Boros et al.: Supplementary Information

Supplementary figure and table legends

Figure legends:

Supplementary Fig 1. Elk-1 expression at the RNA and protein levels in Hela and EcR-293 (Elk-En) cell lines. Where indicated cells are treated with ponasterone A (PA) for 3 hours prior to harvesting. (A) Quantitative RT-PCR analysis of *ELK1* expression. Error bars represent standard deviation calculated from 5 biologically independent replicates and average of 2 samples. (B, C) Western blot (WB) analyses of Elk-1 expression in 10 µg total cell lysate. The identities of bands corresponding to Elk-1 and Elk-En are indicated. By comparing (B) and (C), it can be seen that Elk-En levels are similar to the levels of endogenous Elk-1 found in HeLa cells.

Supplementary Fig 2. Summary of the profiles represented by target genes in clusters 1-8. The data are presented as the average expression value of genes in each cluster under each of the six experimental conditions. For each gene, the mean of the probesets across all six conditions was set as zero, and expression levels (log2) presented relative to this value. Red arrows highlight conditions under which the expression of Elk-En (+PonA) causes a major reduction in gene expression. Motif logos of the top three sequence motifs discovered by Weeder in the promoters of each cluster are shown to the right of the graphs. The closest matching TRANSFAC matrix for known transcription factor binding sites is shown to the right of the discovered motifs.

Supplementary Fig 3. Elk-1 fusion proteins function in a promoter-specific manner. Reporter gene assays in HEK293T cells with the indicated promoter-reporter constructs and either increasing concentrations of Elk-En (0, 0.5, 5 ng) (A) or Elk-VP16 (0, 5, 10, 50 ng) (B). The results were normalized to the expression of each construct in the absence of Elk-En (taken as 1)(A) or first normalized to renilla luciferase activity, and the activity in the absence of Elk-VP16 given the value of one (B). Error bars represent standard deviation calculated from triplicate samples. While *FOS*- and *SRE*-driven reporters are efficiently down and upregulated by Elk-En and Elk-VP16 as expected, none of the other promoters tested showed significant dose-dependent changes in activity.

Supplementary Fig 4. Cluster 3 genes show minimal inducibility by PMA. (A) Schematic illustration of activation of Elk-1 through phosphorylation by ERK MAP kinases following PMA treatment. (B) Western analysis of Elk-1 activation phosphorylation at Ser383 in serum starved, or at the indicated times following PMA treatment, HeLa (top panel) or SH-Sy5y cells (bottom panel). Total Elk-1 (bottom panel only) and phospho-ERK levels were also detected. (C) The levels of mRNA expression of the indicated genes in HeLa (black bars) or SH-Sy5y (grey bars) cells was analysed by qRT-PCR. Cells were serum starved for 24 h and then treated with PMA for indicated times (hrs). Error bars represent standard deviations calculated from two biologically independent replicates which are the average of 2 samples. Transient and robust Elk-1 activation is seen in both cell types and is accompanied by

transient and robust EIX-1 activation is seen in ooth cen types and is accompanied by transient high level activation of c-FOS. However, none of the cluster 3 genes examined show high levels of induction following PMA stimulation.

Supplementary Fig 5. Depletion of SAP-1 promotes enhanced promoter occupancy by Elk-1. qPCR-ChIP analysis of Elk-1 binding to the indicated promoters in HeLa cells. Where indicated, cells were transfected with siRNA against *SAP-1* or *GAPDH*. Samples from serum starved HeLa cells taken 48 hrs after transfection with the indicated siRNAs. ChIP was performed using antibodies against Elk-1. This data is equivalent to that in Fig. 4C, except that the fold increase in Elk-1 binding was calculated from individual experiments and then the average fold increase caused by SAP-1 depletion shown (relative to binding in the presence of control GAPDH duplexes, taken as 1). Error bars represent standard deviations calculated from two biologically independent replicates each being the average of duplicate samples.

Table legends:

Supplementary table 1. Details of all genes consistently downregulated by Elk-En in at least one of three experimental conditions (serum starved, 15 mins EGF and 30 mins EGF). The gene symbol, Refseq transcript and Entrez gene identifiers (columns A, B and D respectively) correspond to the Affymetrix probe set on the microarrays (column C). Columns E, F and G indicate genes that have also been associated with transcription factor binding events for Elk-1, SRF and GABP α respectively. The remaining columns show the expression value of each gene. Columns H to M show the relative expression of the groups of probesets representing each gene. Columns N to P represent the same data but show fold change in response due to PonA treatment. The list is divided into 8 groups according to the hierarchical clustering performed on columns H to M.

Supplementary table 2. Enrichment of functionally linked gene categories in combined clusters 3, 4, 5 and 8. Gene ontology analysis of cluster genes. Gene ontology terms ("molecular function" levels 3 and 5, plus "biological function" level 5) were analysed to identify categories containing a significant proportion of gene symbols associated with the combined genes from clusters 3, 4, 5 and 8. Categories are shown that contain at least 5 genes from a gene cluster and exceed the uncorrected significance threshold of P=0.001.

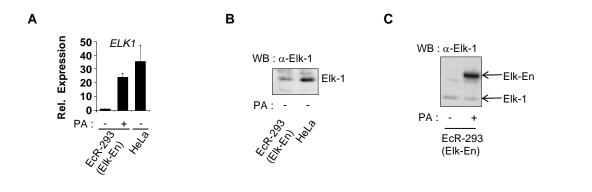
Supplementary table 3. Enrichment of functionally linked gene categories in individual clusters 3, 4, 5 and 8. Gene ontology analysis was performed as in supplementary Table 2, except that each cluster was analysed individually rather than in combination.

Note that clusters 1, 2, 6 and 7 do not have significant GO terms (matching our criteria of at least 5 matching genes and P<0.001) despite the similar sizes of some of these clusters, although cluster 7 has a significant KEGG pathway (antigen processing and presentation; 7 genes; P=7.67E-5).

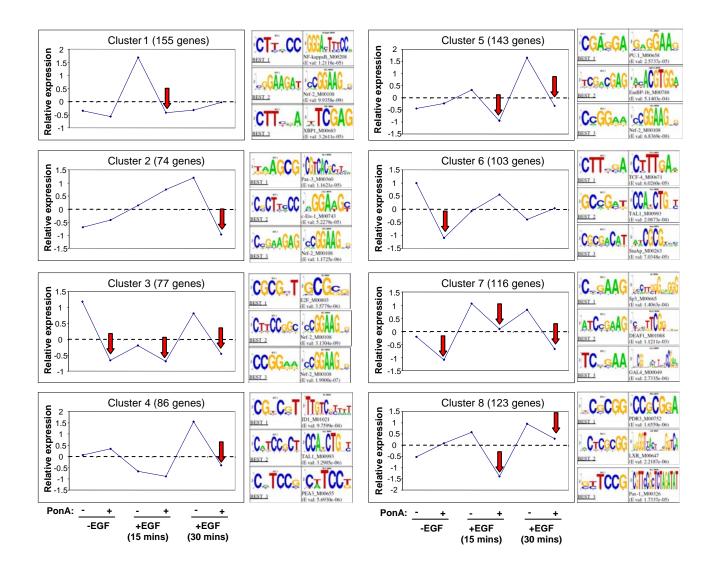
Supplementary table 4. Summary of genes identified as commonly downregulated in response to Elk-En expression and as Elk-1 targets by ChIP-chip analysis (Boros et al., unpublished). Genes are presented in groups according to the cluster assigned due to their response to Elk-En expression. The total numbers of probesets (expression values) and corresponding gene symbols within each cluster are indicated. For example, of the 87 gene symbols associated with cluster 3 genes, these represent only 77 unique events as two probe sets could not distinguish between several possible

related genes. One of the "overlapping" promoters bound by Elk-1 was assigned to one of two potential different genes associated with the same expression values. The percentage of genes in each cluster also bound by Elk-1 in ChIP-chip analysis is indicated with respect to total expression values or gene symbols. The significance of the overlap (with respect to expression values) was calculated by comparing 1000 random sets of genes (each corresponding to the number of genes found in each cluster) with the Elk-1 target list, the corresponding Z-scores are indicated. Genes highlighted in bold were not identified as also bound by GABP α in ChIP-Seq analysis (Supplementary Table 5; 30).

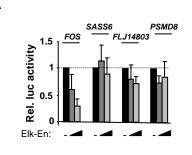
Supplementary table 5. Over-representation of Elk-1 binding motifs in promoters of Elk-En regulated gene clusters. The frequency of occurrence of Elk-1 motifs (represented by different sequence motifs in column 1), in repeat masked sequences in the promoters of the genes in each cluster, compared to the occurrence of the same motifs in a background data set comprised of 300 randomly selected promoters. Motifs represent parts of the 10 bp motif expected for Elk-1 from *in vitro* selection experiments (14), and discovered as the most over-represented decamer motif amongst ChIP-identified Elk-1 candidates (Boros et al., unpublished). The percentage of promoters in each cluster containing at least one of the 6 or 8 bp motifs is shown. In the case of the 8 bp motifs, the percentage of non-redundant promoters containing at least one such motif is shown. A Fisher's Exact chi-square test for 2x2 contingency tables was used to assess whether the frequency of occurrence of a particular motif found in the promoter sequences in each cluster was significantly enriched compared to the background sets of 300 sequences. All non-degenerate hexamer, and octamer motifs are enriched in the cluster 3 promoter dataset compared to the control dataset

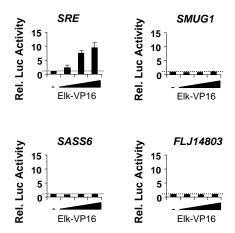

analysed, indicating that these motifs represent Elk-1-specific DNA binding. Clusters 4, 5 and 8 also show over-representation of Elk-1 binding motifs.

Supplementary table 6. Summary of genes identified as downregulated in response to Elk-En expression and as SRF targets by both ChIP-chip (Boros et al., 2009) and ChIP-Seq analysis (30). A total of 160 genes were identified as SRF targets in both studies. Genes are presented in groups according to the cluster assigned due to their response to Elk-En expression. Genes indicated in bold also are identified as direct Elk-1 targets in the Elk-1 ChIP-chip analysis (Boros et al., unpublished). The total numbers of probesets (expression values) and corresponding gene symbols within each cluster are indicated. The percentage of genes in each cluster also bound by SRF in both ChIP-chip and ChIP-Seq analysis is indicated with respect to total expression values or gene symbols. The significance of the overlap (with respect to expression values) was calculated by comparing 1000 random sets of genes (corresponding to the number of genes found in each cluster) with the SRF target list; the corresponding Z-scores are indicated.


Supplementary table 7. Summary of genes identified as downregulated in response to Elk-En expression and as GABP α targets by ChIP-Seq analysis (30). Genes are presented in groups according to the cluster assigned due to their response to Elk-En expression. The total numbers of probesets (expression values) and corresponding gene symbols within each cluster are indicated. In several cases, several potential different genes from the expression analysis can be associated with the same expression values, and thus only one gene was selected for detecting overlapping binding by GABP α and Elk-1. The percentage of genes in each cluster also bound by

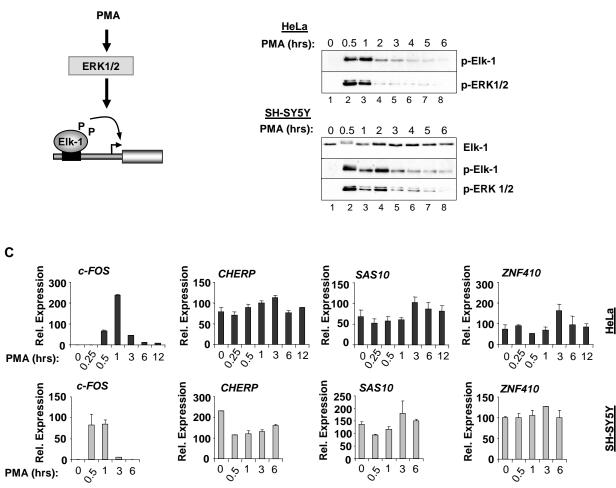
GABP α in ChIP-Seq analysis is indicated with respect to total expression values or gene symbols. The significance of the overlap (with respect to expression values) was calculated by comparing 1000 random sets of genes (corresponding to the number of genes found in each cluster) with the GABP α target list; the corresponding Z-scores are indicated. Genes highlighted in bold were also identified as also bound by Elk-1 in ChIP-chip analysis (Boros et al., unpublished) or by qPCR (this study).


Supplementary table 8. Primers used for ChIP q-PCR analysis. The genomic coordinates of each primer and the size of the resulting amplicon are given.

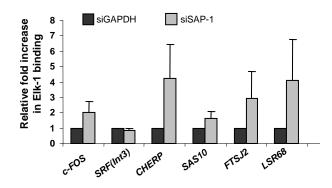

Boros et al. Supplementary Fig. 1

Boros et al. Supplementary Fig. 2

в



Boros et al. Supplementary Fig. 3


Α

Α

В

Boros et al. Supplementary Fig. 4

Boros et al. Supplementary Fig. 5

Supplementary Table 2: Enrichment of functionally linked gene categories in combined clusters 3, 4, 5 and 8.

Gene Pathway / Gene Ontology category	P-value
GO - Biological Process - level 3	
Cellular biosynthetic process (GO:0044249)	2.35E-06
Biopolymer metabolic process (GO:0043283)	8.55E-06
Intracellular transport (GO:0046907)	1.17E-05
Regulation of programmed cell death (GO:0043067)	2.58E-05
Organelle organization and biogenesis (GO:0006996)	2.68E-05
Nucleobase/'side/'tide and nucleic acid metabolic process (GO:0006139)	5.71E-05
Cell death (GO:0008219)	1.42E-04
Establishment of cellular localization (GO:0051649)	2.10E-04
Alcohol metabolic process (GO:0006066)	3.47E-04
Cellular localization (GO:0051641)	3.67E-04
RNA splicing (GO:0008380)	4.48E-04
GO - Biological Process - level 5	
RNA processing (GO:0006396)	2.77E-06
Intracellular transport (GO:0046907)	4.25E-05
Regulation of programmed cell death (GO:0043067)	7.88E-05
Regulation of apoptosis(GO:0042981)	1.52E-04
Apoptosis (GO:0006915)	2.85E-04
Cell death (GO:0008219)	4.72E-04
Nucleoside triphosphate biosynthetic process (GO:0009142)	6.31E-04
GO - Molecular Function - level 3	
RNA binding (GO:0003723)	3.31E-09
Ribonucleotide binding (GO:0032553)	1.60E-05
Purine nucleotide binding (GO:0017076)	3.71E-05
Hydrolase activity, acting on acid anhydrides (GO:0016817)	3.64E-04

Supplementary Table 3: Enrichment of functionally linked gene categories in individual clusters 3, 4, 5 and 8.

Gene Pathway / Gene Ontology category	P-value
GO - Biological Process - level 3	
- Cluster 3	
Biopolymer metabolic process (GO:0043283)	2.16E-05
Nucleobase/'side/'tide and nucleic acid metabolic process (GO:0006139)	2.50E-04
Transcription, DNA-dependent (GO:0006351)	9.06E-04
- Cluster 4	
Intracellular transport (GO:0046907)	8.65E-04
- Cluster 5	
Cellular biosynthetic process (GO:0044249)	2.75E-05
Macromolecule catabolic process (GO:0009057)	7.22E-04
Macromolecule biosynthetic process (GO:0009059)	7.52E-04
GO - Biological Process - level 5	
- Cluster 3	
RNA processing (GO:0006396)	3.31E-04
- Cluster 4	
Microtubule-based movement (GO:0007018)	2.78E-0
Cytoskeleton-dependent intracellular transport (GO:0030705)	6.70E-0
Protein polymerization (GO:0051258)	4.11E-04
- Cluster 5	
Hexose metabolic process (GO:0019318)	4.90E-04
Monosaccharide metabolic process (GO:0005996)	5.86E-0
Monosaccharide catabolic process (GO:0046365)	7.11E-0
Translation (GO:0006412)	8.12E-04
- Cluster 8	
Nucleoside triphosphate biosynthetic process (GO:0009142)	1.30E-0
Purine nucleotide biosynthetic process (GO:0006164)	5.09E-0
Ribonucleotide biosynthetic process (GO:0009260)	5.09E-0
GO - Molecular Function - level 3	
- Cluster 4	
Hydrolase activity, acting on acid anhydrides (GO:0016817)	4.42E-0
Purine nucleotide binding (GO:0017076)	1.70E-0
Ribonucleotide binding (GO:0032553)	2.57E-0
- Cluster 5	
RNA binding (GO:0003723)	1.81E-0

Cluster	1	2	3	4	5	6	7	8
Expression values	155	74	77	86	143	103	116	123
Gene symbols (NR)	187	89	87	96	153	113	131	129
	C21orf7	CHD1	BCL10	ATP6V1A	BAT3	C11orf61	ANKRD55	ANKRD40
	CDKAL1	FAM63A	C10orf97	BAT1	EGR2	FPGT	CCDC52	DBR1
	CHRNA9	LRRC50	C14orf43	CCNT1	HSPC152	NUCKS1	GCS1	ECH1
	HIST1H2AG	NR2C2	CAP1	CCT2	IER2	PAK1IP1	TAF12	LIG1
	HIST1H4H	THAP9	LRRC41	GNB2L1	LCMT2	PCDHGA1	ZNF557	NME1
	HIST1H4I		MCL1	MAP3K7	M6PR	WDR55		NME1-NME
	HIST1H4K		МҮС	MED6	MAGED2			PTRH2
Gene symbols present in Elk1	отс		PJA1	YBX1	NCAPD2			RALY
ChIP-chip	PCDHGA1		PRKAB1		PFN1			RPS14
FDR<10 set	SNAPC5		PTER		PPP1R11			SAP30BP
	ST7L		PXMP3		PPP2R1A			SLC25A11
	SYTL2		RBL2		RBBP5			TAF1A
	TRAPPC2		RBM3		RPL29			WDR67
			SEC24A		SNRPB			YIPF3
			THG1L		TPX2			ZNHIT1
					TTC31			
					YIPF5			
% of expression values	8.4	6.8	19.5	9.3	11.9	5.8	4.3	12.2
Z-score	1.0	0.1	4.9	1.1	2.8	-0.3	-0.9	2.5
% of gene symbols	7.0	5.6	17.2	8.3	11.1	5.3	3.8	11.6
Z-score	0.3	-0.3	4.2	0.8	2.3	-0.5	-1.3	2.4

Supplementary Table 4: Overlap between Elk-1 ChIP-chip data and Elk-En regulated gene clusters

	Cluster	1 (n=130)	Cluster	2 (n=69)	Cluste	r 3 (n=52)	Cluster	4 (n=53)	Cluste	r 5 (n=96)	Cluster	6 (n=88)	Cluster	7 (n=90)	Cluste	r 8 (n=94)	Random (n=300)
Motif	% occ.	P-value	% occ.	P-value	% occ.	P-value	% occ.	P-value	% occ.	P-value	% occ.	P-value	% occ.	P-value	% occ.	P-value	% occ.
CCGGAA	37.7	NS	40.6	NS	78.8	<0.0001	60.4	0.0365	72.9	<0.0001	51.1	NS	51.1	NS	68.1	0.0013	44.3
CGGAAG	41.5	NS	47.8	NS	84.6	<0.0001	69.8	0.0027	77.1	<0.0001	52.3	NS	56.7	NS	70.2	<0.0001	47.0
GGAAGT	65.4	NS	63.8	NS	78.8	0.0394	60.4	NS	69.8	NS	67.0	NS	57.8	NS	68.1	NS	64.0
CCGGAW	51.5	NS	56.5	NS	90.4	<0.0001	73.6	0.023	80.2	<0.0001	62.5	NS	58.9	NS	75.5	0.001	56.7
CGGAWG	52.3	NS	58.0	NS	88.5	<0.0001	86.8	0.0002	85.4	<0.0001	56.8	NS	67.8	NS	78.7	0.0013	60.7
GGAWGT	82.3	NS	78.3	NS	84.6	NS	84.9	NS	82.3	NS	79.5	NS	75.6	NS	80.9	NS	81.0
AACCGGAA	0.8	NS	2.9	NS	9.6	0.0023	5.7	0.046	5.2	0.0227	3.4	NS	3.3	NS	8.5	0.0007	1.0
ACCGGAAG	3.1	NS	5.8	NS	15.4	0.0111	11.3	NS	12.5	0.0181	0.0	0.028	7.8	NS	11.7	0.031	5.0
CCGGAAGT	5.4	NS	11.6	NS	25.0	0.0036	20.8	0.0288	24.0	0.0007	10.2	NS	10.0	NS	27.7	<0.0001	9.3
Total 8mers	8.5	NS	14.5	NS	34.6	<0.0001	32.1	0.0002	33.3	<0.0001	10.2	NS	16.7	NS	33.0	<0.0001	10.7
CC(W) ₆ GG	10.8	NS	8.7	NS	5.8	NS	7.5	NS	5.2	NS	11.4	NS	4.4	NS	5.3	NS	7.3
CC[(W)₅N]GG	36.9	NS	36.2	NS	36.5	NS	37.7	NS	35.4	NS	40.9	NS	31.1	NS	37.2	NS	36.0
																	I

Supplementary Table 5: Motifs within Elk-En regulated gene cluster promoters

	1	2	3	4	5	6	7	8
Expression values	155	74	77	86	143	103	116	123
Gene symbols (NR)	187	89	87	96	153	113	131	129
			BCL10	TPM4	EGR2		OPA3	ECH1
Gene symbols			C14orf43		LAG3			RAB5B
present in			MCL1		MLF2			SLC25A11
SRF ChIP-chip FDR<10 and			PTER		PFN1			
ChIP-seq sets					PPP1R11			
-					RBBP5			
					YIPF5			
% of expression values	0	0	5.2	1.2	4.9	0	0.9	2.4
Z-score	-1.1	-0.8	4.4	0.3	5.5	-0.9	0	1.9
% of gene symbols	0	0	4.6	1.0	4.6	0	0.8	2.3
Z-score	-1.3	-0.9	3.7	0.2	5.0	-1.0	-0.1	1.8

Supplementary Table 6: Overlap between SRF ChIP-chip/ChIP-Seq data and Elk-En regulated gene clusters

Cluster	1	2	3	4	5		6	7	8	
Expression values	155	74	77	86	14	3	103	116	123	3
Gene symbols (NR)	187	89	87	96	15	3	113 131		129	
Gene symbols present in GABPα ChIP-Seq dataset	AKAP10 APOF C17orf62 CEP135 CSAD DDX25 FBXL8 HIST1H2AG HIST1H41 HIST1H41 IFT140 MAP2K1 MBTD1 MLLT1 POLM POU2F1 RQCD1 SNAPC5 ST7L TLN1 TRAPPC2 UCKL1 VAPA ZNF225 ZNF271	ACN9 AHDC1 C4orf18 C4orf30 CHD1 CORO1A DFFA FAM108A1 FAM63A FLJ11151 HTF9C IQCE NR2C2 PSENEN SLC17A5 ST8SIA4 STK16 THAP9 VCPIP1	ACBD3 AKTIP BCL10 C10orf97 C14orf104 C7orf49 CAP1 CBLL1 CCDC47 CDKN2AIP DAZAP1 DNAJB1 DPP8 DR1 FAM48A FAM8A1 FTSJ2 KBTBD2 KCTD5 KIAA0495 KIN LRRC41 MORC3 NIP7 OBFC2B POL1 MORC3 NIP7 OBFC2B POL1 PKAB1 MORC3 NIP7 OBFC2B POL1 PKAB1 PXMP3 RAP2C RBM3 RNF25 RRS10 SLC25A16 SMCR7L SFRS10 SLC25A16 SMCR7L SFRS10 SLC25A16 SMCR7L STIP1 TCEB3 TFB2M THG1L TMF1 UTP14A YRDC YWHAB ZNF12 ZNF430 ZNF430 ZNF587	ACOX1 ATP6V1A BAT1 C12orf10 C20orf30 CCNT1 CCT2 COG8 CSNK2A1 CSNK2B DPM2 EIF2S3 GNB2L1 HARS MAP3K7 MCM4 MED6 NCBP1 PCBP2 PDF PGK1 POLE3 PPIB PWP2 RUVBL2 SULT1A3 SULT1A4 TM9SF1 TMED2 TMEM147 TUBB2C TYK2 VCP YBX1 ZDHHC4 ZFYVE21 ZNF7	ABCF1 ACTB ALDOA AP2M1 ARHGDIA BAP1 BAT3 BCAP31 BCA72 C100f188 C120f144 CDC37 CINP CLN8 COG7 COPE CSTF2 DAXX DDOST DDX56 DEAF1 EEF2 EN01 ERGIC3 G&PD GAPDH GTF3C5 HSPC152 IER2 LIMK2 MGPR MAD2L1BF MACED2 NAPKAP1 MCM5 MCM7 MLF2 NAPKAP1 MCM5 NCAPD2 NOL12 NONO NSUN5 NUDT6 P4HB PCBP1 PEN1 PLD3 PMPCA POLR2J2 POLR2J3 PMPCA POLR2J3 PMPCA POLR2J3 PMPCA POLR2J3 PMP1CA	PPP1R11 PP2R1A PRCC PRMT1 PRPF8 PSMC3 RBBP5 RFC2 RPL18A RPL29 RPL8 RPS5 SDF4 SC61A1 SRR7 TMEM115 TPX2 TRIB3 TRIOBP TC31 TUFM UBE2G2 UBE2M USP11 XRCC3 YIPF5 ZRSR2	ANTXR1 ATP11B BMI1 C11orf61 C16orf59 E2F8 FPGT GTF2H2 KCNC4 KCTD9 LOC730394 METTL2A METTL2B METTL5 MRPS31 NEK11 PAK1IP1 RAMP3 RECQL RFX1 SCLY SCNN1D SHQ1 SP1 SSB TRIM16 VILL WDR55	BFAR CCDC52 CENPB DNAI1 EDC4 EMILIN1 EXOSC4 GCS1 GDAP1 GMDS GPAA1 ISG20L2 KLHL18 MAP3K11 MRPS18C NT5C OPA3 PDAP1 PSMB10 SEC22B SIRT7 SPTBN2 TAF12 YKT6 ZNF557	AHSA1 ANKRD40 AP2S1 ATP6V0B BUD31 C11orf48 C11orf81 C10rf80 CCDC44 CCT7 CIB1 CLPP COMMD4 COMT DHX30 DNAJB14 DPM3 DTYMK ECH1 EN01 EXOC3 FAM96B GPX1 GUK1 IPO4 ITPKB JOSD1 LIG1 MAD1L1 MAGED1 MAPBPIP MRPL12 MRPL3 NDUFA13 NDUFS8 NDUFS1 NME3 PFKP PMM2 PPAN PRKCZ PRPAN PRKCZ PRPAN PRKCZ PRPAN PRKCZ PRPAN PRKCZ PRPAN PRKC	SLC25A11 SPINT2 STUB1 TAF1A TRAPPC4 TRIM28 UQCR VGLL4 WDR45 YIPF3 ZNHIT1
% of expression values	16.1	25.7	67.5	43.0	57.	3	27.2	22.4	52.0)
Z-score	-3.2	-0.4	7.9	3.2	7.9	9	0.1	-1.1	6.1	
% of gene symbols	13.4	21.3	59.8	38.5	53.		24.8	19.8	49.	6
Z-score	-4.2	-1.3	7.0	2.5	7.4	1	-0.6	-2.0	5.5	

Supplementary Table7: Overlap between GABP α ChIP-Seq data and Elk-En regulated gene clusters

Supplementary Table 8: Primers used for ChIP q-PCR analysis

NAME	ADS#		SEQUENCE	REGION AMPLIFIED (Mar. 2006 (hg18) assembly)	PCR PRODUCT SIZE
ChIP_MCL1	ADS 1861 ADS 1862	FORWARD PRIMER REVERSE PRIMER	AGTCCCCAACTATGCCCTCT CTCTGTGCTTCCCTGAGACC	chr1:148819047-148819234	188bp
ChIP_ <i>c-FO</i> S	ADS 4055 ADS 4056	FORWARD PRIMER REVERSE PRIMER	GAGCAGTTCCCGTCAATCC GCATTTCGCAGTTCCTGTCT	chr14:74814930-74815094	165bp
ChIP_CHERP	ADS 1589 ADS 1590	FORWARD PRIMER REVERSE PRIMER	CCCGGTCTCGACTAACACC GAAACTCCGGAAGTGAGAGC	chr19:16514334-16514512	179bp
ChIP_SAS10	ADS 1601 ADS 1602	FORWARD PRIMER REVERSE PRIMER	CGTTTCCACACGGAAAGATT GCAGACTCCTGATCGGCTAC	chr4:71772947-71773133	187bp
ChIP_ZNF410	ADS 1591 ADS 1592	FORWARD PRIMER REVERSE PRIMER	GAAGGCCGAGAGTGAGTGAG ACAGGAAGTTTGGCTGACCC	chr14:73423082-73423274	193bp
ChIP_FTSJ2	ADS 1593 ADS 1594	FORWARD PRIMER REVERSE PRIMER	CGCTCTCCTTGTCTCTCTCC ATTCCAGGAGTCGTGGTGAC	chr7:2248439-2248626	188bp
ChIP_INT3 SRF	ADS 1273 ADS 1274	FORWARD PRIMER REVERSE PRIMER	GCCACAGGGCAGTAGATGTT TCAGGCCCAAGTATCCACTC	chr6:43251941-43252121	181bp
ChIP_LSR68	ADS 1599 ADS 1600	FORWARD PRIMER REVERSE PRIMER	AACATTTCGTCACCGTCTCC GGAAGGCGTCCTTAAACCTC	chr14:73296828-73297012	185bp
ChIP_ <i>MOAP1</i>	ADS 1603 ADS 1604	FORWARD PRIMER REVERSE PRIMER	CCGGATCTCACCTTCCTGT GGATTCCACCTGTTTTGGTC	chr14:92720957-92721141	185bp