Supporting information:

Figure SI-1A,B. C_{α} RMSD of the DBDs for the AB and CD wings respectively. For both AS and HT the DBD RMSD stays relatively low on the CD side but gradually rises on the AB side. The AB wing of the AT simulation also rises gradually, but the CD side changes dramatically between the 45th and 55th ns.

Figure SI-2A-C. Correlation matrices for all three simulations. A, B, and C are the AS, AT, and HT simulations, respectively.

Figure SI-3A-C. Correlation change between first and second halves of each simulation. A, B and C show correlation difference for AS, AT, and HT simulations respectively. The correlation of the 10^{th} - 45^{th} ns was subtracted from the 45^{th} to 80^{th} ns of the same simulation (each correlation matrix element was subtracted from its equivalent counterpart. These correlation differences are shown in Figures 15A-C on a scale (-2:2) double the original (-1:1). A value of +2 indicates that the interaction went from being anti-correlated to correlated. The graphs indicate no significant change in correlation between the first and second halves of the simulation. For the AS, AT, and HT simulations there were 2, 14, and 0 changes in correlation greater in magnitude than 1.

С

Figures SI-4A-C. Correlation difference between simulations. Figures SI-4A-C show the correlation differences, $C_{ij}^{AS} - C_{ij}^{AT}$, $C_{ij}^{AS} - C_{ij}^{HT}$, and $C_{ij}^{HT} - C_{ij}^{AT}$ respectively. For each comparison, the magnitude of the correlation difference was greater than 1 a total of 128, 150, and 31 times for the $C_{ij}^{AS} - C_{ij}^{AT}$, $C_{ij}^{AS} - C_{ij}^{HT}$, and $C_{ij}^{HT} - C_{ij}^{AT}$ respectively. Interestingly this suggests that despite the difference in behavior between HT and AT (which began from the same structure) based on RMSD analysis, the inter-residue correlations are very similar.

Figure SI-5. Correlation difference between simulations not summed over chain

Correlation relevance can also be filtered into those only crossing domains:

$xDREL = \sum_{i=1}^{N} c_{i,i} \cdot \frac{\xi(i,j)}{1-\xi(i,j)}$	
$\sum_{j=1}^{n} n(D(j))$	(Equation SI-1)
$\xi(i,j) = \begin{cases} 0 & D_i = D_j \\ 1 & otherwise \end{cases}$	(Equation SI-2)

Here, D_i is the domain of residue *i* (DBD or MBD) and n(D(j)) is the number of residues in domain type D. These values were plotted either by residue or summed over chains in Figures SI-6A,B with linking residues removed. Similar to the previous chain-independent graph, the AS and HT have nearly identical behavior in the DBD. The MBD regions act more similarly between AS and HT forms. This could indicate that although the MBD of AS form is much more coupled than HT form, the cross-domain interactions

are similar. It appears as though both the nickel-binding and DNA-binding residues have strong interdomain interactions. This is could be a result of the allosteric mechanism.

Figures SI-6A,B. Cross-correlation relevance graphs for each simulation. A) Cross-correlation relevance by residue ($xDREL_i$). B) Cross-correlation relevance summed over chains ($cxDREL_i$)

It is likely that in this allosteric system, the "biologically important" residues indicated by the colored bars at the bottom of Figures SI-6A,B and SI-6A,B will have a strong impact on cross-domain correlation. Table SI-1 shows the averaged cross-domain correlation relevance for each form for different sets of biologically important residues. As the criterion for biological importance becomes stricter, the average cross-domain correlation increases.

	All	B,F,M	B,F	В
AS	2.22	2.59	2.65	3.32
AT	1.44	1.62	1.67	2.00
HT	1.97	2.35	2.38	2.83

Table SI-1: Average cross-domain relevance for various forms of NikR. The column marked all considers all residues for which the cross-domain relevance was considered. B is for either nickel or DNA binding residues, F is for fully conserved residues, and M is for mostly conserved residues.

Figures SI-7A-D show RMSD against initial structure of the C terminal domains of each chain. X-ray data show that each symmetry-related half contains one free loop (A

and D chains) and one ion-stabilized loop (B and C). Interestingly, in the AS form, the loop is stabilized by a negative chloride ion, and in the holo – trans form, it is stabilized by a positively charged nickel ion. For the simulations, neither ion was included in the model. The only loop that fluctuates more than 2Å is the A-loop for the AS, and AT simulations. There seems to be very little correlation between either the different loops of the same simulation or the same loop for different simulations. This suggests that the loop motion is independent of conformation and the presence of the four primary nickel ions.

Figure SI-7 A-D. C_{α} RMSD for the C-terminal loops for all simulations. Figures A-D are for chains A,B,C and D respectively.

MBD DNA contact loop

Schreiter *et al.* also found loops in the MBD that make noncovalent contacts with DNA¹⁸. The RMSD of these loops (residues 64-67) are shown in Figures SI-8A-D. Similar to the C-terminal loop, in the absence of DNA and ions other than the primary nickel ions, no correlation can be seen between the three forms in this region of the protein.

Figures SI-8A-D. C_{α} RMSD for "DNA touching loop", residues 64-67 of each chain. Figures A-D show chains A,B,C and D respectively.

RMS fluctuations:

To observe the stability of the protein, RMS fluctuations of the C_{α} atom of each residue of the protein were measured for each form. Figures SI-9A-D show the fluctuations by residue of each chain (A,B,C,D). The figures indicate, not unexpectedly, that the DBDs (wings) fluctuate much more wildly than the MBDS. As seen in the RMSD plots, the two experimentally observed forms (AS and HT) behave similarly, especially in the MBD. The AT form seems much less stable, especially in the MBD. The AS form seems to fluctuate much more wildly than its dimeric counterpart (the CD wing).

Figure SI-9A-D. RMS fluctuations of the C_{α} atom for each chain of each simulation. Figures A-D represent chains A, B, C, and D respectively.

Force field parameters

Partial charges:							
C97A		H87A		H89A		H78D	
Amber		AMBER					
Atom		Atom		AMBER		AMBER	
ID/Type	Charge	ID/Type	Charge	Atom ID	Charge	Atom ID	Charge
N/N	-0.463	N/N	-0.4157	N/N	-0.4157	N/N	-0.4157
HN/H	0.252	H/H	0.2719	H/H	0.2719	H/H	0.2719
CA/CT	0.035	CA/CT	0.0188	CA/CT	-0.0581	CA/CT	0.0188
HA/H1	0.048	HA/H1	0.0881	HA/H1	0.136	HA/H1	0.0881
CB/CT	0.21679	CB/CT	-0.32182	CB/CT	0.0838	CB/CT	-0.04799
HB3/H1	0.01975	HB2/H1	0.18394	HB2/HC	0.06662	HB2/HC	0.07776
HB2/H1	0.01975	HB3/H1	0.18394	HB3/HC	0.06662	HB3/HC	0.07776
SG/ S1	-0.52432	CG/CC	-0.1281	CG/CC	0.04537	CG/CC	0.10735
C/C	0.616	ND1/NA	-0.04524	ND1/NY	0.0069	ND1/NA	-0.3257
0/0	-0.504	HD1/H	0.29485	CE1/CR	-0.1906	HD1/NA	0.37104
		CE1/CR	0.04268	HE1/H5	0.20125	CE1/CR	0.04183

Partial charges:

HE1/H5	0.14435	NE2/NA	-0.08532	HE1/H5	0.20837
NE2/ NZ	-0.66101	HE2/H	0.31809	NE2/NX	-0.16857
CD2/CV	0.21993	CD2/CW	-0.22892	CD2/CV	-0.24011
HD2/H4	0.03232	HD2/H4	0.19764	HD2/H4	0.14371
C/C	0.5973	C/C	0.5973	C/C	0.5973
0/0	-0.5679	00	-0.5679	0/0	-0.5679

Bond stretching

	Force Constant	Distance
Bonds	(Kcal/mol/A^2)	(A)
CT-S1	237	1.81
HS-S1	274	1.336
LP-S1	600	0.7
CB-NZ	414	1.391
CK-NZ	529	1.304
CC-NZ	410	1.394
CR-NZ	488	1.335
CV-NZ	410	1.394
LP-NZ	600	0.2
CB-NY	414	1.391
CK-NY	529	1.304
CC-NY	410	1.394
CR-NY	488	1.335
CV-NY	410	1.394
LP-NY	600	0.2
CB-NX	414	1.391
CK-NX	529	1.304
CC-NX	410	1.394
CR-NX	488	1.335
CV-NX	410	1.394
LP-NX	600	0.2
NI-NZ	97.34	2.038
NI-NY	66.24	2.062
NI-S1	92.81	2.206
NI-NX	89.89	2.017

Angle bending

ANGL	Kcal/mol/rad^2	Angle (degrees)
H1-CT-S1	50	109.5
CT-CT-S1	50	108.6
CT-S1-HS	43	96
HS-S1-HS	35	92.07
CT-S1-LP	50	90
LP-S1-LP	50	180

HS-S1-LP	50	90
C-CB-NZ	70	130
CA-CB-NZ	70	132.4
CB-CB-NZ	70	110.4
H5-CK-NZ	50	123.05
N*-CK-NZ	70	113.9
CT-CC-NZ	70	120
CW-CC-NZ	70	120
H5-CR-NZ	50	120
NA-CR-NZ	70	120
CC-CV-NZ	70	120
H4-CV-NZ	50	120
CB-NZ-CK	70	103.8
CC-NZ-CR	70	117
CR-NZ-CV	70	117
CB-NZ-LP	50	126
CC-NZ-LP	50	126
CK-NZ-LP	50	126
CR-NZ-LP	50	126
CV-NZ-LP	50	126
C-CB-NY	70	130
CA-CB-NY	70	132.4
CB-CB-NY	70	110.4
H5-CK-NY	50	123.05
N*-CK-NY	70	113.9
CT-CC-NY	70	120
CW-CC-NY	70	120
H5-CR-NY	50	120
NA-CR-NY	70	120
CC-CV-NY	70	120
H4-CV-NY	50	120
CB-NY-CK	70	103.8
CC-NY-CR	70	117
CR-NY-CV	70	117
CB-NY-LP	50	126
CC-NY-LP	50	126
CK-NY-LP	50	126
CR-NY-LP	50	126
CV-NY-LP	50	126
C-CB-NX	70	130
CA-CB-NX	70	132.4
CB-CB-NX	70	110.4
H5-CK-NX	50	123.05
N*-CK-NX	70	113.9
CT-CC-NX	70	120
CW-CC-NX	70	120
H5-CR-NX	50	120

NA-CR-NX	70	120
CC-CV-NX	70	120
H4-CV-NX	50	120
CB-NX-CK	70	103.8
CC-NX-CR	70	117
CR-NX-CV	70	117
CB-NX-LP	50	126
CC-NX-LP	50	126
CK-NX-LP	50	126
CR-NX-LP	50	126
CV-NX-LP	50	126
CV-NX-NI	119.045	120.926
S1-NI-NX	135.003	85.768
NZ-NI-NY	98.051	88.68
NZ-NI-S1	125.6	95.101
NZ-NI-NX	86.915	176.994
CR-NX-NI	114.211	126.433
CR-NY-NI	100.446	115.058
CC-NY-NI	109.757	135.465
CV-NZ-NI	110.423	131.46
CT-S1-NI	128.037	107.681
NY-NI-S1	96.174	173.922
NY-NI-NX	103.035	90.697
CR-NZ-NI	110.488	118.865