
Supporting Information: Information processing and signal

integration in bacterial quorum sensing

Pankaj Mehta, Sidhartha Goyal, Tao Long, Bonnie Bassler, Ned S. Wingreen

Dept. of Molecular Biology and Physics,

Princeton University, Princeton, NJ 08544

I. TWO-STATE MODEL FOR RECEPTORS

We model receptors using a simple two-state model in which receptors exist in two states:

a low kinase activity state we call “off” and a high kinase activity state, we call “on” (Swem

et al., 2008; Keymer et al., 2006). Ligands, in our case autoinducers, act by binding to the

receptor protein and changing the free energies and therefore the thermal occupancies of

the two activity states. There are a total of four free-energy states with corresponding free

energies: (i) on without ligand-bound Eon, (ii) on with ligand-bound Eon − log ([L]/Kon),

(iii) off without ligand-bound Eoff , and (iv) off with ligand bound Eoff − log ([L]/Koff). In

the absence of ligands, the receptors favor the on state but ligand causes switching to the off

state. This implies that Kon � Koff and that Eon < Eoff . At equilibrium, the probability

that a receptor is in the on state is a function of the difference in free energies between the

“on” state and the “off” state:

f = ε+ log

(
1 + [L]/Koff

1 + [L]/Kon

)
(SI-1)

with ε = Eon −Eoff where all energies are expressed in units of the thermal energy kBT . In

particular, one has

pon =
1

1 + ef
. (SI-2)

For Kon much larger than the typical ligand concentration and ε large and negative as in the

quorum-sensing network (Swem et al., 2008), the probability that a receptor is on becomes

pon =
1

1 + eε
(

1+[L]/Koff

1+[L]/Kon

)
≈ 1

1 + [L]
Koffe−ε

. (SI-3)
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Defining a half-maximal inhibition constant KI = Koffe−ε, one has the simple non-

cooperative Hill function,

pon ≈
1

1 + [L]
KI

(SI-4)

We denote the probabilities that LuxN and LuxPQ are in their on states by X and Y ,

respectively. and we denote the kinase activities in the on states of the two receptors by kX

and kY , respectively. Furthermore, for notational simplicity and consistent with experiment,

we assume that the kinase activity in the off state for both receptors is negligible. We

also assume, based on experimental evidence, that the receptors have state-independent

phosphatase activities, which we denote pX and pY . The phosphorelay can be modeled

using simple differential equations of the form

d[LuxU-P]

dt
= (kxX + kyY )([LuxU]T − [LuxU-P])− p′[LuxU-P]

− k+[LuxU-P]([LuxO]T − [LuxO-P]) + k−[LuxO-P]([LuxU]T − [LuxU-P])

d[LuxO-P]

dt
= k−[LuxU-P]([LuxO]T − [LuxO-P])− k+[LuxO-P]([LuxU]T − [LuxU-P])

. (SI-5)

where p′ = pX + pY , and [LuxU]T and .[LuxO]T are the total concentrations of LuxU and

LuxO molecules, respectively. At steady state, we can set the left hand side of these equations

to zero yielding,
[LuxU-P]

[LuxU]T
=

kXX + kY Y

kxX + kyY + p′
. (SI-6)

A very similar expression can be derived for the fraction of phosphorylated LuxO, which

we denote Z in the main text, by setting the left hand side of the bottom equation in (??)

equal to zero and plugging in (??). This yields

[LuxO-P]

[LuxO]T
=

kXX + kY Y

kxX + kyY + p
(SI-7)

with p = k−
k+
p′.

We can compare these expressions to experiments in (Long et al., 2009) by noting that

from (??)

X ≈ 1

1 + [AI−1]

KAI−1
I

(SI-8)

and

Y ≈ 1

1 + [AI−2]

KAI−2
I

. (SI-9)



3

II. FORMULAS FOR PRIORS USED IN MAIN TEXT

The lack of knowledge about the ecology of V. harveyi makes it difficult to quantitatively

define a prior for input signals. Therefore, as discussed in the main text, we performed

our calculations for several different choices of priors and verified that our conclusion are

essentially independent of our choice of prior. We present results for three different choices

of priors: a flat prior, a symmetric bimodal prior, and a non-symmetric bimodal prior. As

discussed in the main text, we take as our inputs X and Y the probabilities that LuxN and

LuxPQ, respectively, are in their kinase-active states. The advantage of this formulation is

that input signals are bounded to be between 0 and 1. Explicitly, the priors we used are

given by the expressions:

Flat prior:

q(X, Y ) = 1/N (SI-10)

with N a normalizing constant equal to 1.

Symmetric bimodal prior:

q(X, Y ) =
1

Ns

(
e−

(X−X̄1)2

σ2 + e−
(X−X̄2)2

σ2

)(
e−

(Y−Ȳ1)2

σ2 + e−
(Y−Ȳ2)2

σ2

)
(SI-11)

with X̄1 = Ȳ1 = 0.25, X̄2 = Ȳ2 = 0.75, σ = 0.2, and Ns a normalizing constant to ensure

the integral of q(X, Y ) is one.

Nonsymmetric bimodal prior:

q(X, Y ) =
1

Nns

(
e−

(X−X̄1)2

σ2 + e−
(X−X̄2)2

σ2

)(
Ae−

(Y−Ȳ1)2

σ2 + e−
(Y−Ȳ2)2

σ2

)
, (SI-12)

with all parameters as above in Eq. (??) plus the asymmetry parameter A = 5, and the

normalizing constant Nns chosen so that the integral over the distribution is 1.

In the last section of the main text, we restrict our input space so that X ≥ Y . For this

calculation, we use priors on the lower-half triangle of the form qhalf(X, Y ) = q(X, Y )θ(X −

Y )/Nh where q(X, Y ) is as above, θ(X) is the Heaviside function, and Nh is a normalizing

constant that ensures the integral over qhalf(X, Y ) is 1.
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III. MUTUAL INFORMATION VIA SADDLE-POINT

A. Justification for saddle-point approximation

In the low-noise regime, we can derive approximate expressions for mutual information

using a saddle-point approximation. As in all saddle point approximations, we exploit a

large parameter. In our case, the large parameter is the signal-to-noise ratio. We interpret

the mean value f(X, Y ) as the signal and σ(X, Y ) as the noise around the signal. When

the noise is small, or equivalently the signal-to-noise ratio is high, we know that f(X,Y )
σ(X,Y

� 1.

Thus we can write f(X,Y )
σ(X,Y

= λS(X, Y ), where λ � 1 is a constant of order the signal to

noise ratio and S(X, Y ) is a function of order 1. In the calculation below, λ serves as the

implicit large parameter. This implies that the saddle-point approximation is valid as long

as signal-to-noise is much larger than 1.

B. Approximate probability distributions

Often, the mean transfer functions of biological signaling systems are monotonic in the

inputs. This is true for the V. harveyi quorum-sensing circuit. In this case, it is useful to

reparameterize the space of input signals in order to perform calculations. In particular, we

will utilize two different coordinate systems given by the coordinate transforms: (X, Y ) →

(f = f(X, Y ), θ = Y ) and (X, Y ) → (f = f(X, Y ), θ = X). For these two different

coordinate transforms, by definition, we have, respectively,

q(f, θ) = | ∂f
∂Y
|−1q(X, Y ) (SI-13)

and

q(f, θ) = | ∂f
∂X
|−1q(X, Y ) (SI-14)

where, for simplicity, we denote all distributions by the same symbol q whether they are a

function of X and Y or f and θ. By definition one has,

p(Z) =

∫
dfdθ p(Z|(f, θ))q(f, θ)

=

∫
dfdθ

1√
2πσ2(f, θ)

e
− (Z−f)2

2σ2(f,θ) q(f, θ)

≈
∫
dθ q(Z, θ) (SI-15)
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where, to obtain the last line, we performed the saddle-point approximation. Furthermore,we

define the probability distributions

q(θ) =

∫
df q(f, θ) (SI-16)

and

p(Z, f, θ) = p(Z|f, θ)q(f, θ) =
1√

2πσ2(f, θ)
e
− (Z−f)2

2σ2(f,θ) q(f, θ). (SI-17)

A final distribution of interest to us is p(Z, θ) given by

p(Z, θ) =

∫
df p(Z, f, θ)

=

∫
df

1√
2πσ2(f, θ)

e
− (Z−f)2

2σ2(f,θ) q(f, θ)

≈ q(f, θ). (SI-18)

Again, to obtain the last line, we have utilized the saddle-point approximation.

C. Calculation of relevant Shannon entropies

To calculate the mutual informations, we need several entropies:

H(Z) = −
∫
dZ p(Z) log2 p(Z) = −

∫
dZdθ q(Z, θ) log2

[∫
dθ′q(Z, θ′)

]
H(θ) = −

∫
dθ q(θ) log2 q(θ) = −

∫
dθdf q(f, θ) log2

[∫
df ′q(f ′, θ)

]
H(Z, θ) = −

∫
dθdZ q(Z, θ) log2 q(Z, θ). (SI-19)

A final entropy of interest to us is the entropy H(z, r, θ). Once again, we use the saddle-point

approximation to obtain this entropy. Namely, one has

H(Z, f, θ) = −
∫
dZdfdθ

1√
2πσ2(f, θ)

e
− (Z−f)2

2σ2(f,θ) q(f, θ) log2

[
1√

2πσ2(f, θ)
e
− (Z−f)2

2σ2(f,θ) q(f, θ)

]

≈ −
∫
dfdθq(f, θ)

[
log2 q(f, θ) + log2

1√
2πeσ(f, θ)

]
= H(f, θ)− 〈log2

1√
2πeσ(f, θ)

〉q(f,θ), (SI-20)

where, in the second line, we utilized the saddle-point approximation, and the second term

in the last line is the expectation value of the logarithm of the standard deviation of the

noise.
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D. Expressions for the individual inputs

We calculated the information I(Z, θ). By definition,

I(Z, θ) = H(Z) +H(θ)−H(Z, θ). (SI-21)

We can use the formulas for these entropies from above to obtain the expression

I(Z, θ) =

∫
dZdθ q(Z, θ) log2

q(Z, θ)[∫
dθ′q(Z, θ′)

]
×
[∫
dZ ′q(Z ′, θ)

] . (SI-22)

From this formula, we can calculate the information theoretic quantities of interest to us,

I(Z,X) and I(Z, Y ) by utilizing the two different coordinate transforms discussed above:

(X, Y ) → (r = f(X, Y ), θ = X) and (X, Y ) → (r = f(X, Y ), θ = Y ). From these trans-

forms, we know that I(Z, θ) is simply I(Z,X) or I(Z, Y ) respectively. Note that these

expressions are independent of σ(f, θ) and thus do not depend on the noise in the system.

E. Expression for the total information

We now calculate the total mutual information I(Z, (f, θ)) between the output Z and

the individual inputs X and Y . This mutual information can be expressed in terms of the

entropies as

I(Z, (f, θ)) = H(Z) +H(f, θ)−H(Z, f, θ). (SI-23)

Use of (??) yields the following simple expression,

I(Z, (r, θ)) = 〈log2

1√
2πeσ(r, θ)

〉q(r,θ) +H(Z), (SI-24)

where H(Z) is given in (??). Since information is invariant under coordinate transforms one

has I(Z, (X, Y )) = I(Z, (r, θ)). This expression is analogous to that found for the case of

circuit with one input and one output (Tkacik et al., 2008). This follows intuitively because

I(Z, (X, Y )) is insensitive to the identity of the individual signals X and Y and thus the

circuit effectively has a single input (X, Y ) and a single output Z.

IV. CALCULATING TOTAL INFORMATION TRANSMISSION FROM

EXPERIMENTAL DATA

We calculated total information transmission in the Vibrio harveyi quorum-sensing circuit

using data from Long et al. (2009) for a variety of priors. In particular, we calculated the
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mutual information between the GFP output signal and the inputs, I(GFP, (X, Y )) and

found that it is of order 1.5 bits for most reasonable priors.

Here we outline our basic procedure. In Long et al. (2009), single-cell measurements

were performed for a ten by ten grid of values in the X − Y plane. We calculated the mean

GFP level, f(X, Y ) as well as the variance of the GFP, σ(X, Y ), from the data for each of

these points. We susbsequently used these data to infer f(X, Y ) and σ(X, Y ) for all values

of X and Y between 0 and 1 using quadratic interpolation. Next, we calculated the noisy

transfer function P (GFP|X, Y ) using Eq. 1 in the main text:

P (Z|X, Y ) =
1√

2πσ2(X, Y )
exp

(
−(Z − f(X, Y ))2

2σ2(X, Y )

)
(SI-25)

From the transfer function (??), we constructed the distributions p(Z,X, Y ) and p(Z) for

various priors using the formulas

p(Z,X, Y ) = p(Z|X, Y )q(X, Y ). (SI-26)

and

p(Z) =

∫
dXdY p(Z,X, Y ). (SI-27)

We then used these formulas and the definition of total information to obtain

I(Z, (X, Y )) =

∫
dZdXdY p(Z,X, Y ) log2

(
p(Z,X, Y )

p(Z)q(X, Y )

)
. (SI-28)

We found that for nearly all priors I(Z, (X, Y )) was between 1.2 and 1.7 bits.

V. FEEDBACK ON RECEPTOR NUMBER

Bacteria can manipulate receptor kinase rates using feedbacks on receptor numbers. In

general, the maximal kinase activity of a pathway depends on two separate quantities: (1)

the total number of receptors, and (2) the kinase activity of a single receptor. Explicitly, the

maximal kinase rates of the X (AI-1) and Y (AI-2) pathways of V. harveyi obey kX = k0
XNX

and kY = k0
YNY , with NX and NY the number of receptors in the X and Y pathways,

respectively, and k0
X and k0

Y the maximal kinase activities of single receptors. Consequently,

bacteria can modulate the maximal kinase activity of a pathway by changing the number of

receptors using a feedback.
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FIG. SI-1: I(Z,X) and I(Z, Y ) for a positive-feedback architecture as a function of K and feedback

strength, C−1 = (δC).

A. Positive Feedback on Receptors

In the low-noise limit, the mutual informations I(Z,X) and I(Z, Y ) only depend on three

combinations of parameters, the ratios of the maximal kinase activities in the presence and

absence of feedback, and the half-maximal value of the feedback K (data not shown). Thus,

we can consider the equivalent transfer function

Z ≈ X + Y (C +
δCZ

K + Z
) (SI-29)

with C = k0
YNY 0/kX , δC = k0

Y δNY /kX . We have calculated the mutual informations

I(Z,X) and I(Z, Y ) for this transfer function using our low-noise expressions for a flat prior

with inputs limited to the domain X ≥ Y and the results are plotted in Fig. ?? for various

choices of K between 0 and 10. In order to reduce parameters we have considered the case

where C−1 = δC = 2, 3, . . . , 8. Notice that by an appropriate choice of K, cells can learn

as much, or even more, about both signals as in the absence of the feedback. This finding

shows that by using a positive feedback on receptor number NY , bacteria can preferentially

pay attention to AI-2 (Y ) at low cell densities and AI-1 (X) at high cell densities while

simultaneously learning about both input signals.
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FIG. SI-2: Graphical representation of input-output relations in the presence of a negative feedback

on receptor number restricted to the domain X > Y . Equally spaced, onstant-output Z contours

for a signaling circuit with negative feedback on receptor number (see inset). Parameters are

K = 0.7 and D = d.

B. Negative Feedback on Receptors

We have also considered a negative feedback on receptors in the X-pathway (see Figure

??. Once again the transfer function Z = ffb(X, Y ), describing the output signal (the

fraction of phosphorylated output regulators), as a function of the inputs X and Y (the

probability that the corresponding receptors are in their on states) is obtained by solving

for the steady state of a set of differential equations, in this case

dZ

dt
= (kXX + kY Y )(1− Z)− pZ

= (k0
XNXX + kY Y )(1− Z)− pZ,

τ
dNX

dt
=

K̄NX0

K̄ + Z
−NX , (SI-30)

where NX0 is the number of receptors at X = Y = 0 and K̄ sets the scale for the negative

feedback. We obtain the steady-state solution by setting the left hand sides of the above

equations to zero and recalling that p � kX , kY . This analysis yields (where for simplicity

we also denote the steady-state output by Z)

Z ≈ k0
XNX0K̄

p(K̄ + Z)
X +

kY
p
Y. (SI-31)

This equation can be solved for Z to obtain the transfer function in the presence of feedback,

ffb(X, Y ). The mutual information is invariant under a constant rescaling Z → p
kY
Z. Thus,
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FIG. SI-3: I(Z,X) and I(Z, Y ) for a negative feedback architecture (Eq. ??) as a function of K

and D.

to reduce the number of parameters we have calculated the mutual informations I(Z,X)

and I(Z, Y ) for a family of functions (for the rescaled Z) of the form

Z ≈ D

K + Z
X + Y, (SI-32)

with D = K̄k0
XNX0p/k

2
Y and K = pK̄/kY , and the results are shown in Fig. ??. In the

plots we have used a flat prior with inputs restricted to the domain X ≥ Y .
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