2(3)
O(1)-C(1)-C(6)-C(5)	-179.6(3)
C(2)-C(1)-C(6)-C(5)	0.7(4)
O(1)-C(1)-C(6)-C(7)	1.2(4)
C(2)-C(1)-C(6)-C(7)	-178.5(3)
C(14)-O(2)-C(7)-C(8)	-165.8(3)
C(14)-O(2)-C(7)-C(6)	73.2(3)
C(5)-C(6)-C(7)-O(2)	43.1(3)
C(1)-C(6)-C(7)-O(2)	-137.7(3)
C(5)-C(6)-C(7)-C(8)	-74.3(3)
C(1)-C(6)-C(7)-C(8)	104.9(3)
C(11')-O(3)-C(8)-C(7)	153.3(4)
C(11)-O(3)-C(8)-C(7)	109.9(5)
C(11')-O(3)-C(8)-C(9)	29.7(5)
C(11)-O(3)-C(8)-C(9)	-13.7(5)
O(2)-C(7)-C(8)-O(3)	61.1(3)
C(6)-C(7)-C(8)-O(3)	-178.2(2)
O(2)-C(7)-C(8)-C(9)	178.6(2)
C(6)-C(7)-C(8)-C(9)	-60.7(3)
O(3)-C(8)-C(9)-C(10)	-11.4(6)
C(7)-C(8)-C(9)-C(10)	-131.1(6)
O(3)-C(8)-C(9)-C(10')	-40.4(5)
C(7)-C(8)-C(9)-C(10')	-160.1(5)

31.0(9)
102.6(13)
168.7(9)
-89.6(6)
46.8(8)
148.5(7)
-69.3(8)
32.4(7)
79.8(9)
-151.4(10)
-37.9(9)
-75.9(12)
38.7(7)
-123.3(6)
-29.8(7)
115.0(5)
-151.4(9)
-3.4(7)
90.2(7)
-23.3(8)
93.3(10)
-138.4(7)
164.1(17)
-141.6(12)
85.8(17)

#1 x-y,x,z+1/3 #2 y,-x+y,z-1/3

X-Ray crystal structure data for Jones oxidation product S15:

Crystal Structure Report

Experimental:

A colorless prism shaped crystal 0.33 x 0.33 x 0.30 mm in size was mounted on a glass fiber with traces of viscous oil and then transferred to a Nonius KappaCCD diffractometer equipped with Mo K α radiation ($\lambda = 0.71073$ Å). Ten frames of data were collected at 150(1) K with an oscillation range of *1* deg/frame and an exposure time of 20 sec/frame. [REF1] Indexing and unit cell refinement based on all observed reflection from those ten frames, indicated a monoclinic *C* lattice. A total of 11462 reflections ($\Theta_{max} = 27.5^{\circ}$) were indexed, integrated and corrected for Lorentz, polarization and absorption effects using DENZO-SMN and SCALEPAC. [REF 2] Post refinement of the unit cell gave *a* = 21.3641(6) Å, b = 10.9638(4) Å, c = 23.4509(5) Å, β =90.8210(17), and V = 5492.4(3) Å³. Axial photographs and systematic absences were consistent with the compound having crystallized in the monoclinic space group *C* 2/*c*.

The structure was solved by a combination of direct methods and heavy atom using SIR 97. [REF 3]

All of the non-hydrogen atoms were refined with anisotropic displacement coefficients. Hydrogen atoms were located and refined isotropically using SHELXL97. [REF 4] The weighting scheme employed was $w = 1/[\sigma^2(F_o^2) + (0.0576P)^2 + 1.7804P]$ where $P = (F_o^2 + 2F_c^2)/3$. The refinement converged to R1 = 0.0473, wR2 = 0.1037, and S = 1.0150 for 4096 reflections with 1> 2 σ (I), and R1 = 0.0902, wR2 = 0.1225, and S = 1.0150 for 6287 unique reflections and 503 parameters. [REF 5] The maximum Δ/σ in the final cycle of the least-squares was 0, and the residual peaks on the final difference-Fourier map ranged from -0.234 to 0.187 e/Å³. Scattering factors were taken from the International Tables for Crystallography, Volume C. [REF 6, REF 7]

REF 1 COLLECT Data Collection Software. Nonius B.V. 1998.

REF 2 Otwinowski, Z.; Minor, W., "Processing of X-ray Diffraction Data Collected in Oscillation Mode", Methods Enzymol. 1997, 276, 307-326.

REF 3 SIR97 (Release 1.02) - A program for automatic solution and refinement of crystal structure. A. Altomare, M.C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A.G. G. Moliteni, G. Polidori, and R. Spagna.

REF 4 SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB] - Sheldrick, G. M. (1997). Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen, Germany.

REF 5 R1 = $\Sigma(||F_o| - |F_c||) / \Sigma |F_o|$, wR2 = $[\Sigma(w(F_o^2 - F_c^2)2) / \Sigma(F_o^2)^2]^{1/2}$, and S = Goodness-of-fit on $F^2 = [\Sigma(w(F_o^2 - F_c^2)^2 / (n-p))]^{1/2}$, where n is the number of reflections and p is the number of parameters refined.

REF 6 Maslen, E. N.; Fox, A. G.; O'Keefe, M. A., International Tables for Crystallography: Mathemetical, Physical and Chemical Tables, Vol. C, Chapter 6, Wilson, A. J. C., Ed.; Kluwer, Dordrecht, The Netherlands, 1992; pp. 476-516.

REF 7 Creagh, D. C.; McAuley, W. J., International Tables for Crystallography: mathematical, Physical and Chemical tables, Vol. C, Chapter 4 Wilson, A. J. C., Ed.; Kluwer, Dordrecht, The Netherlands, 1992; pp. 206-222.

REF8 ORTEP3 for Windows - L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.

REF9 WinGX A Windows Program for Crystal Structure Analysis. L. J. Farrugia, University of Glasgow, Glasgow, 1998.

Table 1. Crystal data and structure remientent for in	1550.54.		
Identification code	mss034		
Empirical formula	C16 H20 O3		
Formula weight	260.32		
Temperature	150(1) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 21.3641(6) Å	<i>α</i> = 90°.	
	b = 10.9638(4) Å	β=90.8210(17)°.	
	c = 23.4509(5) Å	$\gamma = 90^{\circ}$.	
Volume	5492.4(3) Å ³		
Ζ	16		
Density (calculated)	1.259 Mg/m ³		
Absorption coefficient	0.086 mm ⁻¹		
F(000)	2240		
Crystal size	0.33 x 0.33 x 0.30 mm ³		
Theta range for data collection	1.91 to 27.50°.		
Index ranges	-27<=h<=27, -14<=k<=14, -30<=l<=30		
Reflections collected	11462		
Independent reflections	6287 [R(int) = 0.0366]		
Completeness to theta = 27.50°	99.3 %		
Absorption correction	Multi-scan		
Max. and min. transmission	0.9748 and 0.9723		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6287 / 0 / 503		
Goodness-of-fit on F ²	1.015		
Final R indices [I>2sigma(I)]	R1 = 0.0473, $wR2 = 0.1037$		
R indices (all data)	R1 = 0.0902, $wR2 = 0.1225$		
Largest diff. peak and hole	0.187 and -0.234 e.Å ⁻³		

Table 1. Crystal data and structure refinement for mss034.

	Х	у	Z	U(eq)
C(2)	152(1)	1308(2)	1829(1)	26(1)
C(2A)	2639(1)	-1115(2)	1928(1)	26(1)
C(3)	711(1)	477(2)	1798(1)	25(1)
C(3A)	3172(1)	-1996(1)	1875(1)	23(1)
C(4)	1168(1)	931(1)	1342(1)	22(1)
C(4A)	3629(1)	-1579(1)	1408(1)	22(1)
C(5)	1331(1)	2231(1)	1486(1)	23(1)
C(5A)	3825(1)	-295(1)	1546(1)	22(1)
C(6)	1918(1)	2740(2)	1398(1)	28(1)
C(6A)	4416(1)	174(2)	1430(1)	27(1)
C(7)	2041(1)	3947(2)	1543(1)	31(1)
C(7A)	4574(1)	1361(2)	1584(1)	33(1)
C(8)	1577(1)	4660(2)	1781(1)	31(1)
C(8A)	4143(1)	2099(2)	1854(1)	34(1)
C(9)	990(1)	4170(2)	1879(1)	29(1)
C(9A)	3550(1)	1658(2)	1970(1)	30(1)
C(10)	879(1)	2966(1)	1731(1)	24(1)
C(10A)	3403(1)	476(1)	1813(1)	24(1)
C(11)	917(1)	779(2)	726(1)	22(1)
C(11A)	3370(1)	-1719(1)	796(1)	23(1)
C(12)	463(1)	1726(2)	491(1)	26(1)
C(12A)	2936(1)	-737(2)	562(1)	26(1)
C(13)	552(1)	1581(2)	-151(1)	28(1)
C(13A)	3027(1)	-873(2)	-81(1)	29(1)
C(14)	1242(1)	1212(1)	-211(1)	24(1)
C(14A)	3709(1)	-1287(1)	-138(1)	25(1)
C(15)	1660(1)	2265(2)	-376(1)	35(1)
C(15A)	4150(1)	-258(2)	-291(1)	37(1)
C(16)	1322(1)	143(2)	-614(1)	36(1)
C(16A)	3776(1)	-2345(2)	-552(1)	38(1)
C(17)	517(1)	-853(2)	1742(1)	32(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for mss034. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(17A)	2948(1)	-3307(2)	1823(1)	32(1)
O(1)	269(1)	2537(1)	1818(1)	28(1)
O(1A)	2787(1)	101(1)	1918(1)	27(1)
O(2)	-385(1)	995(1)	1871(1)	34(1)
O(2A)	2096(1)	-1373(1)	1991(1)	38(1)
O(3)	1444(1)	844(1)	358(1)	28(1)
O(3A)	3899(1)	-1701(1)	427(1)	29(1)

C(2)-O(2)	1.2016(18)
C(2)-O(1)	1.371(2)
C(2)-C(3)	1.506(2)
C(2A)-O(2A)	1.2032(18)
C(2A)-O(1A)	1.3705(19)
C(2A)-C(3A)	1.501(2)
C(3)-C(17)	1.521(2)
C(3)-C(4)	1.5406(19)
C(3)-H(3)	0.993(15)
C(3A)-C(17A)	1.520(2)
C(3A)-C(4A)	1.547(2)
C(3A)-H(3A)	1.007(16)
C(4)-C(5)	1.504(2)
C(4)-C(11)	1.541(2)
C(4)-H(4)	1.003(16)
C(4A)-C(5A)	1.502(2)
C(4A)-C(11A)	1.538(2)
C(4A)-H(4A)	0.985(15)
C(5)-C(10)	1.388(2)
C(5)-C(6)	1.392(2)
C(5A)-C(10A)	1.392(2)
C(5A)-C(6A)	1.394(2)
C(6)-C(7)	1.390(2)
C(6)-H(6)	0.991(17)
C(6A)-C(7A)	1.391(2)
C(6A)-H(6A)	1.013(17)
C(7)-C(8)	1.387(2)
C(7)-H(7)	0.978(17)
C(7A)-C(8A)	1.386(2)
C(7A)-H(7A)	0.981(18)
C(8)-C(9)	1.385(2)
C(8)-H(8)	0.992(19)
C(8A)-C(9A)	1.386(2)
C(8A)-H(8A)	1.002(19)

Table 3. Bond lengths [Å] and angles [°] for mss034.

C(9)-C(10)	1.385(2)
С(9)-Н(9)	0.983(17)
C(9A)-C(10A)	1.383(2)
C(9A)-H(9A)	0.953(17)
C(10)-O(1)	1.4020(18)
C(10A)-O(1A)	1.4046(18)
C(11)-O(3)	1.4304(16)
C(11)-C(12)	1.519(2)
С(11)-Н(11)	1.041(16)
C(11A)-O(3A)	1.4323(17)
C(11A)-C(12A)	1.519(2)
С(11А)-Н(11А)	1.029(16)
C(12)-C(13)	1.527(2)
C(12)-H(12A)	1.032(18)
C(12)-H(12B)	0.968(17)
C(12A)-C(13A)	1.529(2)
С(12А)-Н(12С)	1.008(17)
C(12A)-H(12D)	0.984(16)
C(13)-C(14)	1.538(2)
С(13)-Н(13А)	0.994(18)
C(13)-H(13B)	1.003(17)
C(13A)-C(14A)	1.533(2)
С(13А)-Н(13С)	0.987(19)
C(13A)-H(13D)	1.004(18)
C(14)-O(3)	1.4535(17)
C(14)-C(15)	1.513(2)
C(14)-C(16)	1.518(2)
C(14A)-O(3A)	1.4516(17)
C(14A)-C(15A)	1.516(2)
C(14A)-C(16A)	1.521(2)
C(15)-H(15A)	1.00(2)
C(15)-H(15B)	0.992(19)
С(15)-Н(15С)	0.99(2)
C(15A)-H(15D)	1.01(2)
С(15А)-Н(15Е)	0.99(2)
C(15A)-H(15F)	1.01(2)

C(16)-H(16A)	1.02(2)
C(16)-H(16B)	1.00(2)
C(16)-H(16C)	1.022(19)
C(16A)-H(16D)	1.00(2)
C(16A)-H(16E)	1.042(19)
C(16A)-H(16F)	0.99(2)
C(17)-H(17A)	1.006(18)
C(17)-H(17B)	0.972(17)
C(17)-H(17C)	1.021(19)
C(17A)-H(17D)	0.990(18)
C(17A)-H(17E)	1.013(17)
C(17A)-H(17F)	1.037(19)
O(2)-C(2)-O(1)	117.23(14)
O(2)-C(2)-C(3)	126.16(15)
O(1)-C(2)-C(3)	116.60(13)
O(2A)-C(2A)-O(1A)	116.97(14)
O(2A)-C(2A)-C(3A)	126.36(15)
O(1A)-C(2A)-C(3A)	116.65(13)
C(2)-C(3)-C(17)	111.66(14)
C(2)-C(3)-C(4)	110.46(12)
C(17)-C(3)-C(4)	115.18(13)
C(2)-C(3)-H(3)	105.2(9)
C(17)-C(3)-H(3)	107.9(9)
C(4)-C(3)-H(3)	105.7(8)
C(2A)-C(3A)-C(17A)	112.15(14)
C(2A)-C(3A)-C(4A)	110.90(12)
C(17A)-C(3A)-C(4A)	115.13(13)
C(2A)-C(3A)-H(3A)	105.3(9)
C(17A)-C(3A)-H(3A)	107.8(9)
C(4A)-C(3A)-H(3A)	104.8(9)
C(5)-C(4)-C(3)	107.28(12)
C(5)-C(4)-C(11)	112.93(12)
C(3)-C(4)-C(11)	113.55(12)
C(5)-C(4)-H(4)	110.4(9)
C(3)-C(4)-H(4)	106.6(8)

C(11)-C(4)-H(4)	105.9(9)
C(5A)-C(4A)-C(11A)	112.98(12)
C(5A)-C(4A)-C(3A)	107.53(12)
C(11A)-C(4A)-C(3A)	114.12(12)
C(5A)-C(4A)-H(4A)	108.0(9)
C(11A)-C(4A)-H(4A)	106.7(8)
C(3A)-C(4A)-H(4A)	107.3(8)
C(10)-C(5)-C(6)	117.54(15)
C(10)-C(5)-C(4)	118.88(13)
C(6)-C(5)-C(4)	123.57(14)
C(10A)-C(5A)-C(6A)	117.30(15)
C(10A)-C(5A)-C(4A)	119.06(13)
C(6A)-C(5A)-C(4A)	123.64(14)
C(7)-C(6)-C(5)	120.91(16)
C(7)-C(6)-H(6)	119.9(10)
C(5)-C(6)-H(6)	119.2(10)
C(7A)-C(6A)-C(5A)	120.81(16)
C(7A)-C(6A)-H(6A)	121.0(10)
C(5A)-C(6A)-H(6A)	118.1(10)
C(8)-C(7)-C(6)	120.06(16)
C(8)-C(7)-H(7)	119.5(10)
C(6)-C(7)-H(7)	120.5(10)
C(8A)-C(7A)-C(6A)	120.25(16)
C(8A)-C(7A)-H(7A)	121.7(11)
C(6A)-C(7A)-H(7A)	118.0(11)
C(9)-C(8)-C(7)	120.13(16)
C(9)-C(8)-H(8)	119.6(10)
C(7)-C(8)-H(8)	120.2(10)
C(7A)-C(8A)-C(9A)	120.13(16)
C(7A)-C(8A)-H(8A)	118.6(10)
C(9A)-C(8A)-H(8A)	121.2(10)
C(10)-C(9)-C(8)	118.75(16)
C(10)-C(9)-H(9)	118.3(10)
C(8)-C(9)-H(9)	122.9(10)
C(10A)-C(9A)-C(8A)	118.62(16)
C(10A)-C(9A)-H(9A)	118.9(10)

C(8A)-C(9A)-H(9A)	122.5(10)
C(9)-C(10)-C(5)	122.61(15)
C(9)-C(10)-O(1)	116.10(14)
C(5)-C(10)-O(1)	121.22(14)
C(9A)-C(10A)-C(5A)	122.89(15)
C(9A)-C(10A)-O(1A)	115.99(14)
C(5A)-C(10A)-O(1A)	121.08(14)
O(3)-C(11)-C(12)	104.46(12)
O(3)-C(11)-C(4)	107.07(12)
C(12)-C(11)-C(4)	118.57(13)
O(3)-C(11)-H(11)	107.4(8)
С(12)-С(11)-Н(11)	108.5(9)
C(4)-C(11)-H(11)	110.2(8)
O(3A)-C(11A)-C(12A)	104.71(12)
O(3A)-C(11A)-C(4A)	106.65(12)
C(12A)-C(11A)-C(4A)	118.44(13)
O(3A)-C(11A)-H(11A)	107.7(8)
C(12A)-C(11A)-H(11A)	108.8(9)
C(4A)-C(11A)-H(11A)	109.9(8)
C(11)-C(12)-C(13)	101.56(12)
C(11)-C(12)-H(12A)	111.5(9)
C(13)-C(12)-H(12A)	109.5(9)
C(11)-C(12)-H(12B)	113.3(10)
C(13)-C(12)-H(12B)	112.5(10)
H(12A)-C(12)-H(12B)	108.3(14)
C(11A)-C(12A)-C(13A)	101.62(13)
C(11A)-C(12A)-H(12C)	109.5(9)
C(13A)-C(12A)-H(12C)	110.4(9)
C(11A)-C(12A)-H(12D)	112.6(10)
C(13A)-C(12A)-H(12D)	113.7(9)
H(12C)-C(12A)-H(12D)	108.8(14)
C(12)-C(13)-C(14)	104.45(12)
C(12)-C(13)-H(13A)	113.1(10)
C(14)-C(13)-H(13A)	113.1(10)
C(12)-C(13)-H(13B)	110.2(9)
C(14)-C(13)-H(13B)	109.3(9)

H(13A)-C(13)-H(13B)	106.7(13)
C(12A)-C(13A)-C(14A)	104.45(12)
С(12А)-С(13А)-Н(13С)	111.8(11)
С(14А)-С(13А)-Н(13С)	113.5(10)
C(12A)-C(13A)-H(13D)	109.4(10)
C(14A)-C(13A)-H(13D)	110.4(10)
H(13C)-C(13A)-H(13D)	107.3(14)
O(3)-C(14)-C(15)	106.18(13)
O(3)-C(14)-C(16)	108.84(13)
C(15)-C(14)-C(16)	110.93(14)
O(3)-C(14)-C(13)	105.17(11)
C(15)-C(14)-C(13)	113.16(14)
C(16)-C(14)-C(13)	112.13(13)
O(3A)-C(14A)-C(15A)	106.42(13)
O(3A)-C(14A)-C(16A)	108.46(13)
C(15A)-C(14A)-C(16A)	110.55(14)
O(3A)-C(14A)-C(13A)	105.43(11)
C(15A)-C(14A)-C(13A)	113.25(15)
C(16A)-C(14A)-C(13A)	112.33(14)
С(14)-С(15)-Н(15А)	110.4(11)
С(14)-С(15)-Н(15В)	110.4(11)
H(15A)-C(15)-H(15B)	106.8(15)
С(14)-С(15)-Н(15С)	108.6(11)
H(15A)-C(15)-H(15C)	110.7(16)
H(15B)-C(15)-H(15C)	109.9(15)
C(14A)-C(15A)-H(15D)	111.9(11)
C(14A)-C(15A)-H(15E)	108.7(12)
H(15D)-C(15A)-H(15E)	108.1(15)
C(14A)-C(15A)-H(15F)	111.5(11)
H(15D)-C(15A)-H(15F)	108.6(16)
H(15E)-C(15A)-H(15F)	107.9(15)
С(14)-С(16)-Н(16А)	110.0(12)
С(14)-С(16)-Н(16В)	110.5(11)
H(16A)-C(16)-H(16B)	107.0(16)
С(14)-С(16)-Н(16С)	109.1(10)
H(16A)-C(16)-H(16C)	110.5(15)

H(16B)-C(16)-H(16C)	109.7(15)
C(14A)-C(16A)-H(16D)	110.5(11)
С(14А)-С(16А)-Н(16Е)	109.7(10)
H(16D)-C(16A)-H(16E)	110.6(15)
C(14A)-C(16A)-H(16F)	111.0(12)
H(16D)-C(16A)-H(16F)	108.2(16)
H(16E)-C(16A)-H(16F)	106.9(15)
C(3)-C(17)-H(17A)	108.7(10)
C(3)-C(17)-H(17B)	111.9(10)
H(17A)-C(17)-H(17B)	106.7(14)
C(3)-C(17)-H(17C)	110.0(11)
H(17A)-C(17)-H(17C)	110.5(14)
H(17B)-C(17)-H(17C)	109.1(14)
C(3A)-C(17A)-H(17D)	110.7(11)
C(3A)-C(17A)-H(17E)	110.7(10)
H(17D)-C(17A)-H(17E)	108.5(14)
C(3A)-C(17A)-H(17F)	109.4(10)
H(17D)-C(17A)-H(17F)	107.4(14)
H(17E)-C(17A)-H(17F)	110.1(14)
C(2)-O(1)-C(10)	120.22(12)
C(2A)-O(1A)-C(10A)	120.36(12)
C(11)-O(3)-C(14)	110.01(11)
C(11A)-O(3A)-C(14A)	110.10(11)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(2)	25(1)	36(1)	18(1)	3(1)	1(1)	-3(1)
C(2A)	27(1)	29(1)	23(1)	3(1)	1(1)	-3(1)
C(3)	24(1)	30(1)	20(1)	3(1)	1(1)	-2(1)
C(3A)	26(1)	22(1)	23(1)	2(1)	-1(1)	-2(1)
C(4)	20(1)	24(1)	21(1)	2(1)	1(1)	-1(1)
C(4A)	21(1)	21(1)	23(1)	2(1)	0(1)	0(1)
C(5)	24(1)	26(1)	18(1)	1(1)	-2(1)	-2(1)
C(5A)	23(1)	23(1)	20(1)	1(1)	-2(1)	-1(1)
C(6)	27(1)	34(1)	23(1)	3(1)	0(1)	-4(1)
C(6A)	25(1)	29(1)	28(1)	1(1)	-2(1)	-2(1)
C(7)	32(1)	34(1)	27(1)	2(1)	-3(1)	-12(1)
C(7A)	29(1)	34(1)	35(1)	2(1)	-4(1)	-10(1)
C(8)	41(1)	26(1)	25(1)	1(1)	-7(1)	-6(1)
C(8A)	42(1)	26(1)	34(1)	-1(1)	-5(1)	-9(1)
C(9)	36(1)	28(1)	22(1)	-2(1)	-5(1)	3(1)
C(9A)	40(1)	25(1)	25(1)	-2(1)	0(1)	2(1)
C(10)	23(1)	29(1)	20(1)	3(1)	-3(1)	-2(1)
C(10A)	24(1)	27(1)	21(1)	3(1)	-1(1)	-2(1)
C(11)	21(1)	25(1)	21(1)	0(1)	2(1)	-2(1)
C(11A)	23(1)	22(1)	24(1)	-1(1)	1(1)	-3(1)
C(12)	22(1)	32(1)	24(1)	0(1)	-1(1)	1(1)
C(12A)	23(1)	31(1)	26(1)	-1(1)	-3(1)	0(1)
C(13)	27(1)	33(1)	24(1)	1(1)	-4(1)	-1(1)
C(13A)	31(1)	31(1)	25(1)	1(1)	-5(1)	0(1)
C(14)	28(1)	26(1)	18(1)	1(1)	-1(1)	-2(1)
C(14A)	28(1)	29(1)	20(1)	0(1)	-3(1)	-1(1)
C(15)	35(1)	36(1)	34(1)	6(1)	1(1)	-6(1)
C(15A)	35(1)	38(1)	37(1)	5(1)	-1(1)	-8(1)
C(16)	38(1)	38(1)	34(1)	-9(1)	-3(1)	5(1)
C(16A)	44(1)	39(1)	32(1)	-9(1)	-3(1)	2(1)
C(17)	34(1)	31(1)	30(1)	4(1)	2(1)	-7(1)

Table 4. Anisotropic displacement parameters (Å²x 10³)for mss034. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(17A)	36(1)	25(1)	34(1)	2(1)	3(1)	-7(1)
O(1)	23(1)	31(1)	30(1)	-1(1)	2(1)	2(1)
O(1A)	26(1)	25(1)	31(1)	1(1)	4(1)	0(1)
O(2)	23(1)	48(1)	32(1)	6(1)	2(1)	-4(1)
O(2A)	25(1)	40(1)	49(1)	9(1)	4(1)	-3(1)
O(3)	24(1)	41(1)	20(1)	4(1)	2(1)	5(1)
O(3A)	26(1)	40(1)	21(1)	3(1)	2(1)	7(1)

	х	у	Z	U(eq)
H(3)	935(7)	577(14)	2169(6)	21(4)
H(3A)	3418(7)	-1921(15)	2242(7)	28(4)
H(4)	1549(7)	401(15)	1371(6)	25(4)
H(4A)	4002(7)	-2103(14)	1437(6)	18(4)
H(6)	2247(8)	2239(16)	1218(7)	36(5)
H(6A)	4732(8)	-385(16)	1246(7)	32(4)
H(7)	2456(8)	4297(15)	1482(6)	29(4)
H(7A)	5001(8)	1641(17)	1508(7)	39(5)
H(8)	1659(8)	5529(17)	1873(7)	39(5)
H(8A)	4267(8)	2955(18)	1954(7)	45(5)
H(9)	650(8)	4636(16)	2055(7)	33(5)
H(9A)	3242(8)	2138(16)	2156(7)	33(5)
H(11)	717(7)	-80(15)	674(6)	25(4)
H(11A)	3155(7)	-2553(15)	751(6)	24(4)
H(12A)	591(8)	2597(16)	613(7)	33(4)
H(12B)	35(8)	1590(16)	603(7)	33(5)
H(12C)	3085(8)	88(16)	695(7)	31(4)
H(12D)	2500(8)	-851(16)	681(7)	34(5)
H(13A)	441(8)	2328(17)	-370(7)	36(5)
H(13B)	277(7)	909(15)	-302(7)	30(4)
H(13C)	2932(8)	-109(18)	-286(8)	44(5)
H(13D)	2735(8)	-1515(16)	-233(7)	39(5)
H(15A)	1620(8)	2947(18)	-97(8)	46(5)
H(15B)	2105(9)	2008(17)	-367(7)	44(5)
H(15C)	1540(8)	2536(18)	-764(8)	49(5)
H(15D)	4132(8)	432(19)	-7(8)	51(6)
H(15E)	4584(10)	-579(18)	-291(8)	50(6)
H(15F)	4053(9)	77(19)	-683(9)	59(6)
H(16A)	1157(9)	369(19)	-1012(9)	60(6)
H(16B)	1073(9)	-570(20)	-484(8)	55(6)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for mss034.

H(16C)	1785(9)	-85(17)	-629(8)	44(5)
H(16D)	3512(9)	-3051(19)	-431(8)	54(6)
H(16E)	4245(9)	-2600(17)	-574(7)	45(5)
H(16F)	3643(9)	-2102(18)	-944(9)	55(6)
H(17A)	283(8)	-1094(16)	2094(8)	46(5)
H(17B)	235(8)	-984(15)	1420(7)	31(5)
H(17C)	904(9)	-1389(17)	1696(8)	48(5)
H(17D)	2740(8)	-3570(17)	2177(8)	44(5)
H(17E)	2641(8)	-3397(16)	1493(7)	35(5)
H(17F)	3330(9)	-3876(17)	1765(8)	45(5)

Table 6. Torsion angles [°] for mss034.

O(2)-C(2)-C(3)-C(17)	7.9(2)
O(1)-C(2)-C(3)-C(17)	-173.22(12)
O(2)-C(2)-C(3)-C(4)	137.43(15)
O(1)-C(2)-C(3)-C(4)	-43.67(17)
O(2A)-C(2A)-C(3A)-C(17A)	8.1(2)
O(1A)-C(2A)-C(3A)-C(17A)	-173.45(13)
O(2A)-C(2A)-C(3A)-C(4A)	138.41(16)
O(1A)-C(2A)-C(3A)-C(4A)	-43.19(17)
C(2)-C(3)-C(4)-C(5)	55.48(16)
C(17)-C(3)-C(4)-C(5)	-176.89(13)
C(2)-C(3)-C(4)-C(11)	-70.01(17)
C(17)-C(3)-C(4)-C(11)	57.62(18)
C(2A)-C(3A)-C(4A)-C(5A)	54.41(16)
C(17A)-C(3A)-C(4A)-C(5A)	-176.91(13)
C(2A)-C(3A)-C(4A)-C(11A)	-71.74(16)
C(17A)-C(3A)-C(4A)-C(11A)	56.93(18)
C(3)-C(4)-C(5)-C(10)	-33.88(17)
C(11)-C(4)-C(5)-C(10)	91.99(15)
C(3)-C(4)-C(5)-C(6)	144.80(14)
C(11)-C(4)-C(5)-C(6)	-89.33(17)
C(11A)-C(4A)-C(5A)-C(10A)	94.51(16)
C(3A)-C(4A)-C(5A)-C(10A)	-32.32(18)
C(11A)-C(4A)-C(5A)-C(6A)	-86.46(18)
C(3A)-C(4A)-C(5A)-C(6A)	146.71(14)
C(10)-C(5)-C(6)-C(7)	-0.9(2)
C(4)-C(5)-C(6)-C(7)	-179.61(14)
C(10A)-C(5A)-C(6A)-C(7A)	0.9(2)
C(4A)-C(5A)-C(6A)-C(7A)	-178.16(14)
C(5)-C(6)-C(7)-C(8)	0.1(2)
C(5A)-C(6A)-C(7A)-C(8A)	-0.2(2)
C(6)-C(7)-C(8)-C(9)	0.6(2)
C(6A)-C(7A)-C(8A)-C(9A)	-0.3(3)
C(7)-C(8)-C(9)-C(10)	-0.5(2)
C(7A)-C(8A)-C(9A)-C(10A)	0.2(2)

C(8)-C(9)-C(10)-C(5)	-0.3(2)
C(8)-C(9)-C(10)-O(1)	-177.39(13)
C(6)-C(5)-C(10)-C(9)	1.0(2)
C(4)-C(5)-C(10)-C(9)	179.78(13)
C(6)-C(5)-C(10)-O(1)	177.94(12)
C(4)-C(5)-C(10)-O(1)	-3.3(2)
C(8A)-C(9A)-C(10A)-C(5A)	0.6(2)
C(8A)-C(9A)-C(10A)-O(1A)	-177.14(13)
C(6A)-C(5A)-C(10A)-C(9A)	-1.1(2)
C(4A)-C(5A)-C(10A)-C(9A)	178.03(14)
C(6A)-C(5A)-C(10A)-O(1A)	176.51(13)
C(4A)-C(5A)-C(10A)-O(1A)	-4.4(2)
C(5)-C(4)-C(11)-O(3)	76.40(15)
C(3)-C(4)-C(11)-O(3)	-161.17(13)
C(5)-C(4)-C(11)-C(12)	-41.29(18)
C(3)-C(4)-C(11)-C(12)	81.14(17)
C(5A)-C(4A)-C(11A)-O(3A)	75.94(15)
C(3A)-C(4A)-C(11A)-O(3A)	-160.81(12)
C(5A)-C(4A)-C(11A)-C(12A)	-41.67(18)
C(3A)-C(4A)-C(11A)-C(12A)	81.57(17)
O(3)-C(11)-C(12)-C(13)	37.86(15)
C(4)-C(11)-C(12)-C(13)	156.92(13)
O(3A)-C(11A)-C(12A)-C(13A)	36.86(15)
C(4A)-C(11A)-C(12A)-C(13A)	155.49(13)
C(11)-C(12)-C(13)-C(14)	-32.05(16)
C(11A)-C(12A)-C(13A)-C(14A)	-31.97(16)
C(12)-C(13)-C(14)-O(3)	15.36(16)
C(12)-C(13)-C(14)-C(15)	-100.11(15)
C(12)-C(13)-C(14)-C(16)	133.48(14)
C(12A)-C(13A)-C(14A)-O(3A)	16.18(17)
C(12A)-C(13A)-C(14A)-C(15A)	-99.77(16)
C(12A)-C(13A)-C(14A)-C(16A)	134.12(15)
O(2)-C(2)-O(1)-C(10)	-175.66(12)
C(3)-C(2)-O(1)-C(10)	5.34(18)
C(9)-C(10)-O(1)-C(2)	-162.93(13)
C(5)-C(10)-O(1)-C(2)	19.96(19)

O(2A)-C(2A)-O(1A)-C(10A)	-176.20(13)
C(3A)-C(2A)-O(1A)-C(10A)	5.24(19)
C(9A)-C(10A)-O(1A)-C(2A)	-161.87(13)
C(5A)-C(10A)-O(1A)-C(2A)	20.4(2)
C(12)-C(11)-O(3)-C(14)	-29.86(16)
C(4)-C(11)-O(3)-C(14)	-156.43(12)
C(15)-C(14)-O(3)-C(11)	129.14(14)
C(16)-C(14)-O(3)-C(11)	-111.39(14)
C(13)-C(14)-O(3)-C(11)	8.94(16)
C(12A)-C(11A)-O(3A)-C(14A)	-28.29(16)
C(4A)-C(11A)-O(3A)-C(14A)	-154.63(12)
C(15A)-C(14A)-O(3A)-C(11A)	127.96(14)
C(16A)-C(14A)-O(3A)-C(11A)	-113.09(15)
C(13A)-C(14A)-O(3A)-C(11A)	7.42(16)

References:

- 1) Braddock, D. C.; Cansell, G.; Hermitage, S. A. Chem. Commun. 2006, 2483.
- 2) Bianco, A.; Cavarischia, C.; Guiso M. Nat. Prod. Res., 2006, 20, 93-97
- 3) Sharma, S.; Oehlschlager, C. A. J.Org.Chem. 1989, 54, 5064-5073.
- 4) Hahn, F. E.; von Fehren, T.; Wittenbecher, L.; Frohlich, R. Z. Naturforsch. B 2004, 59, 541-543
- 5) Harada, T.; Muramatsu, K.; Mizunashi, K.; Kitano, C.; Imaoka, D.; Fujiwara, T.; Kataoka, H. J. Org. Chem. **2008**, *73*, 249-258
- 6) Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 3076.
- 7) Arduini, A.; Bosi, A.; Pochini, A.; Ungaro, R. Tetrahedron, 1985, 41, 3095.
- For a leading reference see: Yu, M.; Danishefsky, S. J.; *J. Am. Chem. Soc.* 2008, *130*, 2783. For a review see: Magdziak, D.; Meek, S. J.; Pettus, T. R. R. *Chem. Rev.* 2004, *104*, 1383.
- 9) Hoye, R. T.; Jefferey, H. C.; Shao, F. Nature Protocols 2007, 2, 2451-2458
- 10) Crimmins, M. T.; Jung, D. K.; Gray, J. L. J. Am. Chem. Soc. 1993, 115, 3146.

S85

