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ABSTRACT The twist is a fundamental geometric prop-
erty of nucleic acids. Calculation of the twist in the most
general case requfres detailed specification of the three-dimen-
sional path of each strand, but many important cases may be
analyzed by considering only the twist difference. If C1, C2,
and C3 are three distinct space curves, the twist difference
about C1 is defined as Tw(C3, C1) - Tw(C2, C1). We show
here that this difference measures the rotation of the corre-
spondence surface joining C1 to C2 about the correspondence
surface joining C1 to C3. This result has application to DNA
containing local nonuniformities, such as denatured regions,
cruciforms, and other altered structures. It also facilitates the
calculation of twist for three-stranded structures, including
D-loops in mitochondrial DNA and replication and transcrip-
tion intermediates. The twist difference may also be used to
simplify greatly the analysis of twist changes in duplex DNA
due to winding on surfaces, such as histones and certain
enzymes. In such cases the strand-axis twist of DNA divides
into two independent terms. The first term arises from the
twist of the local reference frame, and the second arises from
the rotation of either strand about the duplex axis as measured
in the local reference frame. Twist changes consequent to
nucleosome winding, for example, arise from the twist of the
nucleosome axis, a straight line, about the DNA axis plus the
rotation of either strand of the DNA about its axis in the
reference frame of the cylinder.

Undistorted duplex DNA is characterized by a linear axis
and by regular winding of both strands; consequently the
twist is simply the number of rotations of either strand about
the axis. This is a highly idealized case, unlikely to occur
commonly in nature. More biologically and biophysically
interesting situations arise from perturbations of several
different kinds (1, 2). We distinguish, among others, smooth
axial distortions, such as bending (3-5) and rotations (6-8);
local nonuniformities, such as denatured regions (9-11),
cruciforms (12-15), and other types of altered structures
(16-18); ordered windings about protein surfaces (19-22);
and multistranded structures. This last category includes
stable structures, such as D-loops and expanded D-loops in
mitochondrial DNA (23), and theta (24) and bubble (25)
structures. Also included are various types of transient
structures, such as replicating or transcribing DNA mole-
cules (see, for example, ref. 26). In these latter cases there is
a systematic reduction of twist between the original strands
and a corresponding increase in twist between the newly
formed strands.

Since twist alteration is an obligatory accompaniment of
both replication and transcription, it is of first-order impor-
tance to be able to calculate the twist for each structure
involved and, ultimately, as a function of the progress of these
reactions. In such complex structures, involving at least three

oligonucleotide strands, geometric relationships exist among
the various strand combinations taken two at a time. These
relationships, which we denote as twist differences, are
generally useful for simplifying the calculation of twist in
complex cases. For example, the twist of any two curves
about one another will be shown to be simply related to the
twist of either curve separately about a common third curve.
The twist difference has further application to situations

involving smooth distortions of duplex DNA due to winding
about a surface. Such winding usually results in a change in
the twist of eitherDNA strand about the duplex axis (27). We
show here that in general this twist can be analyzed in terms
of two much simpler concepts: first, the rotation of either
strand about the duplex axis measured in terms of a reference
frame defined by the surface and, second, a term involving
changes in the reference frame itself. In the case of nucleo-
some winding, for example, the first term depends only on the
rotation of either strand about the DNA axis as it traverses the
surface of the nucleosome cylinder; the second term is the
twist of the axis of the nucleosome, a straight line, about the
axis of the DNA. In a subsequent paper we will extend this
treatment to include winding about arbitrary surfaces.

Calculation of the Twist for Two Curves Joined by a
Correspondence Surface

We deal with the case of any two curves, C1 and C2, that are
in one-to-one correspondence with each other. Taking into
account the ordering of the curves, we denote the twist of C1
about C2 by Tw(Cl, C2) and that of C2 about C1 by Tw(C2,
C1). In order to calculate Tw(C2, C1), we let Z12 be the
correspondence vector joining a point q of C1 to its corre-
sponding point p on C2. The ladder-like correspondence
surface 512, which is generated by the family of all such
vectors, is assumed to be smooth (has no discontinuities or
corners) and thus has a well-defined tangent plane at each
point. (Cases in which there are corners can be dealt with by
using piecewise smooth surfaces.) The resulting correspon-
dence surface S12 is defined and illustrated in Fig. 1.

Understanding of the twist requires specification of how
the geometry of the curve C1 relates to the geometry of the
surface S12. In particular, it is necessary to describe how the
tangent line to the curve relates to the tangent plane to the
surface S12 as the curve C1 is traversed. Let T1 be the unit
tangent vector to C1 at the point q. Now Z12 is not necessarily
perpendicular to T1, and only its orthogonal component
contains independent dimensional information. We therefore
define v12 to be the unit vector directed along that compo-
nent of Z12 that is perpendicular to T1 (Fig. 1). The vectors v12
and T1 are orthogonal and together define the tangent plane
to S12 in the vicinity of q. They contain information about the
geometry of the curve C1 and about the correspondence
surface near C1. A third vector that provides information
about the curve C1 is the unit normal vector, N12, given by
the cross product T1 x v12. The unit vector N12 is perpen-
dicular to the surface S12 (and hence to the curve C1) at the
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Now at each point of C1, v12 and v13 are unit vectors
perpendicular to T1; hence both lie in the plane perpendicu-
lar to T1. This plane is spanned by the pair v12 and N12 and
also by the pair v13 and N13. We illustrate this in Fig. 2. Since
all vectors in question are unit vectors, the pair v13 and N13
is obtained from the pair v12 and N12 by a rotation through an
angle 4, which varies from point to point on C1. These
geometric considerations lead to the expressions

V13= v12cos(4o) + N12sin(4)
N13 = -v12sin(o) + N12C°S(Os -

Taking the derivative,

FIG. 1. Definition of the correspondence surface joining two
curves, C1 and C2. Any point q on C1 is joined to its correspondence
point p on C2 by the vector Z12. The correspondence surface, S12, is
formed from all lines along the Z12 vectors. The unit normal vectorN12
is equal to the product T1 x v12, where T1 is the unit tangent vector
to C1 at q and v12 is the component of Z12 that is perpendicular to T1.
The vector N12 is perpendicular to S12, and hence to C1, at q. The
vector v12 lies in the plane that is tangent to S12 at q and points to the
interior Of 512. The twist of C2 about C1, Tw(C2, C1) is the total
change of the vector v12 in the direction determined by the vectorN12.

point q. The twist of the curve C2 about the curve C1, using
the correspondence surface S12, is defined by (27)

Tw(C2, C1) = (1/27r){ T1 X V12 * dv12
C,

= (1/2z)J N12 * dv12.
Cl

[1]

The twist that results from the reversal in the order of the
curves, Tw(C1, C2), also employs Eq. 1, except that the
subscripts 1 and 2 are interchanged.
The choice of correspondence surface is usually dictated

by the structural parameters of DNA, and in all applications
described here the surface is to be understood to be S12
unless otherwise specified. We emphasize, however, that
the definition of the twist Tw(C2, C1) is dependent upon the
choice of correspondence surface and, indeed, can take on
different values for different choices of the correspondence
surface. Geometrically, the twist is a measure of the rotation
of the tangent plane to S12 at C1 about the tangent line to C1
as the curve is traversed. The twist calculation must there-
fore take into account not only the rotation of the plane but
also the configuration of the curve C1. It is because of this
latter fact that the twist of one closed curve about another is
not necessarily an integer.
The Twist Difference
We next consider the situation in which two curves, C2 and
C3, twist about a third curve, C1. We calculate the difference
between their twists explicitly: Tw(C3, C1) - Tw(C2, C1).
Let v12 be the unit vector associated with the correspon-
dence surface S12 joining C1 and C2; let v13 be the unit vec-
tor associated with the correspondence surface S13 joining
C1 and C3; and let the associated unit normal vectors be N12
= T1 xv12and N13 = T1 x v13.

Tw(C2, C1) = (1/2T)1 N12 * dv12- [2a]
Cl

Tw(C3, CJ) = (1/2r)f N13 * dv13. [2b]
Cl

dvl3 = [-v12sin(4) + N12cos(4)]d4
+ cos(4)dvl2 + sin(4)dW12.

Therefore,

dvl3 N13 = {[- v12sin(4p) + N12cos(O)]d4 + cos(4)dvl2
+ sin(4)dN12} * [-v12sin(o) + N12cos(4)].

Now since v, * v, = 1 and N12 * N12 = 1, it follows that dv12
* = 0 and dN12 * N12 = 0. Further, since N12 and v12 are
perpendicular and N12 * dv12 = 0, it follows that dN12 * V12 =
-N12 * dv12. Combining these results, we obtain

dv13 * N13 = dv12 N12 + d4-

In order to calculate the twist, we integrate both sides of the
above equation and obtain

Tw(C3, C1) = Tw(C2, C1) + F(C1), [3]

where the twist difference (1/21r)fJc do is denoted 4'(C1).
This result shows that the difference between the twists of
two pairs of curves having one curve in common may be

V13
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FIG. 2. Winding of one correspondence surface about another:
the twist difference. Two correspondence surfaces, S12 and S13, are
shown connecting a curve C1 to two different curves, C2 and C3. The
associated unit vectors v12, v13, N12, and N13 are also shown. The
angle 4 is the angle of rotation from v12 to v13. All vectors at a point
q are perpendicular to T1 and therefore all lie in the same plane. This
is shown separately in the Inset. The winding of S13 about S12 as the
curve C1 is traversed is measured by the total change in the angle 4,
given by 1 = O - Oi. In the example shown this change is negative.

Biophysics: White and Bauer



774 Biophysics: White and Bauer
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FIG. 3. Deformation of a curve C3 into a second curve C3. The
curve C3 is obtained from C3 by a deformation that leaves fixed
(unaltered) segments near the endpoints A3 and B3. The correspon-
dence surfaces joining Cl acd C3 and joining C1 and C3 in these end
regions are therefore identical. In all other regions the surfaces are
different.

calculated simply from the change in the angle 4 from the
initial (i) point on C1 to the final (f) point on C1:

Tw(C3, C1) - Tw(C2, C1) = (D(C1) = (1/2w)(4f - 0). [41

Thus, the twist difference, 13(C1), measures the number of
times v13 rotates about v12 as the curve C1 is traversed. An
alternative way of interpreting '1 is in terms of surfaces, as
also illustrated in Fig. 2. The two surfaces S12 and S13 have
the curve C1 in common, and C1(C1) measures the total
rotation of S13 about S12 as the curve C1 is traversed. Both
the surface and the vector descriptions of (1(C1) are useful,
and in the next two sections we give applications of each to
DNA structure. The surface approach is used to calculate
the twist in complex, nonuniform structures in DNA. The
vector approach is used to calculate the change in twist of
DNA due to surface wrapping.
The result stated in Eq. 4 has important applications to

calculation of the changes in the twist of any DNA structure
following deformation. In Fig, 3, we illustrate a simple
deformation of curve C3 into curve C3. The curves C3 and C3
are identical in the neighborhoWd of the endpoints A3 and B3.
From this it immediately follows that the correspondence
surfaces S13, joining C1 to C3, and S3 joining C1 to C3, are
identical in the initial and terminal regions. Therefore, as
long as C3 is deformed into C3 in such a way that the
correspondence surface S;3 does not wind completely about
S13 or intersect C1, then it follows that 4i = Of = 0 and
13(C1) = 0; hence Tw(C', C1) = Tw(C3, C1).
Twist for Complex Structures: An Example

In this section we discuss how to use the twist difference to
analyze the twist of a complex structure. Let C1 be a
right-handed circular helix of radius r and pitch 2irp that
winds n times about a straight-line axis C2. In Fig. 4 we
illustrate the case in which C2 lies along the z axis and C1
winds about the cylinder X2 + y2 = r2. If we express C2 in
terms of its arc-length parameter s, so that it can be written
in vector form as {0, 0, s} for the range 0 c s c 2irpn, then
C1 may be written in vector form as {r cos(s/p), r sin(s/p), s}.
The natural correspondence between C1 and C2 then asso-
ciates the point {r cos(s/p), r sin(s/p), s} on C1 with the point
{0, 0, s} on C2. We showed previously (27) that, with this
choice of correspondence,

Z12 = {- r cos(s/p), - r sin(s/p), 0} [Sa]

x

x,

,y

FIG. 4. Twist difference for a complex structure. (Top) Curve
C1 is a right-handed circular helix, of radius r and pitch 2wp, that
winds n times about the linear axis C2. In order to obtain C3, C2 is
displaced by a distance D along the x axis to a location outside the
helix C1. The correspondence vectors Z12 and Z13 connect C1 to C2
and to C3, respectively. The initial points of the three curves are
denoted A1, A2, and A3. (Middle) A projection of the correspon-
dence vectors, looking downward along the z axis. This projection
illustrates the spinning or rotatory movement of the vector Z12 and,
in contrast, the simple oscillatory movement of the vector Z13. Four
different positions of Z13 are shown, as determined by the corre-
sponding rotational locations of the terminus of Z12. (Bottom)
Complete ranges of movement of the two vectors.

and Tw(C2, C1) = np/(r2 + p2)1/2.
We next make a parallel translation of the line C2 by a

distance D onto the line C3, where D > r. This ensures that
the line C3 lies outside the cylinder. Then

Z13 = {D - r cos(s/p), - r sin(s/p), 0} [Sb]

It is clear from Eq. 5a that as s varies from 0 to 27rp (i.e.,
C1 makes one complete helical turn) the vector z14 spins
counterclockwise as viewed from above exactly once about
the z axis. However, since D > r, Eq. Sb shows that Z13
always has a positive component along the x axis. Therefore
Z13 does not spin about the z axis but simply oscillates as
shown in Fig. 4 Middle and Bottom. Since the vectors Z12
and Z13 are collinear at the initial point (s = 0) and at the final
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point (s = 2Irp), the net effect is that the surface S13 spins
clockwise exactly once about the surface S12. Thus the net
change in the angle 4 between these surfaces is - 2ir for
each helical turn of the curve C1, and the total change in 4
over the whole of C1 is - 2mrn, so that I(C ) = - 2rn. Using
Eq. 3, we obtain Tw(C3, Cl) = np/(r2 + p )1/2 - n. We note
that the twist obtained is negative.
From the deformation analysis, as illustrated in Fig. 3, if

C' is any deformation of C3 that satisfies the conditions set
forth there, then Tw(C', C1) = Tw(C3, C1). A structure of
this type is found, for example, in the D-loop form of animal
mitochondrial DNA. Typically the structure there consists
of a 500-to 700-nucleotide-pair duplex region (23), formed by
the D-loop strand and one of the linked complements. The
other linked complement is single-stranded in this region.
The curve C3 corresponds to the single-stranded region, and
the curve C1 corresponds to either of the strands of the
DNA.

Twist of Curves That Lie on a Surface: Application to DNA

We next apply the concept of the twist difference to calcu-
late the twist of a DNA molecule constrained to lie on an
arbitrary surface M; that is, the duplex axis traces out a
curve A that lies on M. For example, the simplest model for
linear DNA specifies a straight-line axis that lies on a plane
surface. Similarly, the simplest relaxed closed circular DNA
contains a circular axis that is also planar. In the generally
accepted model for the nucleosome, the DNA wraps in a
left-handed helix on the surface of a circular cylinder.
The surface M is assumed to be differentiable at every

point, hence the tangent plane to M exists at all points and
varies smoothly from point to point. M is also orientable,
meaning that there exists a well-defined surface normal v
(termed the unit normal vector field) at every point of M. We
require further that v varies smoothly from point to point and
that v has unit length. Thus, in particular, v is perpendicular
to the tangent plane ofM at each point. Let A be a smooth
curve on M and let A- be a curve obtained by moving A a
distance E (where E # 0) along the surface normal v. Now e
may vary from point to point, but it is generated by a
smoothly varying function so that A. remains a smooth
curve (Fig. 5). We construct the correspondence between A
and A. so that a point q on A is made to correspond to the
point p on A., obtained by moving q by a distance - along v.
The correspondence vector is then just ev and, since v is
perpendicular to A, v is also the vector v12 used in Eq. 1
above. We let T be the unit tangent vector to A. Then, from
Eq. 1, the twist of A. about A is given by

Tw(A_, A) = (1/2T){ T x v - dv.
A

FIG. 5. Representation of the surface curve A and its displace-
ment curve A6. Curve A lies on the surface M. The vector v is the
unit normal vector to the curve. The curve A. is obtained by moving
the distance E, from each point q and A to the corresponding point
p, along the vector v. T is the unit vector tangent to A at q.

strands, C, about the axis. We must first establish a natural
correspondence between the axis A and strand C. The
surface M provides the geometry necessary to do this. If we
slice the DNA with a plane P that is perpendicular both to
the surface M and to the axis curve A, we will obtain a
cross-sectional piece (Fig. 6). This cross section contains a
unique point (c) of the strand C and a unique point (a) of the
axis A. This gives us a natural correspondence between A
and C. Let VAC be the unit vector, perpendicular to A, that is
determined by this correspondence. Then the twist of C
about A is given by the formula Tw(C, A) = (1/2tr)fAT X
VAC * dvAc. The relation for the twist difference, Eq. 3,
provides the result Tw(C, A) = Tw(A6, A) + ¢'(A), where
¢(A) is given by (1/21T)fA do, 4 being the angle between the
surface normal and the vector VAC. Thus, ¢(A) measures
how many times and in what sense the vector VAC rotates
about the surface normal. The surface normal therefore
provides a frame of reference in which to measure the
turning of the backbone about the axis. In summary, the
strand-axis twist Tw(C, A) divides into two parts: Tw(A6, A),
which measures the change of local reference frame, and

[6]

The argument of the integral in Eq. 6, T x v, is called the
geodesic torsion of the curve A on the surface S. This
integral is a measure of the extent of rotation of the normal
vector v around the curve A.
The function E may be chosen to be always positive or

always negative. The positive case has been discussed
immediately above. In case E is negative, the correspon-
dence vector is still Ev, but the twist vector is v12 = -v.
Here Eq. 1 becomes Tw(A6, A) = (1/2ir)fAT x (- v) * d(- v)
= (1/27r)fA T x v * dv. Thus, the twist of a curve moved
along the surface normal about the original curve is indepen-
dent of which side of the surface A6 lies. We further specify
that E be chosen so as to prevent intersections of the curves
A. and A. This is always possible, since the surface M is
smooth.
We next let A represent the duplex axis of a DNA

molecule. We wish to compute the twist of one of the

FIG. 6. Strand-axis correspondence of DNA on surfaces. The
axis A of the DNA lies on the surface M. The backbone chain C
winds about the axis A, alternately above and below the surface M.
The plane P, perpendicular to A at the point a, passes through C at
the point c, after which C lies above M but behind P (-I). The vector
vAC is the unit vector along the correspondence line joining point a
on curve A to point c on curve C. 4 is the angle from v to VAC. The
total change in 4 as the axis is traversed, 4, measures how many
times the backbone turns about the axis in the reference frame, as
shown separately in the Inset.
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¢(A), which measures how the backbone revolves about the
axis in the reference frame. The first term, Tw(A6, A), is the
reference-frame twist and the second is the total helical
turning as generally understood.
One of the important problems in DNA geometry is to

understand how it is that the helical pitch changes when
DNA is wrapped on a surface. In a forthcoming paper we
will present a general analysis of how DNA wraps on
surfaces of revolution and of how the shape of such surfaces
alters the helical pitch. At present we deal with one classical
example, the winding of DNA in a nucleosome. Here the
pitch changes from 10.45 base pairs per turn in dilute saline
(28, 29) to 10.17 (30, 31). We showed previously, by a direct
analysis, that this pitch change can be predicted solely from
geometric considerations. Other factors, such as energy
calculations (32), lend insight but are not required to explain
the experimental observations. The nucleosome can be
described as a cylindrical surfaceM of radius R on which the
DNA axis A wraps as a left-handed helix of pitch 2inp (27).
The central line of the cylinder is denoted L. The unit normal
vector v to M points radially outward from the surface;
therefore, if we let 6 = -R, then A. is simply the line L.
Hence, the twist of DNA divides according to

Tw(C, A) = Tw(L, A) + 1(A).

We computed Tw(L, A) previously (27) from straightforward
geometric considerations to be - np/(p2 + R2)1/2. The
second term, ¢(A), is the total helical turning, of which the
best current experimental determination is (number of base
pairs)/10.17. We emphasize that the local reference-frame
twist can always be determined entirely from the local
geometry, whereas the total helical turning must be experi-
mentally measured.
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