

Supplementary Figure 1. Generation of AMPKβ2 knockout mouse.

(A) Structural representation of the mouse AMPK β 2 gene (Prkab2) of wild-type, targeted and germline knockout mice. (B) Genotyping was performed by Southern blotting of EcoRI digested DNA using a 3' probe. Representative wild-type (+/+), knockout (-/-) and hemizygous (-/+) samples are shown. (C) AMPK β -subunit expression in cardiac muscle lysates from AMPK β 2 wild-type (+/+) and knockout (-/-) mice. Lysates were immunoabsorbed using α 1/ α 2-specific antibodies and Western blots probed with a monoclonal antibody against both β 1 and β 2 subunits (Epitomics).

	Genotype									Total
AMPK β1 allele	+/+	+/+	+/+	+/-	+/-	+/-	-/-	-/-	-/-	
AMPK β2 allele	+/+	+/-	-/-	+/+	+/-	-/-	+/+	+/-	-/-	
Expected Freq (%)	6.25	12.50	6.25	12.50	25.00	12.50	6.25	12.50	6.25	100.00
Observed Freq (%)	8.33	18.75	5.56	11.81	27.08	13.19	3.47	11.81	0.00	100.00
Observed no. (O)	11	27	8	17	40	19	5	17	0	144
Expected no. (E)	9	18	9	18	36	18	9	18	9	144
О-Е	2	9	-1	-1	4	1	-4	-1	-9	0
(O-E) ²	4	81	1	1	16	1	16	1	81	
(O-E) ² /E	0.44	4.50	0.11	0.06	0.44	0.06	1.78	0.06	9.00	16.44

Supplementary Table 1. Chi-squared statistical analysis of lethality in AMPK $\beta 1/\beta 2$ double knockout mice. Compound heterozygous $\beta 1/\beta 2$ knockout mice ($\beta 1^{+/-}\beta 2^{+/-}$) were intercrossed and a total of 144 progeny were genotyped by PCR. The nine possible genotypes are shown along the top of the table, along with the expected frequencies. No $\beta 1\beta 2$ double knockout mice ($\beta 1^{-/-}\beta 2^{-/-}$) were observed. A Chi-squared statistical test was performed to determine whether the observed frequencies agreed with the null hypothesis. The χ^2 value obtained was 16.44, which corresponds to a p value <0.05 (9 groups = 8 degrees of freedom). Therefore, the data is not consistent with the expected ratio and there is a significant departure from the null hypothesis. Therefore we conclude that AMPK $\beta 1\beta 2$ double knockout mice are embryonically lethal.

Supplementary Results

Generation of AMPK β -subunit knockout mice.

The generation of AMPK β 1 germ-line knockout mice has recently been reported (30). These animals display enhanced hepatic insulin sensitivity, and are resistant to the detrimental effects of feeding on a high fat diet compared to wild-type littermate controls (Dzamko et al, manuscript in preparation).

We generated germ-line AMPK β 2 knockout mice (β 2^{-/-}) on a C57Bl/6 genetic background by standard homologous recombination techniques, using a targeting approach similar to that used for generating our $\beta 1^{-/-}$ mice (see supplementary figure 1A and (30)). We deleted coding exons 2, 3, and 4 of the Prkab2 locus, to affect minimal genetic disruption, and allow for the generation of floxed mice for future conditional gene deletion studies. The germline deletion results in a transcript with a frameshift mutation and premature translation termination in exon 6. Like our $\beta 1^{-/-}$ mice, $\beta 2^{-/-}$ mice showed no overt behavioural or externally visible phenotype. Moreover, the mice were fertile and heterozygous intercrosses generated wild-type, knockout and heterozygous progeny at the expected Mendelian frequency (1:1:2). Using Western blot analysis, we confirmed that genetic deletion resulted in complete loss of $\beta 2$ protein in cardiac muscle (supplementary Fig 1C), as well as other tissues including liver and skeletal muscle (data not shown). The loss of the β 2 subunit also resulted in lower protein levels of the catalytic α subunits, and lower AMPK activity (Dzamko et al, manuscript in preparation), a situation analogous to loss of α subunits in $\beta 1^{-/-}$ mice. When mice heterozygous for AMPK $\beta 1$ and $\beta 2$ ($\beta 1^{+/-}\beta 2^{+/-}$) were intercrossed, no double knockout $(\beta 1^{-/-} \beta 2^{-/-})$ pups were obtained from 144 progenv (supplementary table 1). This indicates embryonic lethality; a similar result has been shown for attempts to generate AMPK $\alpha 1/\alpha 2$ double knockout mice (37).

Supplementary Results

Generation of AMPK β -subunit knockout mice.

The generation of AMPK β 1 germ-line knockout mice has recently been reported (1). These animals display enhanced hepatic insulin sensitivity, and are resistant to the detrimental effects of feeding on a high fat diet compared to wild-type littermate controls (Dzamko et al, manuscript in preparation).

We generated germ-line AMPK β 2 knockout mice (β 2^{-/-}) on a C57Bl/6 genetic background by standard homologous recombination techniques, using a targeting approach similar to that used for generating our $\beta 1^{-/-}$ mice (see supplementary figure 1A and (1)). We deleted coding exons 2, 3, and 4 of the Prkab2 locus, to affect minimal genetic disruption, and allow for the generation of floxed mice for future conditional gene deletion studies. The germline deletion results in a transcript with a frameshift mutation and premature translation termination in exon 6. Like our $\beta 1^{-/-}$ mice, $\beta 2^{-/-}$ mice showed no overt behavioural or externally visible phenotype. Moreover, the mice were fertile and heterozygous intercrosses generated wild-type, knockout and heterozygous progeny at the expected Mendelian frequency (1:1:2). Using Western blot analysis, we confirmed that genetic deletion resulted in complete loss of $\beta 2$ protein in cardiac muscle (supplementary Fig 1C), as well as other tissues including liver and skeletal muscle (data not shown). The loss of the β 2 subunit also resulted in lower protein levels of the catalytic α subunits, and lower AMPK activity (Dzamko et al, manuscript in preparation), a situation analogous to loss of α subunits in $\beta 1^{-/-}$ mice. When mice heterozygous for AMPK $\beta 1$ and $\beta 2$ ($\beta 1^{+/-}\beta 2^{+/-}$) were intercrossed, no double knockout $(\beta 1^{-/-} \beta 2^{-/-})$ pups were obtained from 144 progenv (supplementary table 1). This indicates embryonic lethality; a similar result has been shown for attempts to generate AMPK $\alpha 1/\alpha 2$ double knockout mice (2).

- Scott, J.W., van Denderen, B.J., Jorgensen, S.B., Honeyman, J.E., Steinberg, G.R., Oakhill, J.S., Iseli, T.J., Koay, A., Gooley, P.R., Stapleton, D., et al. 2008. Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes. *Chem Biol* 15:1220-1230.
- 2. Viollet, B., Athea, Y., Mounier, R., Guigas, B., Zarrinpashneh, E., Horman, S., Devin-Leclerc, J., Beauloye, C., Foretz, M., Andreelli, F., et al. 2008. AMPK: Lessons from animal models *Frontiers in Bioscience* in press.