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Supporting Text  

GATE clustering and visualization- High-dimensional time-series are considered as an ܰ ൈ  ܯ
data matrix ܦ א Թே ൈ Թெ, where ܰ is the number of observed molecular species (genes, 
proteins etc) and ܯ is the number of observation time-points. Thus, each row of ܦ gives the 
time-series expression of a single molecular species in the experiment. In order to examine the 
systems-level flow of information through the system we need to first provide a “spatial” 
representation of the data: that is, we need to appropriately project the data matrix ܦ onto an 
appropriate geometric object. However, since regulatory networks are often very complex, and 
thus cannot be visualized clearly in two dimensions (that is, they are not planar graphs), network 
representations do not easily allow such visualization of the dynamic flow of information 
through the system. In order to visualize the flow of information through a system it is more 
informative to project the data onto a regular geometric object which can easily be represented in 
two dimensions. In this case, in order to visualize regulatory dynamics in a coherent manner we 
project the data matrix ܦ onto regular hexagonal array ܪ. A hexagonal array is chosen since it 
ultimately presents the data in a form which is easier to visualize and interrogate than other tiling 
options (such as a rectangular tiling, for example). In order to provide a continuous geometric 
object with no boundaries we apply toroidal boundary conditions to the hexagonal array (that is, 
we associate the left and right hand sides of the array with each other, and the top and the bottom 
of the array with each other). Thus, we project the time-course data onto the surface of a 
hexagonally tiled torus. This projection ensures that there are no “special” places on the array 
and all molecular species are treated equally. In the absence of a defined regulatory network this 
projection may also be thought of as projecting the data onto a regular graph of degree 6. In 
mathematical terms, a projection of ܦ onto ܪ amounts to constructing a map ݂: ܦ א Թே ൈ Թெ ՜
 is assigned to a unique (each molecular time-series) ܦ in which each row of the matrix ܪ
hexagon ݄௜ א ሻܦthe space of all such maps. However, not all maps ݂ሺ ܨ We denote as .ܪ א  ܨ
will capture the systems-level regulatory dynamics equally well: for example, a random 
assignment of time-series to hexagons in the array will not (in general) capture the collective 
dynamics in the system since molecular species with similar expression patterns may not be near 
each other on the array. In order to construct the mapping which best captures collective 
dynamics we need to arrange the time-series on the array such that molecular species with 
similar expression patterns are near to each other on the array, while those with very different 
expression patterns are placed far apart. In order to do this we assign to each mapping ݂ሺܦሻ א  ܨ
the fitness 
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where ܥ௜௝ is the Pearson correlation coefficient between time-series  ݅ and ݆ and ௜ܰ are the 6 
neighbors of hexagon ݄௜. Fit[݂ሺܦሻሿ measures how well a given arrangement captures the 
collective dynamics of the system as a whole: arrangements with low fitness do not capture 



systems level dynamics, while arrangements with high-fitness capture systems level dynamics 
well. The challenge, then, is to find the arrangement of the time-series on the array which has 
close to maximal fitness. This translates into a problem of combinatorial optimization: given the 
space ܨ of maps ݂: ܦ א Թே ൈ Թெ ՜ ሻܦሺכ݂ and the fitness function Fit(݂ሻ, find ܪ א   such that ܨ

Fit[ ሻሿܦሺכ݂ ؆ Max௙ሺ஽ሻאி{Fit[݂ሺܦሻሿሽ.  

In order to solve this problem we employed a simulated annealing algorithm. This is a standard 
approach in combinatorial optimization. In practice we find that this approach gives near-optimal 
solutions within a few minutes of computational time on a standard desktop computer. In order 
to determine the intrinsic fit of the data to the array we also define the misfit parameter. 
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Data sets which are intrinsically mismatched to the hexagonal array geometry have a high misfit, 
while data sets which fit well have a low misfit. Practically, we find that, although each 
experiment has its own natural geometry, most short time-series fit this model remarkably well 
and have a correspondingly low misfit. Once the close to optimal map ݂כሺܦሻ from the data to the 
array has been identified a movie of the systems-level dynamics is generated by assigning a color 
to each hexagon ݄ א  which changes over time according to the expression level of the  ܪ
molecular species to which it is assigned. In order to create a movie which interpolates smoothly 
between time-points we implemented a piecewise cubic Hermite interpolation prior to 
visualization. This smoothing of time-series expression data does not add (or remove) 
information, but simply allows a smooth transition between molecular snapshots enabling 
visualization of the dynamic flow of information through the system over time.  In order to color 
each hexagon  ݄ א  appropriately we also normalized each time-series with respect to its day 0  ܪ
expression value and such that all expression series range from 0 to 1. 

Pseudo-code of clustering algorithm- 

Function performClustering (maxTemperature) 
Preprocessing 
1. Assign each gene with a position on the hexagonal grid randomly 
2. Compute all pairwise correlations of the gene time lines 
3. Start timer reducing temperature over time 
oldFit = getGlobalFitness();   // compute the fitness function with pre-computed 
while (temperature > 0){ 

swap ();    // swap position of two random genes 
newFit = getGlobalFitness();  // compute the fitness function 
r = getRandom();   // random number between 0 and 1 
if (r < getProb(newFit, oldFit, (temperature/maxTemperature))){ 

  oldFit= newFit; 
} 
else{ 

  undoSwap();   // switch back position of genes 
} 

}   
finalize();     // run into  local optimum 


