Supporting Information

Subach et al. 10.1073/pnas.0909204106

SI Materials and Methods

Cloning, Expression, and Protein Purification. The PCR-amplified BgIII/EcoRI fragment encoding PAmCherry1 was cloned into pBAD/HisB vector (Invitrogen). The recombinant PAmCherry1 protein with the N-terminal His₆-tag was expressed in the LMG194 bacterial strain (Invitrogen) by overnight culture in RM minimal medium at 37 °C in the presence of 0.004% arabinose. The culture was then centrifuged at 5,000 rpm at 4 °C for 15 min, the cell pellet resuspended in 50 mM NaH₂PO4, 300 mM NaCl, pH 8.0, buffer and lysed by sonication on ice. The recombinant protein was purified with Ni-NTA resin (Qiagen).

Protein Crystallization. Before crystallization, PAmCherry1 protein was dialyzed against 10 mM Tris-HCl, 100 mM NaCl, pH 8.0 (at 25 °C) and diluted to concentration of 17 mg/mL. Diffraction quality crystals were grown using the hanging drop vapor diffusion method by mixing 1 μ L of protein and 1 μ L of reservoir solution and equilibrating the samples against reservoir solution. The reservoir solution contained 30% PEG 4000, 0.1 M Tris-HCl, pH 8.5, 0.2 M MgCl₂. Crystals reached maximal size in 1 week. Diffraction from the PAmCherry1 crystals in dark state was consistent with the space group *I222* with unit cell dimensions as follows: a, 69.17 Å; b, 83.75 Å; c, 99.03 Å; and $\alpha = \beta = \gamma = 90^{\circ}$.

Protein Photoactivation. The photoactivation of PAmCherry1 crystals was performed with 50mW/cm² laser beam (Chameleon Ultra Ti-Sapphire laser; Coherent) of 405 nm in their crystallization drops in the same reservoir where the crystals were grown, at room temperature for 28 min until the red fluorescence reached plateau. The increase in red fluorescence of the crystals was detected by using a Leica MZ16F fluorescence stereomicroscope equipped with custom red (570/30 nm exciter, 615/40 nm emitter) filter set (Chroma) and ¹/₂-inch CCD camera (Imaging Source). PAmCherry1 crystals in the fluorescent (i.e., ON) state were isomorphous to the crystals in the non-fluorescent dark (i.e., OFF) state; their diffraction properties were not impacted by photoactivation procedure even though crystals changed color to light pink.

X-Ray Diffraction Data Collection and Crystallographic Refinement. Crystals of PAmCherry1 in the OFF and ON states with dimensions $0.2 \times 0.2 \times 0.1 \text{ mm}^3$ were mounted in cryo-loops directly from the crystallization droplet and flash-cooled in

- Otwinowski W, Minor F (1997) Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol* 276:307–326.
- Storoni LC, McCoy AJ, Read RJ (2004) Likelihood-enhanced fast rotation functions. Acta Crystallogr D Biol Crystallogr 60:432–438.
- Anonymous (1994) The CCP4 suite: Programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763.
- Emsley P, Cowtan K (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132.
- Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272.

liquid nitrogen. Diffraction data were collected on a Quantum 315 CCD detector (Area Detector Systems) with 1.08 Å wavelength radiation on the X29A beam line (National Synchrotron Light Source, Brookhaven National Laboratory) or at the LRL-CAT (Advanced Photon Source, Argonne National Laboratory) using Mar-CCD 165 mm detector and 0.979 Å wavelength radiation. Intensities were integrated using the program HKL2000 and reduced to amplitudes using the program TRUN-CATE (see Table S1 for statistics) (1, 2). The structures were solved using the molecular replacement method with Phaser (3). Model building and refinement were performed with the programs REFMAC and COOT (2, 4); see Table S1 for statistics. The quality of the final structure was verified with composite omit maps, and the stereochemistry was checked with the programs WhatCheck (5) and ProChek (6). The LSQKAB and SSM algorithms were used for structural superimpositions (2, 7). Quaternary structures were analyzed using the PISA server (8).

Chymotrypsin Digestion and Chromopeptide Purification. Two aliquots of 20 μ g non-illuminated PAmCherry1 (OFF state) and 2 aliquots of 20 μ g PAmCherry1 illuminated with 405 nm light (ON state) were subjected to an in-solution digestion as described (9) with chymotrypsin. The samples were evaporated to near dryness in a Speed Vac and resuspended in 3 μ L guanidinium hydrochloride and heated to 80 °C for 30 s. The samples were cooled to room temperature and 1.0 μ L 0.33 M hydrochloric acid was added to neutralize the digestion buffer. Chymotrypsin buffer (30 μ L) containing 0.1 M Tris, pH 7.8, and 10 mM CaCl₂ was added to the remaining 2 tubes and chymotrypsin was added at an enzyme:protein ratio of 1:60. The digests were incubated at room temperature for 22 h and quenched with 0.1% TFA. The peptides were desalted and isolated using a C18 ZipTip (Millipore).

MS Analysis of Chromopeptides. Mass spectra were acquired on a 4800 MALDI TOF/TOF mass spectrometer (Applied Biosystems). The instrument was equipped with a Nd:YAG laser (PowerChip JDS; Uniphase) operating at 200 Hz and controlled by Applied Biosystems 4000 Series Explorer version 3.6 software. Each spectrum was accumulated with 500 shots in positive ion mode. MS/MS were acquired in PSD mode with mass isolation window ± 3 Da. Note that we do not report data on all possible peptides that could be derived from PAmCherry1 in the OFF or ON states in this article; we report the chromophore-containing peptides that ionized well and gave data with a high signal-to-noise ratio.

- Laskowski R, MacArthur M, Moss D, Thornton J (1993) PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291.
- Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60:2256–2268.
- Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797.
- Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. *Proc Natl Acad Sci* USA 97:11990–11995.

Fig. S1. Amino acid sequence of PAmCherry1 aligned with GFP, PAGFP, and mCherry. Amino acid residues that differ in PAmCherry1 from mCherry are indicated in white and highlighted in black. Residues buried in β -can are shaded. Asterisks indicate residues that form the chromophore. β -sheet-forming regions and α -helixes are denoted as arrows and ribbons, respectively. Alignment numbering follows that of the PAmCherry1 polypeptide.

Fig. S2. Overall structures of PAmCherry1 in the OFF and ON states. (A) PAmCherry1 in the OFF state with the chromophore colored in cyan. (B) PAmCherry1 in the ON state with the chromophore colored in pink.

<

Fig. S3. Absorbance spectra of PAmCherry1 in the OFF (A) and ON (B) states are shown for the protein in PBS solution (solid lines), denatured in 1 M NaOH (dashed lines) or denatured in 0.3 M HCI (dotted lines).

before illumination

IAS PNAS

Fig. 54. Photoactivation of PAmCherry1-expressing bacteria in ambient and anaerobic conditions. Streaks of bacteria expressing PAmCherry1 were imaged using a Leica MZ16F fluorescence stereomicroscope equipped with 570/30 nm excitation and 615/40 nm emission filters (Chroma). The images were taken before and after the 10-min illumination with 405-nm LED array (40 mW/cm²) either in ambient atmospheric conditions or in anaerobic conditions with oxygen replaced with CO₂.

Fig. S5. MS analysis of the chromophore-bearing peptide fragments from the PAmCherry1 in the OFF (*A*) and ON (*B*) states. The amino acid sequences and suggested structures of the PAmCherry1 chymotrypsin-derived peptides are shown. The sites of the MS/MS fragmentation are shown with solid arrows (*Top Right*). The N- and C-terminal ions are denoted as "yn" and "bn," respectively, where "n" indicates the number of amino acids in the respective fragment. Distinctive peaks in the MS/MS spectra of the PAmCherry1 chromophore-bearing peptide ions are summarized in the tables. The N-terminal fragments "i," which result from cleavage at the C^{α} -C bond in Met-66 of the peptides, are indicated with dashed arrows on the chemical structures. Note that the hydroxyl group of Tyr-67 in the ON state (*B*) is protonated because of the MS/MS experimental conditions.

Fig. S6. Alternative mechanism for the formation of the PAmCherry1 dark chromophore (OFF state). A hydrated cyclized form is the chromophore form with the non-oxidized bond between *p*-hydroxyphenyl and non-oxidized, hydrated 5-member ring and without N-acylimine group. A hydroxylated cyclic imine form is the chromophore form with the non-oxidized bond between *p*-hydroxyphenyl and oxidized, hydrated 5-member ring and without N-acylimine group. The hydrogen bonds are shown with dashed lines; their lengths are indicated in angstroms. Intermediate unstable compounds are shown in parenthesis. *hv*, illumination with violet light. Migration of the electron density is shown with curved arrows.

Fig. 57. Immediate environment of the PAmCherry1 chromophore in the OFF and ON states. Distances between the atoms of the amino acid residues and the chromophore are shown with green arrows. Suggested hydrogen bonds are shown with dashed lines. Lengths of the distances and hydrogen bonds are indicated in angstroms.

Fig. S8. Absorbance spectra of the PAmCherry1/A2175 mutant before and after the photoactivation. Absorbance spectra of the PAmCherry1/A2175 mutant before (black line) and after (red line) the photoactivation with 405 nm LED array (40 mW/cm²) for 120 min. The photoactivation kinetics for the PAmCherry1/ A2175 mutant detected by the absorbance at 568 nm is also shown (*Inset*).

Table S1. Data collection and refinement statistics for PAmCherry1 in the OFF and ON states

Measurement OFF state Data collection Beamline APS-LRL-C Wavelangth Å 0.970	ON state CAT NSLS-X29A 1.08 20-1.65 183.942
Data collection Beamline APS-LRL-C Wavelangth Å 0.970	CAT NSLS-X29A 1.08 20–1.65 183.942
Beamline APS-LRL-C	CAT NSLS-X29A 1.08 20–1.65 183.942
Wavalangth Å	1.08 20–1.65 183.942
Wavelength, A 0.979	20–1.65 183.942
Resolution limits, Å 20–1.50	183 9/12
Observed reflections 269.100	105,542
Unique reflections 45,776	31,288
Completeness, % 98.6 (89.1)* 90.3 (45.3)*
R _{merge} [†] 0.087 (0.4	31)* 0.089 (0.484)*
Refinement statistics	
Protein non-hydrogen atoms 1,753	1,747
Water molecules 324	250
R _{cryst} [‡] 0.174 (0.2	.51)* 0.177(0.357)*
R _{free} [‡] 0.195 (0.2	81)* 0.209(0.435)*
Average B-factor, Å ² 21.6	27.8
RMSD from ideality	
Bond length, Å 0.017	0.022
Bond angles, ° 1.87	2.04
Torsion angles, ° 15.3	16.1
Ramachandran plot	
Core, % 98.1	98.1
Allowed, % 1.8	1.8
Generous, % 0.1	0.1

*Values in parentheses indicate statistics for the high-resolution bin. $R_{merge} = \Sigma \Sigma_j |I_j(hkl) - \langle l(hkl) \rangle |I \Sigma \Sigma_j < 341 \langle l(hkl) \rangle |$, where I_j is the intensity measurement for reflection j and $\langle l \rangle$ is the merge $\sum_{j=1}^{n} |F_{o}(hkl)| = |F_{o}(hkl)| |F_{o}(hkl)|$, where F_{o} and F_{c} are observed and calculated structure factors,

respectively. No σ -cutoff was applied; 5% of the reflections were excluded from refinement and used to calculate R_{free}.

PNAS PNAS

Table S2.	Absorbance	maxima	for PAm	Cherry1	and o	other	fluorescent	proteins	denatured	in
alkali or i	n acid									

	Absorbance, nm				
Protein/Condition	Major peak	Minor peaks			
PAmCherry1 in OFF state					
1 M NaOH	358	460			
0.2 M HCl	341	397			
PAmCherry1 in ON state					
1 M NaOH	454	None			
0.2 M HCl	388	None			
EGFP					
1 M NaOH	447	None			
0.2 M HCl	385	None			
mCherry					
1 M NaOH	457	None			
0.2 M HCl	446 (420*, 395 ⁺)	None			
TagRFP					
1 M NaOH	448	None			
0.2 M HCl	387	None			
mKate					
1 M NaOH	448	None			
0.2 M HCl	387	None			

*Heating at 95°C for 5 min. [†]Heating at 95°C for 60 min.

PNAS PNAS

Table S3. Spectral properties of the purified PAmCherry1, PAmCherry1 mutants, and mCherry/K70N//I197R before and after illumination with 405 nm light

	Absorbance (excitation/emission), nm						
Protein/illumination with 405 nm	Major peak	Minor peaks					
PAmCherry1							
Before	407	None					
After	563	330, 390					
PAmCherry1/Y67L							
Before	407 (404/463)	386					
After	407	386, 556					
PAmCherry1/Y67Q							
Before	407 (405/490)	386					
After	407	386					
PAmCherry1/Q213M							
Before	386, 395	None					
After	386	474 (466/505), 557 (549/591)					
PAmCherry1/Q213E							
Before	405	322, 387					
After	560	387					
PAmCherry1/Q213I							
Before	402	323, 386					
After	552	384, 487					
PAmCherry1/Q213L							
Before	400	386					
After	556	386					
PAmCherry1/Q42L							
Before	398	None					
After	564	None					
PAmCherry1/Q42V							
Before	413	None					
After	565	None					
PAmCherry1/Q42R							
Before	413	None					
After	564	None					
PAmCherry1/Q109A,V							
Before	none	None					
After	none	None					
PAmCherry1/Q109L							
Before	none	354					
After	none	483					
PAmCherry1/Q111L							
Before	383	None					
After	383	466					
PAmCherry1/Q111V							
Before	384	None					
After	384	469					
PAmCherry1/Q1111							
Before	382	354					
After	382	462					
PAmCherry1/Q109R/S111E							
Before	385 (367/470)	None					
After	385	486 (467/506) 508					
PAmCherry1/Q42L/Q109F/S111A							
Before	358 (366/435)	None					
After	358	478 (466/503)					
mCherry/K70N/I197R							
Before	486	None					
After	486	575 (575/601)					

PNAS PNAS