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Supplementary materials

0.1 Computing the HMM likelihood

Hidden Markov model likelihoods generally cannot be written in a closed form so that

a recursive procedure based upon the law of total probability is used in the likelihood

computation (Juang and Rabiner, 1991). We use a forward summation recursive formula

for computing the HMM likelihood, described below. We define gp(s) as the probability of

the sequence of probes up to probe p with the pth state as s:

gp(s) = P ((x1, y1), . . . , (xp, yp), sp = s) = P (xp, yp|s)
∑

sp−1∈{0,1}

gp−1(sp−1)τsp−1,s (1)

where P (xp, yp|s) = ps(xp)fs(yp) for s ∈ {0, 1}, corresponding to the not enriched and

enriched states. The τij parameters represent the transition probability between states i and

j (i, j ∈ {0, 1}). The total likelihood is calculated through recursively computing equation

(1) for p = 1, . . . , P and given by gP (0) + gP (1) = P ((x1, y1), . . . , (xP , yP )).

The sequence likelihoods p0(xp) and p1(xp) do not have closed forms and can also be

calculated using a recursive formula for each sequence taken to correspond to a probe. We

achieve synchrony between the probe intensity and probe sequence by expanding the probe

sequence to include the sequences of the binding DNA fragments. The length of the probe

sequence is taken to be 1500 bp about the center of the probe regardless of the probe

length on the microarray. This could potentially lead to overlap between shorter probes,

thus invalidating the independent sequence assumption between probes- however with a

small number of short probes we ignore this overlap in the enrichment estimation step in

the interests of model simplicity. The few longer probes are truncated to 1500 bp to avoid

biases due to probe length. In motif estimation step, the overlapping probes are truncated

to avoid double counting of motif sites. The likelihood of subsequence xp[i : j] given that it
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was emitted from motif Θv is denoted as p(xp[i : j]|Θv) where j − i+1 = wv and is given by

p(xp[i − wv + 1 : i]|Θv) = I[i − wv + 1 > 0]I[i 6 K]

i
∏

j=i−wv+1

∏

l∈{A,C,G,T}

Θ
I[xp[j]=l]
v,lj .

The term I[i − wv + 1 > 0]I[i 6 K] makes the probability 0 when the motif would not

fit within the sequence of length K. Let φp(k) denote the probability of xp up to position

k ∈ [0 . . .K]. Then p1(xp) are calculated by recursive summation allowing for for all possible

motif site locations, as below:

φp(0) = 1

φp(k) = p1(xp[1 : k]) =
V

∑

v=1

πvp(xp[k − wv + 1 : k]|Θv)φp(k − wv). (2)

p0(xp) is found similarly by allowing v = 1, .., V − 1.

0.2 MCMC fitting procedure

After initialization of parameters, we fit the model with a Data Augmentation (DA) method,

involving the following iterative steps:

(1) Sample intensity parameters (µ1, ν2
1 , ν2

0 , σ2
a | s,x,y) using a Metropolis-Hastings (MH)

random walk procedure.

(2) The enrichment states sp are then sampled jointly from the posterior distribution of

(s | x,y, parameters) through the recursive backward sampling procedure, below:

sP |(x1, y1), . . . (xP , yP ) ∼ Bern

(

gP (1)

gP (1) + gP (0)

)

,

sp|(x1, y1), . . . , (xp, yp), sp+1 ∼ Bern

(

gp(1)τ1,sp+1

gp(1)τ1,sp+1
+ gp(0)τ0,sp+1

)

for p = {P−1, . . . , 1}.

(3) The transition parameters τij | x,y, s, where tij are the i → j transitions given by sp

(sp = 0, 1), are drawn from the complete conditional (Beta) distributions.

(4) The enriched segments are formed by the overlapping regions of the genome that cor-

respond to probes with sp = 1, and these segments are denoted by xe where the

index e stands for “enriched”. A recursive DA step is applied to the xe in order to
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iteratively sample the motif site locations: (A | ΘV ,x,y, parameters), the motif matrix:

(ΘV | A,x,y, parameters) and motif prevalence: (π | A,x,y, parameters).

0.3 Data Preprocessing

The data consist of four arrays and 11, 575 non-telomeric probes of various lengths spanning

the yeast genome of 17 chromosomes with a total of 12 million base pairs. The corresponding

yeast genome was filtered for large base pair repeats using the RepeatMasker software of Smit

et al. (2004). We used median centering and variance standardization to normalize the data.

Shifting the median of each array to 0 is important because the proposed model assumes

that the majority of the observations will arise from a distribution that is symmetric about

0. Variance standardization allows us to assume that the within array variance is equal.
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Appendix: Computational Details

The sampling scheme for the joint intensity sequence model is given below.

(1) Initialize all parameters µ1, ν2
1 , ν2

0 , σ2
a, Θv, π, τij , and s1, . . . sP .

(2) Sample µ1, ν2
1 , ν2

0 , and σ2
a with MH random walk.

(3) Compute P (yp, xp|sp) = fsp
(yp)psp

(xp) for sp ∈ {0, 1}.
(4) Compute gp(0) and gp(1) for p ∈ {1, . . . , n} with Forward Algorithm.
(5) Sample Backwards sP , sP−1 . . . s1.
(6) Count the number transitions tij where i → j in s1...P .
(7) Sample τij ∼ Beta(tij + δij ,

∑

k 6=j tik + δij).

(8) We define the Ke × V matrices Ae corresponding to the segments xe of length Ke. The
elements Ae,jv indicate the sampling of the motif or PSWM v at position j such that
Ae,jv = 1 if the vth PSWM was sampled with Ae,jv = 0 otherwise. We may sample Ae,jv

using the backward algorithm described below:

(a) Initialize Ae,jv = 0, nv = 0.
(b) Let j = Ke the last position in sequence xe.

(c) Sample Ae,j. ∼ Multinomial(φe(j−w1)π1p(xe[j−w1+1:j]|Θv)
φe(j)

, .., φe(j−wV )πV p(xe[j−wV +1:j]|Θv)
φe(j)

)

so that Ae,jv = 1 iff the vth PSWM was sampled Ae,jv = 0 otherwise.
(d) Decrement j by (wv − 1) iff Ae,jv = 1.
(e) Increment nv by 1 iff Ae,jv = 1.
(f) Return to 3 until j = 0.

(9) The motif matrix ΘV depends on the letter counts from the sampled TFBS where Ae,jV =
1, and we will call this 4 × wV count matrix C where the element cij is the number of
the symbol i at motif position j. ΘV has conditional distribution PD(B +C) where PD
is the product Dirichlet distribution. Sample ΘV ∼ PD(B + C).

(10) Next, the π parameter depends on the number of sampled realizations of each PSWM

n1, .., nV given by Ae so that πV ∼ Beta(δ0(1−γ)+
∑V −1

v=1 nv, δ0γ+nV ), and the complete
conditional for [π1, . . . , πV −1] becomes Dirichlet(n1 + δ1, .., nV −1 + δV −1). Sample πV ∼

Beta(δ0(1 − γ) +
∑V −1

v=1 nv, δ0γ + nV ).
(11) Sample [π1, . . . , πV −1] ∼ Dirichlet(n1 + δ1, .., nV −1 + δV −1).
(12) Return to 2.

The intensity only sampling scheme would skip steps 8-11, and step 3 would only compute

P (yp|s) = fsp
(yp). The computations of step 3 may be prohibitive because of the terms

psp
(xp) if the number of background motifs V − 1 is large. The ratio p0(xp)/p1(xp) is what

is necessary for the computation of gp(sp), and this ratio may be approximated by reducing

the number of background motifs in this step. The method is implemented with the C

programming language, and the executable program will be available upon request made to

gelfondjal@uthscsa.edu.
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0.4 Model Initialization

The initialization of the sequence model requires a reasonable estimate of the TFBS motif to

facilitate convergence. The sequences selected by the above procedure are likely to have the

highest concentration of the motif binding sites, but it is evident that there are many non-

random patterns in the DNA that correspond to different modes in the likelihood and can

lead to the failure of the stochastic dictionary model to find the motif which gives the highest

likelihood for these sequences. To get the initial motif estimate, an accumulating stochastic

dictionary model was fit to the sequences in which successive motifs are estimated and added

to the dictionary. First, the dictionary was initialized with PSWMs of length one representing

A’s, C’s, G’s, and T’s as well as repeat words of A’s and T’s of both of length 4 and length

8, which appeared sufficient to capture the dependence in the background, i.e. did not lead

to further “repeat” motifs being predicted. These 8 motifs were considered part of the fixed

background model with motif matrices Θ1, . . .Θ8. The search for the “interesting” motif (ΘV )

was restricted to the assumed motif width of 13 (Lieb et al., 2001), and a motif of length 13

with uniform probability across all letters at all positions was added to the dictionary and

updated using the data augmentation method described in Section 2 (V = 9). This motif is

considered the foreground motif Θ∗ and is the only motif updated in each cycle of the DA

sampler. After approximate convergence, the updated motif is added to the fixed background

dictionary, and another motif of length 13 with uniform probability across all letters at all

positions is added to the dictionary so that V = 10, and this new word becomes the new

foreground motif. The procedure of iteratively adding words to the background allows the

model to consider different modes in the space of potential motifs.

Two likelihoods of the sequences are plotted across the iterations in order to find a

reasonable motif for initialization. The first is the likelihood of the sequences given the full

dictionary up to that point which may be denoted as
∏

Xi∈Top Sequence p(Xi|Θ1, . . . , Θ8+m, Θ∗)

where m > 0 is the number of accumulated words and Θ∗ is the updated motif. The

likelihood increases as motifs are added to the dictionary, and after a few iterations a plateau

is reached signifying entrapment in a likelihood mode. The second likelihood computed is

based on the original eight-PSWM background with only the current foreground motif and

may be denoted as
∏

Xi∈Top Sequence p(Xi|Θ1, . . .Θ8, Θ
∗). This likelihood is an indication of the

improvement in model fit given the addition of only the current foreground motif (Figure

1 in the Supplementary material). The motif that gives the largest increase in sequence

likelihood is taken as a reasonable choice for the initial estimate of ΘV in the joint sequence

and intensity model, while the PSWMs Θ1, . . . , Θ8 are used in the background model.

[Figure 1 about here.]
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[Table 1 about here.]
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Figure 1. Likelihood trace plots for Accumulating Dictionary (Upper), and
Single Word Addition (Lower). Independent runs are distinguished by bold
vertical bars, and subsequent motifs are separated by light vertical bars. Plots
are shown for 4 runs of length 2000 in which a total of 8 words are added to
the dictionary every 250 iterations. One can see that runs 2 and 3 have the
highest likelihood and that the fifth motifs added in both of the runs give a
hugely significant improvement in model fit. The fifth motifs added in both of
these runs are similar to the Rap1 motif.
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Table 1

Comparison of binding sites γ = 0.00006

IS IO Chipotle

IS 284
IO 256 262

Chipotle 256 247 271

Table 2

Comparison of binding sites γ = 0.00007

IS IO Chipotle

IS 295
IO 263 269

Chipotle 259 251 274

Table 3

Comparison of binding sites γ = 0.00008

IS IO Chipotle

IS 299
IO 270 276

Chipotle 266 255 277

Table 4

Comparison of binding sites γ = 0.00009

IS IO Chipotle

IS 305
IO 275 283

Chipotle 271 263 289

Table 5

Comparison of binding sites γ = 0.00010

IS IO Chipotle

IS 309
IO 279 284

Chipotle 277 267 293


