Figure S1

A		
FLAG-m4 #4	FLAG-m4 ^{4K/A} #2	FLAG-m4 ^{4K/R} #3
ELAG-m4 ^{N1} #2	ELAG-m4 ^{N",N',N2} #3	FLAG-m4 ^{G1} #4
ELAG-m4 ^{G2} #3	FLAG-m4 ^D #1	w 1118

Figure S2

Figure S3

Α	Drosophilid BFMs N motifs melanogater simulans sechellia vakuba erecta ananassae persimilis willistoni mojavensis virilis grimshawi	m4 R L S C E N E R L S C E N E R L S C E N E R L S C E N E R L S C E N E R L S C E N E R L S C E N E R L S C E N E R L S C E N E R L S C E N E R L S Y E N E R R R Y E N E R R R Y E N E R R	$\begin{array}{c} m\alpha \\ \hline D \in N \ A \ A \ N \ \in \ K \ L \ A \\ D \in N \ A \ A \ N \ \in \ K \ L \ A \ A \ N \ K \ K \ A \ A \ B \ K \ A \ A \ B \ K \ K \ A \ A \ B \ K \ A \ A \ K \ K \ A \ A \ B \ K \ K \ A \ A \ K \ K \ A \ K \ K \ A \ K \ K$	Tom C D N M A N E E L E C D N M A N E E L E C D N M A N E E L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E C D N M A N E C L E	Ocho M D N M A N E H L E M D N M A N E H L E M D N M A N E H L E M D N M A N E H L E M D N M A N E H L E M D N M A N E H L E M D N M A N E H L E M D N M A N E H L E M D N M A N E H L E M D N M A N E H L E M D N M A N E H L E M D N M S N E H L E M D N M S N E H L E M D N M S N E H L E M D N M S N E H L E M D N M S N E H L E M D N M S N E H L E	m6 A A O A A B A A O A A B A	Brd L Q N S Q N E Q L E L Q N S Q N E Q L E L Q N S Q N E Q L E L Q N S Q N E X L E L Q N S Q N E X L E L Q N S Q N E X L E L Q N S Q N E L E L Q N S Q N E L E L Q N S Q N E L E L Q N S Q N E L E	Bob H Q N W L N E Q L E H Q N W L N E Q L E H Q N W L N E Q L E H Q N W L N E Q L E H Q N W L N E Q L E H Q N W L N E Q L E H Q N W L N E Q L E H Q N W L N E Q L E H Q N W L N E Q L E H Q N W L N E Q L E L Q N W L N E Q L E L Q N W L N E Q L E L Q N W L N E Q L E	
	Consensus	C F E N E A N E R L S Y	DENAANEKLA	C D N ^M _T A N E ^E Q	M D N M ^A _S N E ^H _Q L E	A Q N Q A N E R M L	L Q N ^{A L} N E X L E	HQNWLNEQLE	Q X E N X X N E X L X X W X X N E X X W X X N E X X X Y X Y X Y X Y X Y X Y X Y X Y X
	N' motifs melanogaster simulans sechelila yakuba erecta ananassae pseudoobscura persimilis willistoni mojavensis virilis grimshawi Consensus	m4 M E N S R N A D L E M E N S R N A D L E M E N S R N A D L E M E N S R N A D L E M E N S R N A D L E M E N S R N A D L E I E N S R N A D L E I E N S R N A D L E I E N S R N A D L E I E N S R N A D L E I E N S R N A D L E I E N S R N A D L E I E N S R N A D L E I E N S R N A D L E I E N S R N A D L E I M R N S R N A D L E	$\begin{array}{c} m\alpha \\ \hline V \ D \ N \ L \ R \ N \ A \ Q \ V \ E \\ V \ D \ N \ L \ R \ N \ A \ Q \ V \ E \\ V \ D \ N \ L \ R \ A \ Q \ V \ E \\ \hline V \ D \ N \ L \ R \ A \ Q \ V \ E \\ \hline V \ D \ N \ L \ R \ A \ Q \ V \ E \\ \hline V \ D \ N \ L \ R \ A \ Q \ V \ E \\ \hline V \ D \ N \ L \ R \ N \ A \ Q \ V \ E \\ \hline \end{array}$	Tom N Q N A V N A S L E N Q N A V N A S L E N Q N A V N A S L E N Q N A V N A S L N Q N A V N A S L N Q N A V N A S L N Q N A V N A S L N Q N A V N A S L N Q N A V N A S L N Q N D I N A S L N Q N D I N A S L S Q N E I N S S L S Q N E I N S S L E S Q N X V N S S L X Q N X V N S S L E					D I A LI X E N X R N S X V
	N" motifs melanogaster simulans sechellia yakuba erocta erocta secal pesudoobscura persimilis willistoni mojavensis virilis grimshawi Consensus	m4 KK N A L L K A E G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L L K A B G O N A L K K A B G O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O O N A L K K A C O N M K K A C O N M K K A							E . L I . A G . N. M. K. N. S. X. K.

Canonical or primary BFMs	N motifs	N' motifs	N" motifs	
Ceratitis capitata Ocho Ceratitis capitata Tom	M D N R A N E D L E D D N L A N E A L E	QQNDYNSSLE		
Ceratitis capitata m4	TENDANERLA	LENSRNADLE	IENFENTKKA	
Haematobia irritans irritans Ocho	MENMANEHLE			
Haematobia irritans irritans Tom	QDNVANEALE	QQNTYNSSLE		
Culex pipiens	YDNSENERLE			
Aedes aegypti	Y D N D A N E R L E			
Anopheles gambiae	Y D N S A N E R L E			
Bombyx mori BFM1	AQNSSNELLE			
Plodia interpunctella BFM1	EQNSSNELLE			
Antheraea assama	EQNSNNEMLE			
Tribolium castaneum BFM1	EDNLANELLE			
Apis mellifera BFM1	NQNNANEALE			
Acyrthosiphon pisum	LENLQNEYIE			
Pediculus humanis corporis	LENEKNEKLE	ADNAINERLE		
Artemia franciscana	NENTANELLE			
Daphnia pulex	DENALNEALE			
Callinectes sapidus	EDNLANEALE			
	D	AD I AD		DE
Consensus	XENXXNEX ^	LENXRNERLE	IENFENTKKA	XENXXNEX
		QQ YSS		Q 3
Secondary (non-canonical) BFMs	N motifs	N' motifs	N" motifs	
Bombyx mori BFM2	DENMANEVRE	NQNILNSNRF	NDNAENQNIL	
Plodia interpunctella BFM2	V D N M A N E V R E	NQNILNSTRF	NDNAENQNIL	
Manduca sexta BFM2	NDNMANEVRE	NQNIVNTNRF	NDNAENQNIV	
Samia cynthia ricini BFM2	NDNMANEVRE	NQNIVNSNRF	NDNAENQNIV	
Heliconius erato BFM2	S D N M A N E V R E	NQNILNSNRF	NDNAENQNIL	
Tribolium castaneum BFM2	NENLANELKE	LDNEINENLA		
Apis mellifera BFM2	NENLENELKE			
				D E
Consensus			NDNAENQNI	XENXXNSX
			I	-

Figure S4

A Protostome DSLs

Xiphinema index Delta	RKTKRQSNSCSALTVDTASDLEACRK	QNERNERN	ERERRLMECQMCNNAVNPIRIAKTDN
<i>Capitella sp. I</i> Delta	RRRSRL-RESEQK	DNVQNEHR	SMNNKLSSIESPPPPHAAPPVSSSSS
Euprymna scolopes Delta	RHRQHYFRENMQKEGE	QNKINSKC	IETDIFTTIPSASASDKITKDEL
<i>Lottia gigantea</i> Delta	RRKNNLMRDNMEKERE	QNIVNNIN	NKKIDSKIFTTPTNTNPVASASIKIN
Lottia gigantea Serrate	KRKKKLRLRRDSYLT	DNRTNNET	EETIRRYRNPLFSHDKSRPTSGASGGC

B Vertebrate Delta-like1

Homo sapiens	568	CVRLRLQKHRPPADPCRGETETMNNLAN-CQREKDISVSIIGAT
Mus musculus		CVRLKLQKHQPPPEPCGGETETMNNLAN-CQREKDVSVSIIGAT
Gallus gallus		CVRLKVQKRHHQPEACRSETETMNNLAN-CQREKDISISVIGAT
Anolis carolinensis		CFRVKMQKRQHQPDACRSETETMNNLAN-CQREKDISISVIGAT
Xenopus tropicalis		CVRVRVQKRRHQPEACRGETKTMNNLAN-CQRPKDISVSIIGTT
Cynops pyrrhogaster		CFRLKMHKQ-RQRDSDSYRGESETMNNLAN-CRREKDISVSVIGAT
Tetraodon nigroviridis		CMVGLALRHIHRQAQRERAETETMNNLSN-IQRDNLIPAS
Danio rerio DeltaA		CVRSKVQQRRRDREDEVANGENETINNLTNNCHRPKDLAVSVVGVA
Danio rerio DeltaD		VFVIYIRLKLQQRSQQIDSHSEIETMNNLTNNRSREKDLSVSIIGAT
		: .* :*: <mark>*</mark> **:* * : .:: .:
		E T NNL N R

C Vertebrate Jagged1

Homo sapiens	1099	PGSHTHSASEDNTTNNVREQLNQIKNPIEKHGAN-TVPIK
Mus musculus		PSSHTHSAPEDNTTNNVREQLNQIKNPIEKHGAN-TVPIK
Gallus gallus		QSSHTHTASDDNTTNNVREQLNQIKNPIEKHGAN-TVPIK
Xenopus laevis		QSSHSHTASEDNTTNNVREQLNQIKNPIEKHGAN-TVPIK
Tetraodon nigroviridis		QSNHNGASATGSEDNTTNNVREQLNQIKNPIEKHVGL-TVAIK
Danio rerio		QSSSATAINPTSPFSTPEENTANNAREHLNQIKNHIEKNASNGSLPGKEI
		··· · · · · · · · · · · · · · · · · ·
		NT NN RE LNQIKN IEK K

SUPPLEMENTARY MATERIAL

Supplementary figure legends

Fig. S1. Transcript accumulation from *FLAG-m4* and *E(spl)ma* variant *UAS* transgenes. (A,B) In situ hybridizations using (A) *E(spl)m4* probe or (B) *E(spl)ma* probe, showing levels of transcript accumulation in late third-instar wing discs from representative lines carrying the indicated *UAS* transgenes, expressed under the control of *sca-GAL4*, compared to wild type (w^{1118}).

Fig. S2. Localization and / or levels of accumulation displayed by variants of E(spl)m α and Dl proteins when misexpressed in imaginal disc tissue. (A) Expression of GFP driven by $m\alpha$ -GAL4 in the late third-instar wing disc. The region magnified in B-E is circled. (B-E) 15-20- μ m confocal stack images of wing disc tissue expressing ($m\alpha$ -GAL4 driver) the indicated tagged E(spl)m α protein variants stained with anti-V5 antibody. (F,G) Comparison of the accumulation and subcellular localization of Dl and Dl^N. Shown are 1- μ m confocal slice images of anti-Dl antibody stains of wing imaginal disc tissue expressing Dl (F, apical level; F', basal level) or Dl^N (G, apical level; G', basal level) under the control of the *dpp-GAL4* driver.

Fig. S3. Deriving consensus sequences for NXXN motifs in Brd family proteins. The NXXN motifs of known BFMs in (A) the 12 fully sequenced *Drosophila* species and (B) other arthropods are aligned. Combining the original NXXN motifs recognized in *Drosophila* BFMs (A, upper row) with the NXXN motifs in the canonical or primary BFMs of other species (B, upper row) yields the eight-residue consensus

(D/E/Q)NXXNEX(I/L/M). Every species listed for which whole-genome sequence data are available possesses a Brd family protein with an NXXN motif fitting this consensus.

Fig. S4. Alignment of putative NXXN motifs in the intracellular domains of Notch ligands. Shown are the portions of the intracellular domains immediately adjacent to the transmembrane domains of (A) Dl and Ser orthologs of various non-arthropod protostomes, (B) Delta-like 1 orthologs of representative vertebrate species, and (C) vertebrate Jagged1 orthologs. Putative NXXN motifs are boxed, and fully conserved residues indicated.