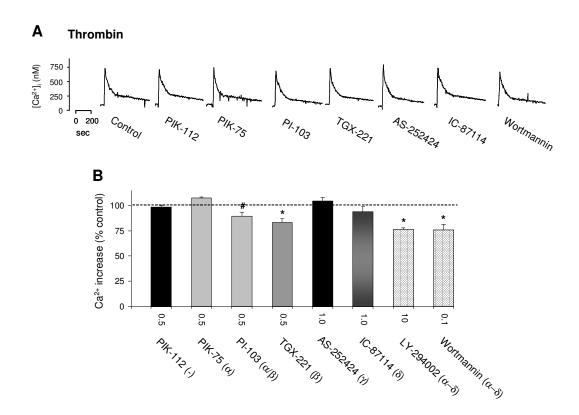
NON-REDUNDANT ROLES OF PHOSPHOINOSITIDE 3-KINASE ISOFORMS α AND β IN GLYCOPROTEIN VI-INDUCED PLATELET SIGNALING AND THROMBUS FORMATION*

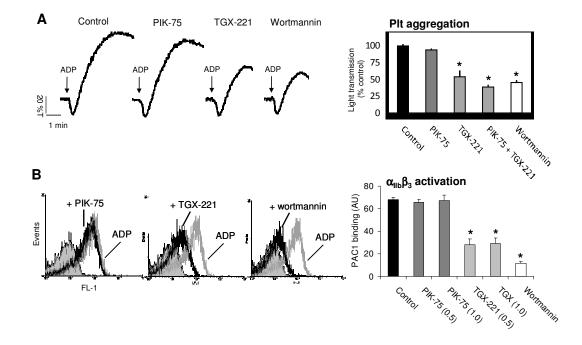
Karen Gilio^{1†}, Imke C. A. Munnix^{1†}, Pierre Mangin², Judith M. E. M. Cosemans¹, Marion A. H. Feijge¹, Paola E. J. van der Meijden¹, Servé Olieslagers³, Magdalena B. Chrzanowska-Wodnicka,⁴ Rivka Lillian², Simone Schoenwaelder², Shigeo Koyasu⁵, Stewart O. Sage⁶, Shaun P. Jackson² and Johan W. M. Heemskerk¹

From the Departments of ¹Biochemistry and ³Cardiology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, The Netherlands; ²Australian Centre for Blood Diseases, Monash University, Alfred Medical Research Centre and Education Precinct (AMREP), Melbourne, Victoria, Australia 3004; ⁴Blood Research Institute, Wisconsin, Milwaukee WI, USA; ⁵Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; ⁶Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom.

Running head: PI3K isoforms in glycoprotein VI-induced platelet activation [†]These authors contributed equally.


Address correspondence to: J.W.M. Heemskerk, Dept. of Biochemistry, CARIM, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands: Tel.: 31-43-3881671; Fax: 31-43-388-4160; E-mail jwm.heemskerk@bioch.unimaas.nl.

Supplementary data


SUPPLEMENTARY TABLE I

Inhibition of PI3K lipid kinase activity for purified enzymes *in vitro*. Listed are IC₅₀ values for the indicated compounds, regarding inhibition of the catalytic activity of recombinant class I PI3K isoforms in cell-free system. Data were drawn from appropriate patent and publication information, see Refs. (31,41).

Compound	Relative	IC ₅₀ (μM)			
	specificity	$\overline{\alpha}$	β	γ	δ
PIK-112	none	>100	>100	>100	>100
PIK-75	α	0.008	0.34	0.9	>20
PI-103	α/β	0.004	0.018	>500	>20
YM-024	α/δ	0.30	2.65	9.1	0.33
TGX-221	β	7.0	0.008	3.5	0.2
AS-252424	γ	1.1	>20	0.035	>20
IC-87114	δ	>100	75	29	0.1
LY-294002	α – δ	0.50	1.0	n.d.	0.57
Wortmannin	α–δ	0.001	0.003	n.d.	0.001

Supplementary fig. 1. Inhibition of platelet PI3K isoforms moderately affects thrombin receptor-induced Ca²⁺ responses. Human Fura-2-loaded platelets were treated with aspirin, preincubated with ADP receptor blockers, and treated with PI3K inhibitor, as described for Fig. 2. Shown are Ca²⁺ responses upon stimulation with thrombin (10 nM). A. Representative $[Ca^{2+}]_i$ traces; B. inhibitor effects expressed as percentages of time- $[Ca^{2+}]_i$ integrals relative to the control condition. Note that at a low dose of thrombin (1 nM), PIK-75, TGX-221 or the combination of both (0.5 μ M) suppressed the Ca²⁺ rise to $107\pm3\%$, $87\pm2\%$ or $101\pm5\%$ of control, respectively. Data are means \pm S.E. (n=3-5); *p<0.05 compared to control.

Supplementary fig. 2. Specificity of PI3Kβ inhibitor TGX-221 for affecting ADP-induced platelet activation. Human PRP was preincubated with Me₂SO vehicle (control), TGX-221 (0.5-1 μ M), PIK-75 (0.5-1 μ M) or wortmannin (1 μ M), prior to stimulation with ADP. A. Representative light transmission aggregation traces induced by 5 μ M ADP, and quantitative effect of inhibitors on ADP-induced platelet aggregation. B. Binding of FITC-PAC1 to platelets stimulated with 20 μ M ADP (10 min). Fluorescence histograms are shown of unstimulated platelets (filled grey), vehicle controls (grey lines) and samples containing indicated inhibitor (black overlays). Means \pm S.E. (n=4); *p<0.05 compared to control.