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ABSTRACT Increases in cytoplasmic free calcium
([Ca2]11) can be induced in resting B cells either by a low
molecular weight (12-kDa) B-cell growth factor (LMW-BCGF)
or by crosslinking the B-cell antigen CD19 with monoclonal
antibody (mAb). LMW-BCGF causes a slow [Ca2I], increase
in peripheral blood and tonsillar B cells but has no effect on
[Ca2+]1 in resting T cells. B-cell [Ca2+]J responses mediated
by anti-surface iimmunoglobulin (sIg) or anti-CD19 are poten-
tiated by LMW-BCGF, but anti-sIg and anti-CD19 do not
show additive [Ca2 ]I responses. LMW-BCGF- and anti-
CD19-induced [Ca2+]1 signals are similar to the sIgM or
sIgD-mediated signals in that they are inhibited by prior
treatment with phorbol 12-myristate 13-acetate. However,
LMW-BCGF- and CD19-mediated signals do not depend on
the expression of sIg, since they were also observed on sIg-
B-cell precursor acute lymphoblastic leukemia (ALL) cells.
Both anti-CD19 and LMW-BCGF stimulated in vitro colony
formation by ALL cells and showed additive effects when used
together. [Ca2+]1 responses to LMW-BCGF or CD19 cross-
linking were also evident on certain pre-B-cell and lymphoma
B-cell lines.

Antigen-specific activation of resting B cells occurs via
signals transmitted by crosslinking of surface immunoglob-
ulins (slg). This activation is mediated by increased inositol-
phospholipid metabolism. The resulting production ofdiacyl-
glycerol and inositol 1,4,5-trisphosphate (InsP3) leads to
activation of protein kinase C and elevation of cytoplasmic
calcium concentration ([Ca2"] ) (1-3). However, a second
signal, complementary to the sIg-mediated signal, is required
to drive resting B cells into S phase (4-6). The complemen-
tary or "progression" signal can be provided by a variety of
growth factors (y interferon, interleukins 1, 2, and 4, 12- and
60-kDa B-cell growth factors), complement components
(C3d), or monoclonal antibodies (mAbs) binding to B-cell
receptors (anti-CDw40, anti-CD23, and anti-CD22) (7-20). In
general, the signals for B cells mediated by these factors and
antibodies have not been biochemically identified. One of
these factors, 12-kDa or low molecular weight B-cell growth
factor (LMW-BCGF), produced by lectin-activated T cells,
is able to support clonal B-cell proliferation and is a predom-
inant factor affecting B cells (12, 21).

Signals that inhibit sIg-mediated B-cell activation have
also been identified. One of these, the B-cell Fc region
receptor, appears to inhibit inositolphospholipid metabolism
(22). Antibody binding to the CD19 B-cell receptor also
blocks B-cell proliferation and B-cell [Ca2 responses to
anti-immunoglobulin (23, 24). CD19 crosslinking alone can

stimulate a [Ca2+]i response in resting B cells without
leading to B-cell activation (23, 24).

In this report we examine the effects of LMW-BCGF and
CD19 ligation on [Ca2+]i responses in B cells at different
stages of maturation. LMW-BCGF increased [Ca2+]i in
resting B cells and augmented the [Ca2+]i response to
anti-sIg or CD19 crosslinking. The effect was specific, since
other growth factors did not affect B-cell [Ca2+], levels. The
activity of LMW-BCGF or CD19 crosslinking did not de-
pend on expression of sIg, since some sIg- pre-B-cell acute
lymphoblastic leukemias (ALLs) showed [Ca2 ]i signals in
response to LMW-BCGF or anti-CD19. In addition, we
found that CD19 stimulation caused B-cell precursor ALL
cells to proliferate and form colonies in vitro. This suggests
that the CD19 receptor can function as either a positive or a
negative signal for proliferation, depending upon the stage of
B-cell differentation and activation.

MATERIALS AND METHODS
mAbs and Reagents. mAbs B43, 2H7, and 9.6 against

human antigens CD19, CD20, and CD2, respectively, have
been described (24-26). The F(ab')2 fragment of goat anti-
bodies against human ,u chain was obtained from Jackson
Research Labs (West Grove, PA), and STA4-1 anti-human 8
chain hybridoma cell line (27) was obtained from the Amer-
ican Type Culture Collection. Rat mAb 187.1 against mouse
K chain (28) was purified as described (26). mAb BA-5
against the receptor for a high molecular weight (90-kDa)
B-cell growth factor (HMW-BCGF) was provided by Julian
Ambrus (National Institutes of Health, Bethesda, MD).
EGTA and phorbol 12-myristate 12-acetate (PMA) were
from Sigma. Recombinant interleukin 2 (rIL-2) was pur-
chased from Genzyme (Norwalk, CT) and recombinant
interleukin 1f3 (rIL-1f3, >108 units/mg) (29) was provided by
S. Gillis (Immunex, Seattle). Recombinant human interleu-
kin 4 (rIL4) (11) was provided by J. Bonchereau (UNICET,
Pardilly, France). Recombinant granulocyte colony-
stimulating factor (rG-CSF, >106 units/mg) (30) was pro-
vided by L. Souza (Amgen, Thousand Oaks, CA). Recom-
binant interleukin 3 (rIL-3) (31) and recombinant granulo-
cyte-macrophage colony-stimulating factor (rGM-CSF,
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recombinant granulocyte colony-stimulating factor; rGM-CSF,
recombinant granulocyte-macrophage colony-stimulating factor;
rIL-3, recombinant interleukin 3; rIL-2, recombinant interleukin 2,
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>106 units/mg) (32) were provided by S. Clark (Genetics
Institute, Cambridge, MA). Biologically active natural
LMW-BCGF (12 kDa) was prepared from a pooled phyto-
hemagglutinin (PHA)-stimulated peripheral blood mononu-
clear cell conditioned medium by using a series of column
chromatographic steps including preparative-scale DEAE-
cellulose chromatography, hydroxyapatite column chroma-
tography, ion-exchange, and size exclusion HPLC (33). The
specific activity of biochemically purified LMW-BCGF was
estimated to be 106 units/mg of protein by Bio-Rad assays.
LMW-BCGF (12-kD; a) preparations did not contain detect-
able amounts of IL-1, IL-2, IL-3, GM-CSF, G-CSF, or y
interferon as determined by standard bioassays, but they
were able to induce proliferation of sIg-activated B cells, with
a maximal stimulation index of 23.6. Furthermore, we have
ruled out the possibility that residual contaminating PHA is
responsible for any of the [Ca2+]i activity described here,
since an anti-PHA mAb, G26-5, was able to inhibit 94% of the
PHA-mediated [Ca2+]i increase in B cells without any effect
on the [Ca2"]i signal from LMW-BCGF (data not shown).
Measurement of [Ca"+],. [Ca2+]i was measured with the

dye indo-1 (Molecular Probes, Junction City, OR) and a
model 50HH/2150 cell sorter (Ortho Diagnostics, Raritan,
NJ) as we have described in detail (34). Peripheral blood
from normal donors or tonsillar lymphocytes were isolated
by centrifugation on Ficoll/Hypaque before loading with the
indo-1 acetoxymethyl ester (34). B cells were subsequently
analyzed by fluorescence gating on CD20' cells after stain-
ing with phycoerythrin (PE)-conjugated mAb 2H7 (20).
Light-scatter gating was used to analyze single cells, elim-
inating signals potentially related to cell-ceil contact.

B-Cell Precursor Colony ,Assay. Leukemic B-cell precur-
sors from patients were assayed for colony formation in vitro
by using a B-cell precursor colony assay system as previ-
ously described (35, 36). Leukemic B-cell precursor blasts
were suspended in a minimal essential medium (GIBCO)
supplemented with 0.9% methylcellulose, 30%6 calf serum,
1% penicillin/streptomycin, and various concentrations of
LMW-BCGF, B43 (anti-CD19), and BA-5 (anti-HMW-
BCGF receptor). Triplicate 1-ml samples containing 105
blasts were cultured in 35-mm Petri dishes for 7 days at 370C
in a humidified 5% CO2 atmosphere. On day 7, colonies
containing >20 cells were counted on a grid by using an
inverted phase-contrast microscope with high optical reso-
lution. Subsequently, colonies were harvested, and morpho-
logical, immunological, and cytogenetic features of colony
cells were analyzed as described (36).
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FIG. 1. [Ca21]i responses to LMW-BCGF by peripheral blood
(A-C) and tonsillar (D-F) B cells. (A) Peripheral blood B cells were
identified by staining with PE-conjugated mAb 2H7 (anti-CD20).
Cells were gated as indicated by the horizontal bars. Cells were
stimulated with medium (-), rIL-2 at 1000 units/ml (----), rG-CSF at
50 ng/ml (-.-.), or LMW-BCGF at 2 ng/ml (.). CD20' B cells (B;
the'fight-hand gate in A) and CD20- cells (C; the left-hand gate in A)
were simultaneously analyzed for their [Ca2+ ]i response 30 min after
stimulation. (D) Tonsillar T lymphocytes were identified by staining
with PE-conjugated mAb 9.6 (anti-CD2). CD2- (E) and CD2' (F)
cplll were simultaneously analyzed for their [Ca2+]i response 30 min
after stimulation with the same growth factors.

The kinetics and magnitude of the [Ca2+ ] response to
LMW-BCGF by resting tonsillar B cells are shown in Fig. 2.
The onset of the response was delayed, and the response
required 10-15 min to reach a maximum. The 2 ng/ml of
LMW-BCGF used in this experiment corresponded to ap-
proximately 2 units/ml and was able to give a detectable
signal, indicating that the [Ca2'Ij increase and the functional
activity of LMW-BCGF occurred at similar doses. When
higher levels ofLMW-BCGF were tested (10 ng/ml), a slight

RESULTS
LMW-BCGF Increases [Ca2"] in B Cells. Growth factors

such as epidermal growth factor (EGF) and platelet-derived
growth factor (PDGF) exert their biological activity partially
by increasing [Ca2 +]i (37). We therefore tested LMW-BCGF
and several other factors to determine the effect on [Ca2+ 1
in lymphocytes. Peripheral blood B cells, identified by
fluorescence staining for the CD20 antigen (Fig. LA) exhibit
an increased [Ca2']j 30 min after LMW-BCGF addition (Fig.
1B), whereas at the same time non-B cells (CD20-) had
[Ca2+]i identical to that of control cells (Fig. 1C). A similar
B-cell specific response to LMW-BCGF was seen with
CD2- (non-T) tonsillar cells, indicating that the [Ca2+]i
response was not dependent upon the binding of the CD20
mAb 2H7 (Fig. 1 D-F). The effect on B cells was not
apparent with other growth factors such as rG-CSF (50
ng/ml) or rIL-2 (1000 units/ml) (Fig. 1). Furthermore, there
was no effect on [Ca2.i in resting T or B cells after addition
of rIL-4 (1000 units/ml), rIL-1/3 (10 ng/ml), rIL-3 (10
units/ml), or rGM-CSF (50 ng/ml) (data not shown).
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FIG. 2. Response to LMW-BCGF by a subpopulation of tonsil-
lar B cells. (Inset) Tonsil lymphocytes were stained with PE-
conjugated mAb 2H7 (anti-CD20). CD20-bright B cells (------) and
CD20-dull B cells ( ) were simultaneously analyzed after stimu-
lation at 1.5 min with LMW-BCGF at 2 ng/ml. The [Ca2 ]; response
(A) and the percent of cells responding (B) are shown.
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increase in velocity of response was seen (data not shown).
The experiment (Fig. 2) utilized tonsillar B cells stained with
anti-CD20. The "CD20-dull" B cells correspond to dense,
resting, IgM + B cells predominantly from mantle zone
regions of secondary follicles, whereas the "CD20-bright" B
cells correspond to buoyant, activated, IgM- B cells pre-
dominantly from germinal center regions (25). The [Ca2+]
response to KMW-BCGF occurred among CD20-dull resting
B cells, whereas no response occurred among the CD20-
bright activated B cells (Fig. 2A). In other experiments, we
have seen that CD20-bright B cells also fail to respond in
[Ca2"I assays to anti-immunoglobulin or anti-CD19 stimu-
lation (data not shown). Notably, only about 15-20% of
CD20-dull tonsillar B cells responded with a [Ca2"]i increase
greater than two standard deviations above the mean [Ca2+]
of resting B cells (Fig. 2B). However, this probably under-
estimates the number of responding cells, since the small
[Ca2"JI signal does not drive all responding B cells above the
threshold.
The [Ca2+ ] response in B cells after stimulation with an

optimal dose of anti-c occurred very rapidly, as previously
noted (3). When LMW-BCGF was added simultaneously
with anti-u, the [Ca2"]i response during the initial phase was
not altered, but the late response, 5-10 min after stimulation,
was maintained at a higher level (Fig. 3A). CD19 stimulation,
which requires crosslinking with a secondary antibody to
generate a maximal [Ca2"]i signal (23), was similarly aug-
mented with LMW-BCGF (Fig. 3B). However, the CD19
signal and the anti-s4 signal were not additive in their ability
to increase [Ca2"], in B cells (Fig. 3). The secondary
antibody used was 187.1, a purified rat mAb against mouse K
chain that by itself had no effect on [Ca2+]i, (data not
shown). The CD19 signal from crosslinking mAb B43 (10 ,ug)
with 40 ug of mAb 187.1 generated a maximal [Ca2"]i
response. Similarly, the signal from anti-it was maximal with
10 ,ug/ml, and 187.1 had no effect on the anti-/ signal (data
not shown).

Effect of PMA on [Ca2 ], Signals in B Cells. Prior treat-
ment with PMA has been reported to inhibit [Ca2+] signal-
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ling after anti-immunoglobulin stimulation in B cells (38, 39).
We therefore examined the effect of PMA on CD19 and
LMW-BCGF-stimulated [Ca2" ] responses. Both anti-
CD19- and LMW-BCGF-driven responses were similar to
anti-p and anti-6 responses in that they were inhibited in
cells after a 10-min prior treatment with PMA (Fig. 4). Since
PMA is a direct activator of protein kinase C, these results
suggest that CD19, LMW-BCGF, and anti-immunoglobulin-
mediated [Ca2"ji signals are similar in that they are all
influenced by protein kinase activation, possibly by relying
on an intermediate regulated by this enzyme.
CDl9 and LMW-BCGF Stimulate Proliferation and In-

crease [Ca2I]i of B-Lineage Cells at Multiple Stages of Differ-
entiation. To evaluate the effect of LMW-BCGF and CD19
ligation on [Ca2+ i as well as proliferation at very early
differentiation stages within the B-cell precursor pathway,
we used leukemic cells from B-cell precursor ALL patients.
These early B-lineage cells display a surface antigen profile
(sIg- Cu- TdT' CD10' CD19' CD24+; Cu is cytoplasmic
,u chain and TdT is terminal deoxynucleotidyltransferase)
consistent with a maturation arrest at the B-cell precursor
stage. In some experiments, B-cell precursors showed a
strong and rapid [Ca2]j, response to BCGF, as evidenced by
one representative case depicted in Fig. 5A. Notably, be-
sides LMW-BCGF, anti-CD19 mAb B43 also induced a
[Ca2+]i increase that was further augmented by crosslinking
with the anti-mouse K secondary mAb 187.1 (Fig. SA). In
contrast to LMW-BCGF or mAb B43, neither rIL-1,8 nor
rIL-2 affected [Ca2"]I levels. A second example is shown in
Fig. SB. A strong response to CD19 was seen that depended
completely upon the secondary mAb for crosslinking, but
LMW-BCGF generated no detectable response. In addition
to the very immature B-cell precursors (pre-pre-B stage), we
also tested a number of B-lineage cell lines at later stages of
differentiation for their [Ca2 ] responses to LMW-BCGF
and CD19 crosslinking. As depicted in Fig. SC, the sIg-
Cu+ TdT' CD10' CD19' (pre-B stage) NALM-6 cell line
responded to CD19 mAb, but no detectable response to
LMW-BCGF was evident. However, the response to CD19
was increased by the simultaneous addition of CD19 and
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FIG. 3. LMW-BCGF augments [Ca2+]i response to anti-/A or
CD19 stimulation of peripheral blood B cells. Peripheral blood B
cells were identified by staining with PE-conjugated mAb 2H7
(anti-CD20) as described for Fig. 1. (A) Responses ofCD20+ cells to
stimulation at 1.5 min with F(ab')2 anti-IL at 10 /Lg/ml ( ),
LMW-BCGF at 2 ng/ml (------), or both together (ark). (B) Re-
sponse of CD20+ cells to stimulation with mAb B43 (anti-CD19) at
10 j&g/ml followed by addition of mAb 187.1 (anti-mouse K) at 40
j.g/ml at the second arrow (5.5 min) (-), response to simulta-
neous addition ofLMW-BCGF at 2 ng/ml plus mAb B43 at 10 ug/ml
at the first arrow (1.5 min) followed by mAb 187.1 at 40 Itg/ml at the
second arrow (------), and response to simultaneous addition ofmAb
B43 at 10 ,ug/ml plus F(ab')2 anti-s at 10 Ag/ml at the first arrow
followed by mAb 187.1 at 40 ,.g/ml at the second arrow
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FIG. 4. Effect of prior treatment with PMA on [Ca2+]i signals
from CD19 and LMW-BCGF. Tonsillar lymphocytes were treated
with PMA at 100 ng/ml for 10 min prior to stimulation (------);
control lymphocytes were not treated with PMA (-). (A) [Ca2"]i
response to goat anti-c F(ab')2 at 10 ,ug/ml. (B) Response to anti-6
(TA4-1) at 5 .g/ml. (C) Response to CD19 stimulation (mAb B43 at
10 ,ig/ml) at 1.5 min followed by mAb 187.1 at 40 ,ug/ml at 5.5 min.
(D) Response to LMW-BCGF (2 ng/ml).
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FIG. 5. Response of B-cell ALLs and B-cell lines to stimulation
with LMW-BCGF or anti-CD19. (A) B-cell ALL stimulated with
LMW-BCGF at 2 ng/ml (-), B43 at 10 gg/ml at 1.5 min plus
187.1 at 40 ,ug/ml at 5.5 min (------), rIL-2 at 200 units/ml (---.), or
rILl-/3 at 10 ng/ml (-.-.-.). (B) ALL no. 2 stimulated with 10%o
(vol/vol) LMW-BCGF (-) or B43 at 10,g/ml at 1.5 min followed
by 187.1 at 40 ,ug/ml at 5.5 min (------). (C) NALM-6 pre-B-cell line
stimulated with LMW-BCGF at 2 ng/ml (-), B43 at 10 ,ug/ml at
1.5 min followed by 187.1 at 40 ,ug/ml at 5.5 min (--), or
LMW-BCGF at 2 ng/ml plus B43 at 10 ,ug/ml at 1.5 min followed by
187.1 at 40 ,ug/ml at 5.5 min (----.-). (D) DHL-10 lymphoma cell line
stimulated with LMW-BCGF at 2 ng/ml (-), goat anti-,u F(ab')2
at 10 ,ug/ml (-.-.-), B43 at 10 pg/ml at 1.5 min followed by 187.1 at
40 ,ug/ml at 5.5 min (-), or LMW-BCGF at 2 ng/ml plus B43 at 10
Ag/ml at 1.5 min followed by 187.1 at 40 ,g/ml at 5.5 min (-.--...). (E)
P3HR1 lymphoma cell line stimulated with LMW-BCGF at 2 ng/ml
(-), goat anti-IL F(ab')2 at 10 ,ug/ml (------), or B43 at 10 ,ug/ml at
1.5 min followed by 187.1 at 40 ,ug/ml at 5.5 min (.......).

LMW-BCGF. DHL-10 is a TdT- CD10- CD19+ sIg+
(immature B-immunoblast stage) non-Hodgkins lymphoma
cell line. DHL-10 cells did not respond to anti-p. stimulation
even though they are sIg+ (Fig. SD). DHL-10 cells did
respond to CD19 stimulation, and their response to CD19
ligation was augmented by LMW-BCGF. P3HR1 is a TdT-
CD10- CD19+ sIg+ (mature B-immunoblast stage) Burkitt
lymphoma that responded well to LMW-BCGF, exhibiting a
200 nM increase in [Ca2 +]j, but showed no detectable
response to CD19 or anti-,u (Fig. SE). These findings provide
circumstantial evidence that different signal transmission
pathways may be operative at distinct stages of B-cell
development.
A small fraction of B-cell precursors in leukemic marrow

samples from B-cell precursor ALL patients are B-lineage
lymphoid progenitor cells that represent the earliest detect-
able B-lineage cells in the human hematopoietic system.
Importantly, B-lineage lymphoid progenitor cells form B-cell
precursor colonies in an in vitro assay system that was
recently described (24, 33, 35, 36). When tested for biologi-
cal effects on B-lineage lymphoid progenitor cells in 17 cases
(Table 1), anti-CD19 mAb B43 induced proliferation and
B-cell precursor colony formation in 3 cases and augmented
spontaneous colony formation in 4 cases. Hence, while

Table 1. Anti-CD19 mAb B43 augments LMW-BCGF-stimulated
formation of B-cell precursor colonies in vitro

No. of No. of B-cell
mAb cases with precursor colonies

mAb conc., colony per 10' cells
Factor added Ag/ml formation Mean Range

None None 4/17 55 15-105
None B43 10 7/13 211 70-416
LMW-BCGF None 14/17 775 14-2300
LMW-BCGF B43 0.1 5/9 1116 352-2286
LMW-BCGF B43 1.0 5/8 1281 403-2794
LMW-BCGF B43 5.0 5/8 1473 498-2985
LMW-BCGF B43 10.0 14/17 1091 24-2804

Highly blast-enriched fresh B-cell precursor ALL marrow sam-
ples were cultured in the presence of purified LMW-BCGF (2
ng/ml) and affinity-purified mAb B43 at various concentrations and
were assayed for blast colony formation as described (33, 35, 36).
Results are shown as the mean number of B-cell precursor ALL
blast colonies per 1 x 105 cells cultured. The variations in colony
number between replicate samples did not exceed 5% of the mean
values.

CD19 mAb B43 inhibits proliferation of mature B cells in
response to anti-p. stimulation, it provides a positive prolif-
erative signal for the most immune B-cell precursors. Table
1 also illustrates that in 14 of 17 cases, B-lineage lymphoid
progenitor cells showed a marked proliferative response to
LMW-BCGF. The mean number of B-cell precursor colo-
nies was 211 in cultures stimulated with CD19 mAb B43
(range 70-416) and 775 (range 14-2300) in cultures stimu-
lated with LMW-BCGF. Notably, the combination of B43
plus LMW-BCGF provided a stronger proliferative signal for
B-lineage lymphoid progenitor cells than B43 alone or
LMW-BCGF alone. The observed potentiation of BCGF
effects was specific for B43, since the control mAbs BA-S
and BA-1 did not augment the proliferative response of
B-lineage lymphoid progenitor cells to LMW-BCGF (data
not shown).

Detailed immunological analyses on B-cell precursor col-
ony cells were performed to determine whether the LMW-
BCGF or anti-CD19 mAb B43 signals induce differentiation
in B-cell precursors. Colony cells were TdT+, CD10+,
CD19+, CD20-, CD22 (cytoplasmic)+, and CD24+, but
lacked slg and cytoplasmic pu heavy chains (data not shown).
Thus neither LMW-BCGF nor mAb B43 induces further
differentiation in leukemic B-cell precursors.

DISCUSSION
The present study shows that purified (12-kDa) LMW-BCGF
causes an increase in [Ca2+ i that is specific for resting B
cells in peripheral blood and tonsils, indicating that resting B
cells have functional receptors for LMW-BCGF. The
[Ca2+j] response was relatively slow, taking at least 10 min
to reach a maximum that represented an increase of 40-50
nM [Ca2+ ]i. The [Ca2+]i response to anti-6 or anti-pu stimu-
lation occurred with more rapid kinetics and reached a much
higher peak, which was not sustained. When LMW-BCGF
and anti-p. were used simultaneously, the [Ca2+]i response
was sustained at higher levels than with the anti-pu alone.
This is consistent with the established ability of LMW-
BCGF to cooperate with stimulation of slg to drive resting B
cells through the cell cycle. Although CD20-bright B cells in
tonsils did not respond to LMW-BCGF with a detectable
increase in [Ca2l ]i, these cells also did not respond to CD19
stimulation. Separate experiments will be required to deter-
mine whether resting B cells activated in vitro will respond
to LMW-BCGF with a [Ca2"], increase.

Proc. Natl. Acad Sci. USA 85 (1988)
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The increased [Ca2"]i that occurs after sIg stimulation of
B cells is initiated by the phospholipase C-mediated produc-
tion of InsP3 and subsequent release of cytoplasmic stores of
calcium (1-3). In murine B cells and B-cell lines, the InsP3
production and [Ca2"]i response are inhibited by prior
treatment with PMA, a direct activator of protein kinase C
(38, 39). It was postulated that protein kinase C phosphory-
lates a protein that is critical to the sIg-mediated signal
transduction in B cells (38, 39). Our results demonstrate that
[Ca2+]I responses to anti-immunoglobulin by human B cells
are also inhibited by prior treatment with PMA. The LMW-
BCGF- and CD19-mediated [Ca2+i responses were also
sensitive to PMA, suggesting that these signals are also
mediated by phospholipase C activation that results in InsP3
formation. In the case ofCD19, our previous results showing
that a portion of the [Ca2"]i signal is independent of extra-
cellular calcium supports this view (23).

sIg -, Cu - leukemic B cell precursors can respond to
LMW-BCGF by colony formation in an in vitro assay (23).
In addition, CD19, which was previously shown to regulate
[Ca2'+i and inhibit sIg signalling in normal B cells (23, 24), is
expressed in high surface density on B-cell precursors. We
therefore tested fresh leukemic B cell precursor blasts and
B-lineage cell lines for their responsiveness to CD19 and
LMW-BCGF in [Ca2+]i and colony formation assays. Our
data show that many of these sIg- cells are responsive to
CD19 and LMW-BCGF in both assays. In addition, we
found that cell lines NALM-6 (pre-B, sIg-, Cu+; Fig. 5) and
REH (pre-pre-B, sIg-, Cu-; data not shown) showed
[Ca2+i responses to CD19 crosslinking that were augmented
by LMW-BCGF. Thus the receptors for CD19 and LMW-
BCGF do not depend upon the expression of sIg to transmit
their signals.
The observed effects on [Ca2+]i appear to be specific for

LMW-BCGF, since we found no activity with rIL-1/3, rIL-2,
rIL-3, rIL4, rGM-CSF, or rG-CSF. Furthermore, the activ-
ity ofLMW-BCGF was B-cell specific in that resting B cells
but not other cells responded with an increase in [Ca2+]
(Fig. 1). Recent evidence has suggested that the CD23
B-cell-specific antigen may be a receptor for LMW-BCGF,
since anti-CD23 mAbs mimic the effects of LMW-BCGF in
functional experiments and block the binding of LMW-
BCGF to B cells (18, 40). Thus it will be important to
determine the relationship between the CD23 antigen and the
LMW-BCGF [Ca2+]i signal.
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