Perylenequinone Natural Products: Enantioselective Synthesis of the Oxidized Pentacyclic Core

Carol A. Mulrooney, Barbara J. Morgan, Xiaolin Li, Marisa C. Kozlowski*

Department of Chemistry, Roy and Diana Vagelos Laboratoies, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

Supporting Information, Part 1

General Considerations	S2-S3
Synthetic Procedures	S3-S20
X-ray Data for Intermediate 54	S21-S30

General Considerations

Materials: Purchased reagents were used without further purification unless otherwise stated. Unless otherwise noted, all non-aqueous reactions were carried out under an atmosphere of dry argon in oven-dried glassware (85 °C). If anhydrous conditions were required, reactions were carried out under an atmosphere of argon in flame-dried glassware with magnetic stirring. Tetrahydrofuran, dichloromethane, toluene, and ether were degassed with argon and passed through a neutral alumina (Al₂O₃) column solvent purification system. If anhydrous solvents were needed, they were further dried by distillation from sodium or CaH₂ under argon. Flash chromatography was performed with EM Science silica gel 60 (230-400 mesh) using a forced flow of the indicated solvent system.

Analytical Methods: Thin layer chromatography (TLC) was carried out with 0.25 mm silicagel plates 60-F plates. Visualization was accomplished with ceric ammonium molybdate or a 250 nm UV light. ¹H NMR and ¹³C NMR spectra were recorded on 300, 360, and 500 MHz spectrometers at ambient temperature. Data are reported as follows: chemical shift in parts per million (δ , ppm) from the solvent resonance of deuterated chloroform (CDCl₃) 7.27 ppm. Multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, and m = muliplet), integration, and coupling constant (Hz). Mass spectra were with an ionization mode of either CI or ESI. IR spectra were acquired as film or solutions using a Si-Comp probe. Melting points are uncorrected. Optical rotations were measured with a sodium lamp and are reported as follows: [α]²⁰_D (c = g/100 mL, solvent). Enantiomeric excess was determined using an HPLC equipped with Chiralpak AD or OD columns (0.46 cm × 25 cm) from Daicel or using a gas chromatograph (GC) with a Supelco β -DEXTM 120 column (12 m × 0.25 mm). Circular dichroism (CD) and UV

spectroscopy measurements were carried out on a Jasco J-720 Spectropolarimeter integrated with a refrigerated circulator digital temperature controller.

Synthetic Procedures

Methyl 1-acetoxy-3-hydroxy-7-methoxy-2-naphthoate (45a). 4-Methoxyphenylacetic acid (6.65 g, 40 mmol) was heated at reflux in SOCl₂ (10 mL) for 1 h. Excess SOCl₂ was removed *in vacuo* to afford the acid chloride as a brown oil. To a stirred suspension of NaH (3.2 g, 60% in oil) in THF (40 mL) was added dimethylmalonate (4.6 mL, 40 mmol) dropwise. The mixture was heated at reflux for 1 h. After cooling to room temperature, the acid chloride in THF (20 mL) was added slowly to this malonate solution. After stirring overnight, the mixture was quenched with 12 N HCl and extracted with CH₂Cl₂. Filtration and concentration yielded a residue which was dissolved in CH₂Cl₂ and loaded onto a SiO₂ pad. The pad was washed with hexanes to remove mineral oil and then with 15% EtOAc/hexanes to provide methyl 4-(4-methoxyphenyl)-2-methoxycarbonyl-3-oxobutyrate as a slightly impure oil in 63% yield (7.1 g) which was used without further purification: IR (thin film) 2957, 2926, 1733, 1613, 1218, 1177 cm⁻¹; HRMS (ES) calcd for C₁₄H₁₆O₆ (MH⁺) 280.0947, found 280.0945.

Methyl 4-(4-methoxyphenyl)-2-methoxycarbonyl-3-oxobutyrate (6.7 g, 24 mmol) was dissolved in CH_3SO_3H (60 g) along with P_2O_5 (6.0 g).¹ The mixture was stirred at room temperature vigorously under N₂ for 6 h, and then the mixture was poured onto ice and water. The resultant yellow solid precipitate was collected by filtration, washed with water, and dried overnight to provide the product (5.0 g, 84% yield): IR (thin film) 3362 (br), 3011, 1652, 1278

¹ For a description of P_2O_5 / CH₃SO₃H as an alternative to polyphosphoric acid see: Eaton, P. E.; Carlson, G. R.; Lee, J. T. *J. Org. Chem.* **1973**, *38*, 4071-4073.

cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 11.3 (s, OH), 8.7 (s, OH), 7.5 (s, 1H), 7.46 (d, *J* = 8.8 Hz, 1H), 7.18 (d, *J* = 8.5 Hz, 1H), 6.73 (s, 1H), 4.11 (s, 3H), 3.9 (s, 3H); 13C NMR (125 MHz, CDCl₃) δ 170.5, 160.1, 155.8, 152.0, 133.3, 127.5, 123.4, 119.9, 102.4, 101.9, 97.6, 55.3, 52.9; HRMS (ES) calcd for CHO (M+) 248.0685, found 248.0684.

Bisphenol (10 g, 40 mmol) was dissolved in Ac₂O (30 mL) and pyridine (25 mL). After 1 h, the mixture was poured onto ice and water and was extracted with CH₂Cl₂. The combined extracts were washed further with 1 N HCl and dried over Na₂SO₄. After filtration and concentration, the residue was purified by chromatography (1% MeOH/CH₂Cl₂) to provide methyl 2,4-diacetoxy-6-methoxy-3-naphthoate as a white solid (12.8 g, 96% yield): IR (thin film) 3393 (br), 3011, 1768, 1725, 1613, 1258, 1235, 1181 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.9 Hz, 1H), 7.18 (dd, *J* = 8.9, 2.2 Hz, 1H), 7.06 (s, 1H), 6.97 (d, *J* = 1.7 Hz, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 3.87 (s, 3H), 2.41 (s, 3H); 13C NMR (125 MHz, CDCl₃) δ 169.4, 168.6, 164, 158.5, 146.0, 143.4, 130.0, 129.1, 126.5, 121.7, 118.6, 117.3, 100.6, 55.3, 52.4, 20.7, 20.6; HRMS (ESI) calcd for C₁₇H₁₆O₇Na (MNa⁺) 355.0794, found 355.0786.

To methyl 2,4-diacetoxy-6-methoxy-3-naphthoate (12.8 g, 38.6 mmol) in CH₂Cl₂ (200 mL) was slowly added NaOMe (2.1 g, 38.9 mmol) in MeOH (200 mL). After 30 min, the mixture was treated with 1 N HCl, extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated. The residue was purified by chromatography (1% MeOH/ CH₂Cl₂) to provide the product as a white solid in 48% yield (5.4 g, 18.6 mmol): IR (thin film) 3300, 2957, 1768, 1675, 1224, 1197 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) 10.4 (s, OH), 7.53 (d, J = 8.7 Hz, 1H), 7.19 (s, 1H), 7.16 (d, J = 8.5 Hz, 1H), 6.96 (s, 1H), 3.95 (s, 3H), 3.84 (s, 3H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 169.0, 156.6, 154.6, 147.4, 133.2, 127.9, 123.1, 122.4, 110.2, 107.8, 100.2, 55.1, 52.9, 20.7; HRMS (ES) calcd for C₁₅H₁₄O₆ (MH⁺) 290.0790, found 290.0786.

Methyl 1-acetoxy-3-hydroxy-6,7-dimethoxy-2-naphthoate (45b). 3,4-Dimethoxyphenylacetic acid (19.6 g, 100 mmol) was heated at reflux in SOCl₂ (30 mL) for 2 h. Excess SOCl₂ was removed *in vacuo* to afford the acid chloride as a brown oil. To a stirred suspension of NaH (16.0 g, 60% in oil) in THF (600 mL) was added dimethylmalonate (46 mL, 400 mmol) dropwise. The mixture was heated at reflux for 1 h. After cooling to room temperature, the acid chloride in THF (200 mL) was added slowly to this malonate solution. After stirring overnight, the mixture was quenched with 12 N HCl and extracted with CH_2Cl_2 . Filtration and concentration yielded a residue, which was dissolved in CH_2Cl_2 and loaded onto a SiO2 pad. The pad was washed with 50% CH_2Cl_2 /hexanes to remove mineral oil and then with CH_2Cl_2 to provide methyl 4-(3,4-dimethoxyphenyl)-2-methoxycarbonyl-3-oxobutyrate as an oil (45.0 g) which was used without further purification.

The above methyl 4-(3,4-dimethoxyphenyl)-2-methoxycarbonyl-3-oxobutyrate was dissolved in CH_3SO_3H (300 g) along with P_2O_5 (30.0 g).¹ The mixture was stirred at room temperature vigorously under N_2 for 4 h, and then the mixture was poured onto ice and water. The resultant yellow solid precipitate was collected by filtration, washed with water and MeOH, and dried overnight to yield the product (23.0 g, 83% yield over two steps). This material was found to have the spectral data identical to that previously reported.²

To bisphenol (18.0 g, 65 mmol) was added Ac_2O (100 mL, 1.06 mol) and pyridine (100 mL, 1.24 mol). The mixture was stirred at room temperature overnight and poured onto ice and water. The resultant mixture was extracted with CH_2Cl_2 . After filtration and concentration, the

² Weisgraber, K. H.; Weiss, U. J. Chem. Soc., Perkin Trans. 1 1972, 83-88.

residue was purified by chromatography (0.5% MeOH/CH₂Cl₂) to provide methyl 2,4-diacetoxy-6,7-dimethoxy-3-naphthoate as a solid in 95% yield (22.3 g).

This bisacetate (22.3 g, 61.6 mmol) was then treated with NaOMe (3.33 g, 61.6 mmol) in MeOH/CH₂Cl₂ (100 mL/100 mL) at room temperature. After 3 h, the mixture was poured onto ice and 1 N HCl and the resultant mixture was extracted with CH₂Cl₂. After filtration and concentration, the residue was purified by chromatography (1% MeOH/CH₂Cl₂). The product **45b** was isolated as yellow solid (11.2 g, 57% yield): IR (thin film) 2957, 1768, 1675, 1235, 1204, 1170 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.6 (s, OH), 7.11 (s, 1H), 6.95 (s, 1H), 6.9 (s, 1H), 3.98 (s, 6H), 3.94 (s, 3H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 169.1, 155.9, 153.1, 148.9, 147.3, 134.6, 117.0, 110.6, 109.0, 105.8, 105.4, 104.6, 103.0, 100.8, 55.96, 55.93, 55.74, 52.82, 52.61, 20.91, 20.83; HRMS (ES) calcd for C₁₆H₁₇O₇ (MH⁺) 321.0974, found 321.1039.

Methyl 1-acetoxy-3-hydroxy-6,7,8-trimethoxy-2-naphthoate (45c). 3,4,5-Trimethoxyphenylacetic acid (2.26 g, 10 mmol) was heated at reflux with oxalyl chloride (10 mL) and DMF (1.0 mL) in benzene (100 mL) for 1 h. Excess oxalyl chloride was removed *in vacuo* to afford the acid chloride6 as a brown oil. To a stirred suspension of NaH (2 g, 60% in oil) in THF (60 mL) was added dimethylmalonate (1.71 mL, 15 mmol) dropwise. The mixture was heated at reflux for 1 h. The acid chloride in THF (20 mL) was then slowly added to this malonate solution. After stirring overnight, the mixture was quenched with 12 N HCl and extracted with CH_2Cl_2 . Filtration and concentration yielded a residue which was purified by chromatography (1% MeOH/CH₂Cl₂). The resultant methyl 4-(3,4,5-trimethoxyphenyl)-2methoxycarbonyl-3-oxobutyrate was obtained in slightly impure form as an oil (2.75 g, 81%yield) which was used without further purification: HRMS (ES) calcd for $C_{16}H_{20}O_8Na$ (MNa⁺) 363.1045, found 363.1056.

Methyl 4-(3,4,5-trimethoxyphenyl)-2-methoxycarbonyl-3-oxobutyrate (2.2 g, 6.5 mmol) was dissolved in CH₃SO₃H (35 g) along with P₂O₅ (3.5 g).¹ The mixture was stirred at room temperature vigorously under N₂. After 3 h, the mixture was poured onto ice and water. The precipitate was collected by filtration and dried overnight to yield the product as a white solid (1.0 g, 75% yield): IR (thin film) 3451, 3223, 2945, 1668, 1625, 1243, 1119 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 11.5 (s, OH), 10.4 (br s, OH), 6.66 (s, 1H), 6.62 (s, 1H), 4.06 (s, 3H), 4.00 (s, 3H), 3.90 (s, 3H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 160.3, 156.4, 155.9, 150.2, 138.6, 136.3, 107.5, 101.8, 101.6, 97.9, 62.3, 61.2, 55.8, 52.8; HRMS (ES) calcd for C₁₅H₁₆O₇Na (MNa⁺) 331.0794, found 331.0808.

Bisphenol (616 mg, 2 mmol) was dissolved in Ac₂O (5 mL) and pyridine (4 mL). After 1 h, the mixture was poured onto ice and water and was extracted with CH₂Cl₂. The combined extracts were washed further with 1 N HCl and dried over Na₂SO₄. After filtration and concentration, the residue was purified by chromatography (1% MeOH/ CH₂Cl₂) to provide methyl 2,4-diacetoxy-5,6,7-trimethoxy-3-naphthoate as a solid (820 mg, >99% yield): IR (thin film) 3389 (br), 2945, 1768, 1729, 1625, 1258, 1189, 1112 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (s, 1H), 6.90 (s, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.91 (s, 3H), 3.89 (s, 3H), 2.35 (S, 3H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.1, 168.9, 164.2, 155.0, 148.8, 146.1, 144.9, 143.1, 133.0, 117.7, 116.5, 115.9, 103.0, 61.9, 61.2, 55.9, 52.4, 20.8, 20.5; HRMS (ES) calcd for C₁₀H₂₀O₀Na (MNa⁺) 415.0991, found 415.1005.

Methyl 2,4-diacetoxy-5,6,7-trimethoxy-3-naphthoate (300 mg, 0.75 mmol) was dissolved in CH_2Cl_2 (8 mL) and NaOMe (46 mg, 0.85 mmol) in MeOH (8 mL) was slowly added. After 30 min, the reaction was quenched with 1 N HCl. After extraction with CH_2Cl_2 , drying over Na₂SO₄, and concentration, the residue was purified by chromatography (1% MeOH/ CH_2Cl_2) to provide the product as a solid in 67% yield (180 mg, 0.5 mmol): IR (thin film) 3366 (br), 2945, 1671, 1625, 1239, 1200, 1116 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.7 (s, OH), 7.08 (s, 1 H), 6.73 (s, 1 H), 3.99 (s, 3H), 3.95 (s, 3H), 3.93 (s, 3H), 3.89 (s, 3H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 169.4, 156.3, 156.0, 149.3, 148.6, 141.2, 136.3, 112.4, 109.3, 106.5, 101.3, 61.7, 61.2, 55.9, 53.0, 20.8; HRMS (ES) calcd for $C_{17}H_{18}O_8$ Na (MNa⁺) 373.0899, found 373.0883.

Allyl 2-(3-allyl-4-methoxyphenyl)acetate (47). To a solution of 2-(4-hydroxyphenyl)acetic acid (5.0 g, 32.9 mmol) in DMF (85 mL) under Ar was added K₂CO₃ (13.6 g, 98.4 mmol) then allyl bromide (6.3 mL, 72.8 mmol). The mixture was stirred for 2 d, then was poured over ice-H₂O. The aqueous phase was extracted with Et₂O, and the organics were washed with H₂O and brine, dried over Na₂SO₄, and the solvent was evaporated. The residue was purified via SiO₂ chromatography (0%-10% EtOAc/hexanes) to yield product as an oil (7.5 g, 98%): ¹H NMR (250 MHz, CDCl₃) δ 3.59 (s, 2H), 4.51-4.60 (m, 4H), 5.19-5.44 (m, 4H), 5.85-6.04 (m, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 7.20 (d, *J* = 8.7 Hz, 2H); ¹³C NMR: (200 MHz, CDCl₃) δ 171.8, 158.0, 133.6, 132.4, 130.6, 126.4, 118.4, 117.9, 115.1, 69.0, 65.7, 40.7; HRMS (ESI): [MNa⁺] calcd for C₁₄H₁₆O₃Na, 255.0997; found, 255.1005.

A solution of this allyl ether (3.0 g, 12.9 mmol) in Ph₂O (65 mL) was heated to reflux under Ar for 2 h. The reaction was cooled, then filtered through SiO₂, rinsing with hexanes, then 20% EtOAc/hexanes. The solvent was evaporated to yield the product as an oil (2.9 g, 95%): IR (thin film) 3435, 3078, 2940, 1719, 1267, 1150 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.38 (d, *J* = 6.3 Hz, 2H), 3.57 (s, 2H), 4.60 (d, *J* = 5.6 Hz, 2H), 5.13-5.30 (m, 4H), 5.86-6.03 (m, 2H), 6.72 (d, *J* = 8.7 Hz, 1H), 7.02-7.03 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 153.7, 136.7, 132.4, 131.7, 129.0, 126.5, 126.0, 118.7, 116.9 (2), 116.3, 65.9, 40.8, 35.4; HRMS (ESI): [MNa⁺] calcd for C₁₄H₁₆O₃Na, 255.0997; found, 255.0997.

To a solution of the phenol in DMF (50 mL) under Ar was added NaH (60% in mineral oil, 520 mg, 13 mmol). After stirring 20 min, Me₂SO₄ (1.1 mL, 12 mmol) was added. After stirring for 2 h, the mixture was diluted with EtOAc and H₂O, the phases were separated, and the organic phase was extracted with H₂O and brine, dried (Na₂SO₄), and the solvent was evaporated. Purification was accomplished via chromatography (0-10% EtOAc/hexanes) to yield **47** as an oil (2.33 g, 86%): IR (thin film) 3080, 2945, 1733, 1251, 1135 cm⁻¹; ¹H NMR (360 MHz, CDCl₃) δ 3.37 (d, *J* = 6.5 Hz, 2H), 3.57 (s, 2H), 3.81 (s, 3H), 4.59 (d, *J* = 5.5 Hz, 2H), 5.02-5.06 (m, 2H), 5-20-5.29 (m, 2H), 5.87-6.02 (m, 2H), 6.81 (d, *J* = 8.3 Hz, 1H), 7.05 (s, 1H), 7.10 (d, *J* = 8.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 156.8, 137.2, 132.5, 131.1, 129.2, 128.4, 126.2, 118.5, 115.9, 110.9, 65.8, 55.9, 40.9, 34.6; HRMS (CI): calcd for C₁₅H₁₈O₃, (M⁺) 246.1256; found, 246.1257.

(M)-Dimethyl

4,4'-diacetoxy-2,2'-dihydroxy-6,6'-dimethoxy-1,1'-binaphthyl-3,3'-

dicarboxylate (52a). Asymmetric biaryl coupling was carried out according to the General Procedure with 5 mol% CuI-[(*S*,*S*)-**51**] and 2 mmol substrate in ClCH₂CH₂Cl (2 mL) at 40 °C for 48 h in the presence of powdered 4 Å molecular sieves (0.2 g) to give the product as a yellow solid in 71% yield (0.41 g, 1.42 mmol): $[\alpha]_{D}^{20}$ +112.5, (c 1.0, 86% ee, CH₂Cl₂); IR (thin film) 3160, 2956, 1773, 1674, 1237, 1178 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.6 (s, 2OH), 7.13-7.05 (m, 6H), 4.0 (s, 6H), 3.88 (s, 6H), 2.52 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 169.5, 169.1, 156.8, 152.3, 147.7, 132.6, 126.7, 123.1, 122.8, 115.5, 108, 100.9, 55.3, 53.1, 20.9; HRMS (ES) calcd for C₃₀H₂₆O₁₂ (MH⁺) 578.1424, found 578.1415; CSP HPLC (Chiralpak AD; 1.0 mL/min, 85:15 hexanes:*i*PrOH) t_R(*S*) = 18.7 min, t_R(*R*) = 31.8 min.

(*P*)-Dimethyl 4,4'-diacetoxy-2,2'-dihydroxy-6,6',7,7'-tetramethoxy-1,1'-binaphthyl-3,3'dicarboxylate (52b). Asymmetric biaryl coupling was carried out according to the General Procedure with 10 mol% CuI-[(*R*,*R*)-51] and 0.1 mmol substrate in ClCH₂CH₂Cl (1 mL) at room temperature for 24 h to give the product as a yellow solid in 72% yield (0.023 g, 0.072 mmol): $[\alpha]_{D}^{20}$ –55.2 (c 1.05, 90% ee, CH₂Cl₂); IR (thin film) 3426, 2954, 1771, 1669, 1500, 1239, 1207, 1168 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.9 (s, 2OH), 7.1 (s, 2H), 6.44 (s, 2H), 4.00 (s, 6H), 3.98 (s, 6H), 3.96 (s, 6H), 3.59 (s, 6H), 2.52 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 169.7, 169.1, 153.6, 153.3, 148.8, 147.5, 133.9, 117.2, 114.2, 105.4, 103.2, 101.3, 55.76, 55.71, 52.9, 20.9; HRMS (ES) calcd for C₃₂H₃₀O₁₄Na (MNa⁺) 661.1533, found 661.1543; CSP HPLC: Chiralpak AD, 1.0 mL/min, 80:20 hexanes:*i*PrOH, t_R(*S*) = 33.6 min, t_R(*R*) = 51.0 min.

(*M*)-Dimethyl 4,4'-diacetoxy-2,2'-dihydroxy-5,5',6,6',7,7'-hexamethoxy-1,1'-binaphthyl-3,3'-dicarboxylate (52c). Asymmetric biaryl coupling was carried out according to the General Procedure with 10 mol% CuI-[(*S*,*S*)-51] and 0.18 mmol substrate in ClCH₂CH₂Cl (2 mL) at room temperature for 24 h to give the product as a yellow solid in 41% yield (0.026 g, 0.074 mmol): $[\alpha]_{1D}^{20}$ +15.8 (c 1.24, 27% ee, CH₂Cl₂); IR (thin film) 2938, 1771, 1668, 1613, 1360, 1200 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.9 (s, 2OH), 6.27 (s, 2H), 4.0 (s, 6H), 3.98 (s, 6H), 3.89 (s, 6H), 3.58 (s, 6H), 2.44 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 169.4, 156.3, 153.9, 149.6, 148.9, 141.3, 135.3, 114.3, 112.7, 106.6, 99.7, 61.8, 61.0, 55.7, 53.1, 22.6, 20.9; HRMS (ES) calcd for C₃₄H₃₄O₁₆Na (MNa⁺) 721.1746, found 721.1744. CSP HPLC (Chiralpak AD; 1.0 mL/min, 90:10 hexanes:*i*PrOH) t_R(*S*) = 19.08 min, t_R(*R*) = 24.06 min.

(*P*)-Dimethyl 2,2'-dihydroxy-4,4',6,6',7,7'-hexamethoxy-1,1'-binaphthyl-3,3'dicarboxylate (52e). Asymmetric biaryl coupling was carried out according to the General Procedure with 10 mol% CuI-[(*S*,*S*)-51] and 0.05 mmol substrate in ClCH₂CH₂Cl (1 mL) at room temperature for 24 h to give the product as a yellow solid in 81% yield (0.012 g, 0.041 mmol): $[\alpha]_{D}^{20}$ –25.5 (c 0.55, 35% ee, CH₂Cl₂); IR (thin film) 3445, 2951, 1661, 1238, 1203 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 10.8 (s, 2H), 7.47 (s, 2H), 6.42 (s, 2H), 4.077 (s, 6H), 4.075 (s, 6H), 4.0 (s, 6H), 3.58 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 158.3, 153.4, 152.9, 148.3, 134.1, 118.2, 112.2, 105.6, 103.5, 102.3,63.2, 55.8, 55.7, 52.8; HRMS (ES) calcd for $C_{30}H_{30}O_{12}Na$ (MNa⁺) 605.1635, found 605.1640; CSP HPLC (Chiralpak AD; 1.0 mL/min, 80:20 hexanes:*i*PrOH) $t_R(S) = 29.7 \text{ min}, t_R(R) = 43.4 \text{ min}.$

(*M*)-Dimethyl 2,2'-bis(benzyloxy)-4,4'-dihydroxy-6,6',7,7'-tetramethoxy-1,1'binaphthyl-3,3'-dicarboxylate (53). The coupling product 52b (38 mg, 0.06 mmol) was suspended in THF (1 mL) with BnOH (26 mg, 0.24 mmol) and PPh₃ (63 mg, 0.24 mmol). DIAD (49 mg, 0.24 mmol) was added and the resultant mixture was kept at room temperature for 48 h. The yellow solution was diluted with EtOAc and washed with water. Concentration afforded an oil which was purified by SiO₂ chromatography (50-70% EtOAc/hexanes) to provide the bisacetate as a colorless oil (44 mg, 90%): $[\alpha]_D^{20}$ –67.4 (c 1.3, 74% ee, CH₂Cl₂); IR (thin film) 2953, 1781, 1732, 1242, 1209, 1169 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 2.49 (s, 6H), 3.52 (s, 6H), 3.86 (s, 6H), 3.98 (s, 6H), 4.41 (d, *J* = 10.3 Hz, 2H), 4.79 (d, *J* = 10.2 Hz, 2H), 6.5 (s, 2H), 6.79 (d, *J* = 2.4 Hz, 4 H), 7.11 (m, 8H); ¹³C NMR (125 MHz, CDCl₃) & 168.6, 165.9, 151.7, 151.4, 149.7, 145.3, 136.4, 130.9, 128.3, 128.1, 127.7, 127.0, 122.3, 120.0, 118.7, 104.7, 100.9, 76.7, 55.8, 52.5, 20.7; HRMS (ESI) cald for C₄₆H₄₂O₁₄Na (MNa⁺) 841.2440, found 841.2472.

To diacetate (26 mg, 0.032 mmol) in CH_2Cl_2 (3 mL) was added NaOMe (54 mg, 1.0 mmol) in MeOH (3 mL). After 30 min at room temperature, the yellow solution was diluted with CH_2Cl_2 and washed with 1 M HCl. Concentration afforded an oil which was purified by SiO₂ chromatography (0.5-1% MeOH/ CH_2Cl_2) to provide **53** as a light yellow oil (22 mg, 96%): $[\alpha]_D^{20}$ –62.3 (c 1.1, 74% ee, CH₂Cl₂); IR (thin film) 2950, 1646, 1506, 1257, 1209, 1172 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 3.54 (s, 6H), 3.86 (s, 6H), 4.03 (s, 6H), 4.41 (d, *J* = 10.3 Hz, 2H), 4.79 (d, *J* = 10.2 Hz, 2H), 6.45 (s, 2H), 6.76 (d, *J* = 7.0 Hz, 4 H), 7.09 (m, 6H), 7.73 (s, 2H), 12.8 (s, 2OH); ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 161.1, 152.6, 152.6, 148.3, 137.4, 133.1, 127.8, 127.4, 127.3, 117.0, 116.5, 104.6, 103.0, 101.8, 75.9, 55.9, 55.7, 52.4; HRMS (ESI) cald for C₄₂H₃₈O₁₂Na (MNa⁺) 757.2261, found 757.2248.

Dimethyl 2,2'-bis(benzyloxy)-4,4',7,7'-tetramethoxy-5,5',6,6'-tetraoxo-5,5',6,6'tetrahydro-1,1'-binaphthyl-3,3'-dicarboxylate (57). *Ortho*-quinone 54 (15 mg, 0.02 mmol) was dissolved in THF (1 mL). TBAF (1.0 mL, 1 M in THF) and MeI (1.0 mL, 16 mmol) were added. After 2 h at room temperature, the deep brown solution was diluted with CH₂Cl₂ and washed with H₂O. Concentration afforded an oil which was purified by SiO₂ chromatography (3% MeOH/ CH₂Cl₂) to provide **x** as an orange solid (13 mg, 86%): IR (thin film) 2940, 1734, 1679, 1550, 1325, 1222, 1112 cm⁻¹; ¹H NMR (500 MHz, CD₂Cl₂/*d*₆-DMSO) δ 3.58 (s, 6H), 3.96 (s, 12H), 4.83 (d, *J* = 11.0 Hz, 2H), 4.92 (d, *J* = 11.0 Hz, 2H), 5.87 (s, 2OH), 6.98 (m, 4H), 7.20 (m, 6H); ¹³C NMR (125 MHz, CD₂Cl₂/*d*₆-DMSO) δ 175.3, 175.1, 165.1, 163.5, 160.8, 152.3, 138.3, 135.3, 128.8, 128.5, 127.3, 122.6, 122.6, 116.8, 110.9, 76.0, 63.3, 55.9, 53.1; HRMS (ESI) cald for C₄₂H₃₄O₁₄Na (MNa⁺) 785.1846, found 785.1858.

Dimethyl 4,4'-dihydroxy-2,2',6,6'-tetramethoxy-7,7'-dipropyl-1,1'-binaphthyl-3,3'dicarboxylate (59). To a solution of racemic 52d (102 mg, 0.154 mmol) in dry DMF (2.0 mL) under Ar was added NaH (60% in oil, 12.1 mg, 0.305 mmol) followed by CH₃I (37 μ L, 0.59 mmol). The mixture was stirred for 2 h, then quenched with 1 N HCl and diluted with EtOAc. The phases were separated, the aqueous phase was washed with EtOAc and the combined organic phases were washed with H₂O and brine, dried (Na₂SO₄) and the solvent evaporated. Purification was accomplished with chromatography (10-30% EtOAc/hexanes) to yield 85 mg (80%) of a resin: ¹H NMR (500 MHz, CDCl₃) δ 7.05 (s, 2H), 6.95 (s, 2H), 3.93 (s, 6H), 3.92 (s, 6H), 3.32 (s, 6H), 2.53-2.42 (m, 10H), 1.41-1.35 (m, 4H), 0.75 (t, *J* = 7.2 Hz, 6H).

To a solution of the methyl ether (85 mg, 0.12 mmol) in MeOH (5 mL) and CH₂Cl₂ (1 mL) was added NaOMe (25 mg, 0.46 mmol). The reaction was stirred for 2 h, then quenched with 1 N HCl. The aqueous phase was extracted with CH₂Cl₂, the resultant organic phase washed with H₂O and brine, dried (Na₂SO₄) and evaporated in vacuo to yield product (74 mg, 80% from **52d**): IR (thin film) 3358, 2957, 1644, 1251, 1224, cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.72 (t, *J* = 7.4 Hz, 6H), 1.34-1.40 (m, 4H), 2.43-2.51 (m, 4H), 3.28 (s, 6H), 3.97 (s, 6H), 3.99 (s, 6H), 6.83 (s, 2H), 7.69 (s, 2H), 12.8 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 161.7, 156.3, 153.2, 137.6, 132.5, 126.7, 122.1, 117.1, 102.8, 101.8, 61.9, 55.9, 53.0, 33.3, 23.1, 14.1; HRMS (ESI) calcd for C₃₄H₃₈O₁₀Na (MNa⁺) 629.2363, found 629.2376.

Dimethyl 2,2',4,4',5,5',6,6'-octamethoxy-7,7'-dipropyl-1,1'-binaphthyl-3,3'dicarboxylate (63). To a solution of o-quinone 61 (79 mg, 0.12 mmol) in THF (4 mL) and H₂O (2 mL) was added Na₂S₂O₄ (329 mg, 1.89 mmol). The red color immediately faded to yellow, and the reaction was stirred under an Ar atmosphere for 10 min. The mixture was then diluted with Et₂O and H₂O, the phases were partitioned and the aqueous phase was washed with Et₂O. The combined organics were washed with H₂O, brine, dried (Na₂SO₄), and the solvent was evaporated to yield a yellow resin as a mixture of products. This mixture was used immediately (storing resulted in decomposition) for the subsequent methylation (63) and re-oxidation (62) reactions.

The unpurified mixture (0.076 mmol) was dissolved in THF (6 mL), and MeI (0.45 mL) was added followed by TBAF (1.0 M in THF, 1.5 mL, 1.5 mmol). The reaction was stirred under an Ar atmosphere for 16 h. EtOAc and H₂O were added to the reaction mixture, the phases were partitioned, and the aqueous phase was washed with EtOAc. The combined organics were washed with H₂O and brine, dried (Na₂SO₄), and the solvent was evaporated to yield a resin. Purification via SiO₂ chromatography (20% EtOAc/hexanes) yielded 46 mg (46%) of product **63** as a resin: IR (thin film) 2941, 1737, 1336, 1258, 1089 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.74 (t, *J* = 7.4 Hz, 6H), 1.35-1.39 (m, 4H), 2.43-2.50 (m, 4H), 3.36 (s, 6H), 3.96 (s, 6H), 3.97 (s, 6H), 3.98 (s, 6H), 4.03 (s, 6H), 6.69 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.8, 154.2, 152.4, 150.0, 148.0, 138.7, 133.7, 123.0, 122.7, 120.7, 120.0, 64.5, 62.2, 62.1, 61.3, 52.9, 33.1, 23.9, 14.1; HRMS (ESI) calcd for C₃₈H₄₆O₁₂Na (MNa⁺) 717.2887, found 717.2895.

2,2',4,4',5,5',6,6'-Octamethoxy-7,7'-dipropyl-1,1'-binaphthyl (64). A mixture of octamethyl ether 63 (77 mg, 0.11 mmol), sat. aq. LiOH (3 mL), and dioxane (5 mL) was heated to reflux for 16 h. The mixture was cooled, acidified with 1 N HCl, and extracted into CH_2Cl_2 . The organic phase was washed with H₂O and brine, dried (Na₂SO₄), and the solvent was evaporated to yield 50 mg (68%) of dicarboxylic acid: ¹H NMR (500 MHz, CDCl₃) δ 0.74 (t, *J* = 7.4 Hz, 6H), 1.36-1.39 (m, 4H), 2.44-2.50 (m, 4H), 3.41 (s, 6H), 3.97 (s, 12H), 4.10 (s, 6H), 6.71 (s, 2H), 10.2 (br s, 2H).

A mixture of the diacid (50 mg, 0.075 mmol), Cu powder (4 mg), and quinoline (1.0 mL) was heated under Ar in a 180 °C oil bath for 3 h. The black mixture was cooled to room temperature and diluted with EtOAc and 1 N HCl. The aqueous phase was washed with EtOAc, the combined organics were washed with 1 N HCl and brine, dried (Na₂SO₄), and filtered through a SiO₂ plug. The solvent was evaporated to yield 19 mg (44%) of the product as a resin: IR (thin film) 2961, 2937, 1590, 1339 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.75 (t, *J* = 7.4 Hz, 6H), 1.34-1.40 (m, 4H), 2.40-2.48 (m, 4H), 3.72 (s, 6H), 3.92 (s, 6H), 3.95 (s, 6H), 4.11 (s, 6H), 6.63 (s, 2H), 6.76 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 157.2, 155.0, 148.6 (2), 137.1, 133.7, 122.1, 116.4, 112.5, 95.9, 61.9, 61.3, 57.6, 56.5, 33.0, 23.9, 14.2; HRMS (ESI) calcd for C₃₄H₄₂O₈Na (MNa⁺) 601.2777, found 601.2781.

Dimethyl 5,8-dihydroxy-1,3,10,12-tetramethoxy-4,9-dioxo-6,7-dipropyl-4,9dihydroperylene-2,11-dicarboxylate (62). The unpurified mixture from the reduction of 61 (40 mg, 0.063 mmol) was dissolved in dry MeCN (3 mL) under an Ar atmosphere. A solution of FeCl₃ (44 mg, 0.27 mmol) in MeCN (2 mL) was added dropwise, and the reaction mixture was stirred under Ar for 24 h. The mixture was diluted with H₂O-1 N HCl and the aqueous phase was extracted with CH₂Cl₂. The organic phase was washed with H₂O and brine, dried (Na₂SO₄), and the solvent was evaporated to yield 35 mg of a mixture of products including 61 (major product) and 62. Purification of a portion of this product was accomplished via a Zorbax Rx-C18 semi-prep HPLC column (9.2 mm x 25 cm) (50-100% MeCN/H₂O) to yield pure 62 as a purple oil: ¹H NMR (500 MHz, CDCl₃) δ 0.62 (t, *J* = 7.35 Hz, 6H), 1.02-1.15 (m, 2H), 1.45-1.53 (m, 2H), 2.60-2.62 (m, 2H), 3.10-3.14 (m, 2H), 3.69 (s, 6H), 4.02 (s, 6H), 4.10 (s, 6H), 7.72 (s, 2H); C18 HPLC (Zorbax Rx-C18, 5.0 mL/min, 50-100% MeCN/H₂O t_R(61) = 12 min, t_R(62) = 14 min.

Methyl 8-bromo-1,3,7-trimethoxy-2-naphthoate (78). To a solution of diacetate 77 (1.0 g, 3.0 mmol) in AcOH (40 mL) was added NBS (1.1 g, 6.0 mmol). The reaction was stirred for 16 h, then the reaction was poured over ice and the solid was filtered, rinsing with H_2O . The solid was air dried to yield 1.2 g (97%) of a yellow powder that was used in the next step without

further purification: ¹H NMR (360 MHz, CDCl₃) δ 2.31 (s, 3H), 2.41 (s, 3H), 3.92 (s, 3H), 4.00 (s, 3H), 7.34 (d, J = 9.2 Hz, 1H), 7.54 (s, 1H), 7.79 (d, J = 9.2 Hz, 1H). To a solution of this bromonaphthalene (1.2 g, 2.9 mmol) in MeOH (30 mL) and CH₂Cl₂ (20 mL) under an Ar atmosphere was added NaOMe (0.80 g, 15 mmol), and the reaction was stirred for 16 h. The reaction was acidified with 1 N HCl, diluted with CH₂Cl₂, and the aqueous phase was extracted with CH₂Cl₂. The organic phase was washed with H₂O and brine, dried (Na₂SO₄), and the solvent was evaporated to yield a yellow solid whose spectra indicated a mono-acetate structure: ¹H NMR (360 MHz, CDCl₃) δ 2.47 (s, 3H), 3.98 (s, 3H), 4.02 (s, 3H), 7.27 (s, 1H), 7.31 (d, J = 9.15 Hz, 1H), 7.65 (d, J = 9.15 Hz, 1H), 10.37 (s, 1H).

To a solution of the monoacetate (65.1 mg, 0.176 mmol) in acetone (1.8 mL) was added K_2CO_3 (209 mg, 1.51 mmol) and Me_2SO_4 (33 µL, 0.35 mmol). The reaction mixture was heated to reflux for 18 h, then cooled and poured into H_2O . The aqueous phase was extracted with EtOAc, and the organic phase was washed with H_2O and brine, dried (Na_2SO_4), and the solvent was evaporated. The residue was dissolved in MeOH (2 mL) and NaOMe (97 mg, 1.8 mmol) was added. The mixture was heated to reflux under Ar for 4 h. The reaction mixture was cooled and acidified with 1 N HCl. The aqueous phase was extracted with EtOAc, the organic phase was washed with H_2O and brine, and dried over Na_2SO_4 . The solvent was evaporated to yield 31 mg (52%) of the dimethyl ether monoacetate.

This solid was dissolved in DMF (1 mL), and under an Ar atmosphere NaH (60% in oil, 26.5 mg, 0.663 mmol) was added. After 10 min, MeI (0.10 mL, 1.6 mmol) was added and the reaction mixture was stirred for 16 h. The mixture was poured over ice-H₂O, and the solid was filtered and air-dried, followed by drying under high vacuum to yield 26.8 mg (83%) of the trimethyl ether **78** as a tan solid: mp 174-176 °C; IR (thin film) 2939, 1730, 1245, 1109, 857 cm⁻¹

¹; ¹H NMR (360 MHz, CDCl₃) δ 3.87 (s, 3H), 3.90 (s, 3H), 3.98 (s, 3H), 4.00 (s, 3H), 6.95 (s, 1H), 7.26 (m, 1H), 7.69 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 154.3, 154.1, 153.0, 133.3, 128.8, 122.7, 121.8, 115.8, 104.8, 103.8, 64.8, 57.8, 56.2, 53.0; HRMS (ES) calcd for C₁₅H₁₅O₅Br (MH⁺) 354.0102, found 354.0116.

(*M*)-Dimethyl 1,3,5,8,10,12-hexamethoxy-4,9-dioxo-6,7-dipropyl-4,9-dihydroperylene-2,11-dicarboxylate (88). To a solution of 76% ee binaphthol 87 (5.0 mg, 0.0075 mmol) in Et₂O (1 mL) under Ar was added MnO₂ (51.5 mg, 0.59 mmol), which was activated by heating at 120 °C for 24 h prior to use. The reaction was stirred for 1 h, then filtered through Celite, and the solvent was evaporated to yield the product 88 as a red resin (4.0 mg, 80%, 76% ee): $[\alpha]_D^{20}$ –330 (c 0.034, MeOH, 76% ee); IR (thin film) 2359, 1738, 1630, 1460, 1256, 1103 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.60 (t. *J* = 7.1 Hz, 6H), 1.03-1.8 (m, 2H), 1.26-1.31 (m, 2H), 2.42-2.48 (m, 2H), 3.09-3.15 (m, 2H), 3.66 (s, 6H), 4.01 (s, 6H), 4.06 (s, 6H), 4.08 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 178.7, 166.3, 160.7, 160.3, 158.5, 137.4, 133.3, 133.0, 124.1, 115.2, 114.8, 63.4, 62.4, 60.9, 53.3, 33.9, 24.3, 14.5; HRMS (ESI) calcd for C₃₆H₃₉O₁₂ (MH⁺) 663.2442, found 663.2469.

(*M*)-Dimethyl 3,10-dihydroxy-1,5,8,12-tetramethoxy-4,9-dioxo-6,7-dipropyl-4,9dihydroperylene-2,11-dicarboxylate (89). A 0.093 M solution of MgI₂ was prepared by stirring Mg turnings (10.2 mg, 0.420 mmol) and I₂ (52.2 mg, 0.206 mmol) in dry Et₂O (2.2 mL) in a flame-dried round bottom for 3 h. To a solution of perylenequinone 88 (10 mg, 0.015 mmol) in dry THF (1.0 mL) under an Ar atmosphere was added a solution of MgI₂ in Et₂O (0.4 mL, 0.093 M, 0.037 mmol). The dark blue mixture was stirred for 30 min, diluted with CH₂Cl₂, washed with 1 N HCl and brine, dried (Na₂SO₄), and the solvent was evaporated to yield product 89 as a purple resin that was not stable to further purification (5 mg, 55%, >70% ee): ¹H NMR (500 MHz, CDCl₃) δ 0.52 (t, *J* = 7.3 Hz, 6H), 0.94-10.2 (m, 2H), 1.26-1.35 (m, 2H), 2.66-2.68 (m, 2H), 3.33 (m, 2H), 3.87 (s, 6H), 4.04 (s, 6H), 4.16 (s, 6H), 15.44 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 14.5, 24.7, 35.4, 53.4, 61.7, 62.0, 106.7, 116.4, 117.2, 127.4, 129.5, 141.3, 151.9, 163.8, 166.0, 172.0, 176.5; IR (film) 3236, 2927, 2858, 1738, 1599, 1460, 1413, 1259, 1220 cm⁻¹; HRMS (ES) calcd for C₃₄H₃₃O₁₂ (MH⁻) 633.1972, found 633.1974; CSP HPLC (Chiralpak AD, 1.0 mL/min, 97:3 hexanes:*i*-PrOH) t_b(*S*) = 11.4 min, t_b(*R*) = 16.6 min.

X-ray Structure Determination of Compound 54

Compound **54**, $C_{42}H_{32}O_{14}Cl_6$, crystallizes in the triclinic space group PT with a=12.104(4)Å, b=12.965(3)Å, c=15.309(4)Å, α =76.681(2)°, β =104.981(7)°, γ =114.121(7)°, V=2096.9(10)Å³, Z=2 and d_{calc}=1.542 g/cm³. X-ray intensity data were collected on a Rigaku Mercury CCD area detector employing graphite-monochromated Mo-K_{α} radiation (λ =0.71069 Å) at a temperature of 143°K. Indexing was performed from a series of four 0.5° oscillation images with exposures of 30 seconds per frame. A hemisphere of data was collected using 30 second exposures and a crystal-to-detector distance of 35 mm. A total of 440 images were collected: one sweep was performed using ϕ -scans from -90° to +90° in 0.5° steps at $\omega = 0°$ and $\chi = 0°$ with a detector swing angle of -10°; a second sweep was done using ω -scans from -20° to +20° in 0.5° steps at χ = -90° and $\phi = 0°$ with a detector swing angle of -10°. Oscillation images were then passed to the teXsan² program package for further processing and structure solution on a Silicon Graphics O2 computer. A total of 12995 reflections were measured over the ranges $5.06 \le 2\theta \le 50.7^{\circ}$, $-11 \le h \le 14$, $-15 \le k \le 12$, $-18 \le 1 \le 15$ yielding 7308 unique reflections (R_{int} = 0.0326). The intensity data were corrected for Lorentz and polarization effects but not for absorption.

The structure was solved by direct methods (SIR92³). Refinement was by full-matrix least squares based on F² using SHELXL-93⁴. All reflections were used during refinement (F²'s that were experimentally negative were replaced by F² = 0). The weighting scheme used was $w=1/[\sigma^2(F_o^2)+ 0.0216P^2 + 3.5407P]$ where P = $(F_o^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a "riding" model. Refinement converged to R₁=0.0678 and wR₂=0.1079 for 5526 reflections for which F > 4 σ (F) and R₁=0.0999, wR₂=0.1171 and GOF = 1.142 for all 7307 unique, non-zero reflections and 565 variables⁵. The maximum Δ/σ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.314 and -0.350 e/Å³.

Table S54.1 lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in **Table S54.2**. Anisotropic thermal parameters are in **Table S54.3**. **Tables S55.4** and **S54.5** list bond distances and bond angles. **Figures S54.1** is an ORTEP⁶ representation of the molecule with 30% probability thermal ellipsoids displayed.

Figure S54.1 ORTEP drawing of the title compound with 30% probability thermal ellipsoids.

Formula:	$C_{42}H_{32}O_{14}Cl_6$
Formula weight:	973.38
Crystal class:	triclinic
Space group:	PT (#2)
Z	2
Cell constants:	
а	12.104(4)Å
b	12.965(3)Å
c	15.309(4)Å
α	76.681(2)°
β	104.981(7)°
γ	114.121(7)°
V	2096.9(10)Å ³
μ	4.79 cm^{-1}
crystal size, mm	0.48 x 0.06 x 0.01
D _{calc}	1.542 g/cm^3
F(000)	996
Radiation:	Mo- K_{α} (λ =0.71069Å)
2θ range	5.06 – 50.7 °
hkl collected:	-11≤ h ≤14; -15≤ k ≤12; -18≤ l ≤15
No. reflections measured:	12995
No. unique reflections:	7308 (R _{int} =0.0326)
No. observed reflections	5526 (F>4σ)
No. reflections used in refinement	7307
No. parameters	565
R indices (F>4 σ)	R ₁ =0.0678
	wR ₂ =0.1079
R indices (all data)	R ₁ =0.0999
	wR ₂ =0.1171
GOF:	1.142
Final Difference Peaks, e/Å ³	+0.314, -0.350

Table S54.1 Summary of Structure Determination of Compound 54

Atom	Х	У	Z	U_{eq} , Å ²
C1	0.6907(3)	-0.0528(3)	0.8553(2)	0.0154(7)
C2	0.6853(3)	0.0553(3)	0.8269(2)	0.0149(7)
C3	0.6650(3)	0.1063(3)	0.8900(2)	0.0149(7)
C4	0.6510(3)	0.0496(3)	0.9790(2)	0.0142(7)
C5	0.6421(3)	0.1078(3)	1.0451(2)	0.0148(7)
C6	0.6288(3)	0.0453(3)	1.1416(2)	0.0171(8)
C7	0.6328(3)	-0.0698(3)	1.1634(2)	0.0162(7)
C8	0.6420(3)	-0.1199(3)	1.0993(2)	0.0148(7)
H8	0.6396(3)	-0.1944(3)	1.1145(2)	0.020
С9	0.6558(3)	-0.0617(3)	1.0069(2)	0.0139(7)
C10	0.6751(3)	-0.1128(3)	0.9445(2)	0.0137(7)
C11	0.6911(3)	-0.2259(3)	0.9679(2)	0.0132(7)
C12	0.8060(3)	-0.2271(3)	1.0221(2)	0.0154(7)
C13	0.8370(3)	-0.3235(3)	1.0401(2)	0.0169(8)
C14	0.7504(3)	-0.4203(3)	1.0008(2)	0.0170(8)
C15	0.6367(3)	-0.4221(3)	0.9487(2)	0.0147(7)
C16	0.5547(3)	-0.5201(3)	0.9046(2)	0.0179(8)
C17	0.4308(3)	-0.5191(3)	0.8467(2)	0.0187(8)
C18	0.4063(3)	-0.4146(3)	0.8351(2)	0.0169(8)
C19	0.4873(3)	-0.3238(3)	0.8757(2)	0.0152(7)
H19	0.4675(3)	-0.2597(3)	0.8679(2)	0.020
C20	0.6055(3)	-0.3229(3)	0.9315(2)	0.0143(7)
C22	0.6647(4)	-0.1089(3)	0.7077(2)	0.0279(9)
H22a	0.7234(4)	-0.0514(3)	0.6720(2)	0.037
H22b	0.5903(4)	-0.0923(3)	0.6934(2)	0.037
C23	0.6360(3)	-0.2265(3)	0.6863(2)	0.0221(8)
C24	0.5300(4)	-0.2782(3)	0.6258(3)	0.0350(10)
H24	0.4749(4)	-0.2416(3)	0.5997(3)	0.047
C25	0.5059(4)	-0.3841(4)	0.6041(3)	0.0440(12)
H25	0.4353(4)	-0.4179(4)	0.5627(3)	0.058
C26	0.5858(5)	-0.4393(4)	0.6433(3)	0.0504(13)
H26	0.5693(5)	-0.5105(4)	0.6287(3)	0.067
C27	0.6901(5)	-0.3894(4)	0.7041(4)	0.0519(13)
H27	0.7436(5)	-0.4276(4)	0.7313(4)	0.069
C28	0.7164(4)	-0.2826(3)	0.7252(3)	0.0348(10)
H28	0.7881(4)	-0.2486(3)	0.7656(3)	0.046
C29	0.7187(3)	0.1261(3)	0.7383(2)	0.0184(8)
C32	0.6626(4)	0.2441(4)	0.6081(3)	0.0407(11)
H32a	0.727(2)	0.3143(10)	0.6244(3)	0.061
H32b	0.5910(8)	0.259(2)	0.5735(10)	0.061
H32c	0.690(3)	0.2111(11)	0.5720(10)	0.061
C37	0.6106(4)	-0.2300(3)	1.2790(3)	0.0301(10)
H37a	0.598(2)	-0.2529(7)	1.3412(6)	0.045
H37b	0.6842(10)	-0.2379(5)	1.274(2)	0.045
H37c	0.5413(14)	-0.2775(4)	1.2404(11)	0.045
C39	0.9660(3)	-0.1154(3)	1.1367(2)	0.0224(8)
H39a	1.0482(3)	-0.0980(3)	1.1270(2)	0.030
H39b	0.9421(3)	-0.1864(3)	1.1781(2)	0.030

Table S54.2 Refined Positional Parameters for Compound 54

C10	0.0(25(2))	0.0205(2)	1 17(0(2)	0.0105(0)
C40	0.9635(3)	-0.0205(3)	1.1760(2)	0.0195(8)
C41	0.9/59(4)	-0.0277(3)	1.2697(3)	0.0274(9)
H41	0.9864(4)	-0.0912(3)	1.3081(3)	0.036
C42	0.9728(4)	0.0591(4)	1.3064(3)	0.0339(10)
H42	0.9820(4)	0.0539(4)	1.3692(3)	0.045
C43	0.9562(4)	0.1532(3)	1.2497(3)	0.0341(10)
H43	0.9522(4)	0.2105(3)	1.2743(3)	0.045
C44	0.9456(3)	0.1626(3)	1.1562(3)	0.0281(9)
H44	0.9356(3)	0.2265(3)	1.1180(3)	0.037
C45	0.9502(3)	0.0761(3)	1.1202(3)	0.0226(8)
H45	0.9443(3)	0.0828(3)	1.0575(3)	0.030
C46	0.9618(3)	-0.3244(3)	1.0856(3)	0.0210(8)
C49	1.0697(4)	-0.4284(4)	1.1926(3)	0.0438(12)
H49a	1.0563(7)	-0.491(2)	1.2416(13)	0.066
H49b	1.1309(9)	-0.3606(9)	1.216(2)	0.066
H49c	1.0977(14)	-0.446(2)	1.1465(6)	0.066
C54	0.2530(4)	-0.3349(3)	0.7700(3)	0.0304(9)
H54a	0.1700(9)	-0.3565(9)	0.736(2)	0.046
H54b	0.305(2)	-0.2681(7)	0.737(2)	0.046
H54c	0.255(2)	-0.319(2)	0.8287(3)	0.046
O21	0.7156(2)	-0.1091(2)	0.8034(2)	0.0197(5)
O30	0.6320(2)	0.1653(2)	0.6905(2)	0.0306(7)
031	0.8135(2)	0.1462(2)	0.7150(2)	0.0296(6)
033	0.6634(2)	0.2117(2)	0.8636(2)	0.0194(5)
H33	0.650(4)	0.2324(14)	0.9053(10)	0.029
034	0.6451(2)	0.2070(2)	1.0279(2)	0.0225(6)
035	0.6136(2)	0.0911(2)	1.1963(2)	0.0267(6)
036	0.6221(2)	-0.1134(2)	1.2511(2)	0.0219(6)
038	0.8800(2)	-0.1258(2)	1.0507(2)	0.0188(5)
047	0.9558(2)	-0.4102(2)	1.1534(2)	0.0311(7)
048	1.0558(2)	-0.2575(2)	1 0623(2)	0.0304(6)
050	0.7836(2)	-0.5105(2)	1.0023(2) 1.0123(2)	0.0258(6)
H50	0.728(2)	-0.5613(14)	0.986(2)	0.039
051	0.723(2) 0.5775(2)	-0.6067(2)	0.900(2) 0.9104(2)	0.0255(6)
052	0.3778(2)	-0.6037(2)	0.8134(2)	0.0233(0) 0.0278(6)
052	0.3970(2) 0.2953(2)	-0.4265(2)	0.0137(2) 0.7817(2)	0.0232(6)
C55	0.2535(2) 0.2547(4)	-0.4203(2)	0.7017(2) 0.5742(3)	0.0232(0) 0.0331(10)
H55	0.2590(4)	-0.0292(3)	0.5742(3) 0.6399(3)	0.044
C11	0.2390(4) 0.22403(12)	-0.03+3(3) 0.00334(10)	0.0377(3)	0.0510(3)
Cl2	0.22493(12) 0.30625(12)	0.09354(10) 0.01055(13)	0.51740(0) 0.55604(10)	0.0519(5)
C12	0.39023(12) 0.13621(12)	-0.01933(13) 0.15170(10)	0.53004(10) 0.53455(0)	0.0010(4) 0.0520(3)
C15	0.13021(12) 0.1727(4)	-0.13170(10) 0.4200(2)	0.33433(8)	0.0320(3) 0.0316(10)
U30	-0.1/2/(4) 0.2285(4)	-0.4309(3)	0.3331(3)	0.0310(10)
П30 С14	-0.2303(4)	-0.4410(3)	0.3390(3)	0.042
C14 C15	-0.03340(11)	-0.3338/(9)	0.33901(8)	0.043/(3)
	-0.20895(13)	-0.3/338(11)	0.4/185(9)	0.0579(4)
	-U.10524(11)	-0.30499(9)	0.44189(8)	0.0433(3)
$U_{eq}=1/3$	$U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{2$	$\cup_{33}(cc^*)^2 + 2U_{12}aa^*bb^*cc$	$s\gamma$ +2U ₁₃ aa*cc* $cos\beta$ +2U	$\cup_{23}bb^*cc^*cos\alpha$]

Atom	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.010(2)	0.016(2)	0.018(2)	-0.0058(14)	0.000(2)	0.0033(14)
C2	0.013(2)	0.013(2)	0.016(2)	0.0008(13)	0.002(2)	0.0032(14)
C3	0.009(2)	0.011(2)	0.021(2)	-0.0019(14)	-0.001(2)	0.0027(13)
C4	0.010(2)	0.015(2)	0.017(2)	-0.0060(14)	-0.0014(14)	0.0045(14)
C5	0.010(2)	0.012(2)	0.021(2)	-0.0039(14)	0.001(2)	0.0031(13)
C6	0.013(2)	0.017(2)	0.019(2)	-0.0057(14)	0.003(2)	0.0021(14)
C7	0.017(2)	0.015(2)	0.015(2)	-0.0035(14)	0.001(2)	0.0043(14)
C8	0.017(2)	0.008(2)	0.019(2)	-0.0009(13)	0.003(2)	0.0049(14)
C9	0.009(2)	0.013(2)	0.017(2)	-0.0019(13)	-0.0005(14)	0.0023(13)
C10	0.009(2)	0.011(2)	0.017(2)	-0.0031(13)	-0.0003(14)	0.0007(13)
C11	0.015(2)	0.014(2)	0.014(2)	-0.0004(13)	0.007(2)	0.0073(14)
C12	0.016(2)	0.016(2)	0.012(2)	-0.0001(13)	0.004(2)	0.0029(14)
C13	0.015(2)	0.016(2)	0.019(2)	0.0012(14)	0.002(2)	0.008(2)
C14	0.020(2)	0.013(2)	0.020(2)	0.0001(14)	0.006(2)	0.008(2)
C15	0.015(2)	0.013(2)	0.016(2)	0.0000(13)	0.005(2)	0.0048(14)
C16	0.023(2)	0.016(2)	0.016(2)	0.0009(14)	0.005(2)	0.008(2)
C17	0.020(2)	0.016(2)	0.019(2)	-0.0060(14)	0.004(2)	0.003(2)
C18	0.015(2)	0.014(2)	0.018(2)	-0.0008(14)	0.000(2)	0.0047(14)
C19	0.016(2)	0.014(2)	0.017(2)	-0.0003(14)	0.003(2)	0.008(2)
C20	0.016(2)	0.013(2)	0.013(2)	0.0010(13)	0.006(2)	0.0041(14)
C22	0.044(3)	0.027(2)	0.013(2)	-0.004(2)	0.000(2)	0.015(2)
C23	0.027(2)	0.022(2)	0.016(2)	-0.003(2)	0.009(2)	0.005(2)
C24	0.039(3)	0.033(2)	0.028(2)	-0.005(2)	0.004(2)	0.011(2)
C25	0.046(3)	0.033(3)	0.039(3)	-0.016(2)	0.001(2)	-0.001(2)
C26	0.070(4)	0.025(2)	0.056(3)	-0.017(2)	0.019(3)	0.007(2)
C27	0.063(4)	0.046(3)	0.062(3)	-0.020(2)	0.010(3)	0.031(3)
C28	0.029(2)	0.038(3)	0.042(3)	-0.017(2)	0.003(2)	0.013(2)
C29	0.021(2)	0.012(2)	0.021(2)	-0.0020(14)	0.004(2)	0.005(2)
C32	0.061(3)	0.042(3)	0.021(2)	0.014(2)	0.010(2)	0.030(2)
C37	0.053(3)	0.020(2)	0.019(2)	0.002(2)	0.011(2)	0.014(2)
C39	0.018(2)	0.025(2)	0.021(2)	-0.004(2)	-0.006(2)	0.009(2)
C40	0.011(2)	0.019(2)	0.027(2)	-0.009(2)	0.000(2)	0.0031(14)
C41	0.024(2)	0.035(2)	0.024(2)	-0.003(2)	0.001(2)	0.014(2)
C42	0.034(3)	0.047(3)	0.025(2)	-0.010(2)	0.004(2)	0.017(2)
C43	0.030(2)	0.036(2)	0.045(3)	-0.019(2)	0.007(2)	0.014(2)
C44	0.021(2)	0.023(2)	0.037(3)	-0.008(2)	0.001(2)	0.007(2)
C45	0.016(2)	0.027(2)	0.023(2)	-0.006(2)	0.001(2)	0.006(2)
C46	0.019(2)	0.014(2)	0.029(2)	-0.004(2)	0.001(2)	0.006(2)
C49	0.026(2)	0.036(2)	0.058(3)	0.008(2)	-0.008(2)	0.018(2)
C54	0.028(2)	0.024(2)	0.038(2)	-0.008(2)	-0.009(2)	0.015(2)
O21	0.029(2)	0.0223(13)	0.0128(13)	-0.0021(10)	0.0035(11)	0.0148(11)
O30	0.035(2)	0.040(2)	0.0189(14)	0.0114(12)	0.0062(13)	0.0240(14)
031	0.026(2)	0.032(2)	0.029(2)	0.0065(12)	0.0135(13)	0.0103(12)
033	0.026(2)	0.0131(13)	0.0214(14)	0.0016(10)	0.0057(12)	0.0108(10)
O34	0.030(2)	0.0166(14)	0.025(2)	-0.0051(10)	0.0030(12)	0.0123(11)
035	0.039(2)	0.0188(14)	0.027(2)	-0.0083(11)	0.0112(13)	0.0101(12)
O36	0.034(2)	0.0158(13)	0.0179(14)	-0.0009(10)	0.0086(12)	0.0098(11)
O38	0.0155(13)	0.0143(12)	0.0210(14)	-0.0045(10)	-0.0064(11)	0.0046(10)
O47	0.021(2)	0.0255(14)	0.038(2)	0.0077(12)	-0.0026(13)	0.0105(12)

 $\label{eq:source} \textbf{Table S54.3} \ \text{Refined Thermal Parameters} \ (U's) \ \text{for Compound 54}$

O50	0.027(2)	0.0188(14)	0.034(2)	-0.0065(11)	-0.0041(13)	0.0152(12)
O51	0.031(2)	0.0162(14)	0.031(2)	-0.0066(11)	-0.0007(12)	0.0120(11)
O52	0.026(2)	0.0203(14)	0.035(2)	-0.0140(12)	-0.0050(13)	0.0082(12)
053	0.0211(14)	0.0190(13)	0.030(2)	-0.0094(11)	-0.0053(12)	0.0111(11)
C55	0.037(3)	0.036(2)	0.026(2)	-0.009(2)	0.004(2)	0.012(2)
Cl1	0.0651(9)	0.0432(7)	0.0454(7)	-0.0002(5)	0.0057(6)	0.0241(6)
C12	0.0399(8)	0.0898(10)	0.0615(9)	-0.0189(7)	0.0049(7)	0.0288(7)
C13	0.0523(8)	0.0439(7)	0.0591(8)	-0.0263(6)	0.0130(6)	0.0055(6)
C56	0.030(2)	0.028(2)	0.028(2)	-0.002(2)	-0.005(2)	0.009(2)
Cl4	0.0453(7)	0.0386(6)	0.0372(7)	0.0089(5)	0.0083(5)	0.0069(5)
C15	0.0616(9)	0.0528(8)	0.0650(9)	-0.0242(6)	0.0141(7)	0.0170(6)
Cl6	0.0505(7)	0.0280(6)	0.0421(7)	0.0072(5)	0.0043(6)	0.0142(5)
The form of the anisotropic displacement parameter is:						
$\exp[-2\pi^2$	$(a^{*2}U_{11}h^2+b^{*2}U_{11}h^2)$	$J_{22}k^2 + c^{*2}U_{33}l^2 +$	$2b*c*U_{23}kl+2$	2a*c*U ₁₃ hl+2a*	$b*U_{12}hk)].$	

C1-O21	1.351(4)	C1-C2	1.392(4)	C1-C10	1.424(5)
C2-C3	1.408(5)	C2-C29	1.500(5)	C3-O33	1.339(4)
C3-C4	1.407(5)	C4-C9	1.428(4)	C4-C5	1.442(4)
C5-O34	1.239(4)	C5-C6	1.526(5)	C6-O35	1.218(4)
C6-C7	1.471(5)	C7-C8	1.343(5)	C7-O36	1.349(4)
C8-C9	1.458(5)	C9-C10	1.394(5)	C10-C11	1.506(4)
C11-C20	1.388(5)	C11-C12	1.427(5)	C12-O38	1.349(4)
C12-C13	1.397(5)	C13-C14	1.407(5)	C13-C46	1.495(5)
C14-O50	1.346(4)	C14-C15	1.396(5)	C15-C20	1.434(4)
C15-C16	1.439(5)	C16-O51	1.241(4)	C16-C17	1.536(5)
C17-O52	1.215(4)	C17-C18	1.465(5)	C18-C19	1.345(5)
C18-O53	1.349(4)	C19-C20	1.461(5)	C22-O21	1.434(4)
C22-C23	1.514(5)	C23-C28	1.382(5)	C23-C24	1.386(5)
C24-C25	1.383(6)	C25-C26	1.369(7)	C26-C27	1.372(7)
C27-C28	1.384(6)	C29-O31	1.199(4)	C29-O30	1.328(4)
C32-O30	1.453(4)	C37-O36	1.431(4)	C39-O38	1.446(4)
C39-C40	1.503(5)	C40-C45	1.387(5)	C40-C41	1.388(5)
C41-C42	1.385(5)	C42-C43	1.380(6)	C43-C44	1.384(6)
C44-C45	1.385(5)	C46-O48	1.197(4)	C46-O47	1.328(4)
C49-O47	1.446(4)	C54-O53	1.434(4)	C55-Cl1	1.754(4)
C55-C13	1.755(4)	C55-Cl2	1.757(4)	C56-Cl4	1.756(4)
C56-C15	1.758(4)	C56-C16	1.764(4)		

Table S54.4 Bond Distances in Compound 54, Å

Table S54.5 Bond Angles in Compound 5	4,	0
---	----	---

O21-C1-C2	124.0(3)	O21-C1-C10	113.5(3)	C2-C1-C10	122.5(3)
C1-C2-C3	117.8(3)	C1-C2-C29	123.0(3)	C3-C2-C29	118.5(3)
O33-C3-C4	121.2(3)	O33-C3-C2	117.9(3)	C4-C3-C2	120.8(3)
C3-C4-C9	120.7(3)	C3-C4-C5	119.8(3)	C9-C4-C5	119.3(3)
O34-C5-C4	123.4(3)	O34-C5-C6	117.6(3)	C4-C5-C6	119.0(3)
O35-C6-C7	123.0(3)	O35-C6-C5	119.5(3)	C7-C6-C5	117.5(3)
C8-C7-O36	128.1(3)	C8-C7-C6	121.0(3)	O36-C7-C6	110.9(3)
C7-C8-C9	122.5(3)	C10-C9-C4	118.7(3)	C10-C9-C8	120.8(3)
C4-C9-C8	120.5(3)	C9-C10-C1	119.4(3)	C9-C10-C11	123.6(3)
C1-C10-C11	116.8(3)	C20-C11-C12	120.1(3)	C20-C11-C10	122.7(3)
C12-C11-C10	116.9(3)	O38-C12-C13	124.9(3)	O38-C12-C11	112.9(3)
C13-C12-C11	122.2(3)	C12-C13-C14	117.1(3)	C12-C13-C46	124.0(3)
C14-C13-C46	118.2(3)	O50-C14-C15	120.8(3)	O50-C14-C13	117.2(3)
C15-C14-C13	121.9(3)	C14-C15-C20	120.5(3)	C14-C15-C16	119.9(3)
C20-C15-C16	119.4(3)	O51-C16-C15	124.0(3)	O51-C16-C17	117.2(3)
C15-C16-C17	118.8(3)	O52-C17-C18	123.1(3)	O52-C17-C16	119.5(3)
C18-C17-C16	117.5(3)	C19-C18-O53	128.1(3)	C19-C18-C17	121.5(3)
O53-C18-C17	110.3(3)	C18-C19-C20	122.0(3)	C11-C20-C15	118.3(3)
C11-C20-C19	121.2(3)	C15-C20-C19	120.6(3)	O21-C22-C23	107.1(3)
C28-C23-C24	119.2(4)	C28-C23-C22	120.4(4)	C24-C23-C22	120.4(3)
C25-C24-C23	120.3(4)	C26-C25-C24	120.1(4)	C25-C26-C27	120.0(4)
C26-C27-C28	120.5(5)	C23-C28-C27	119.9(4)	O31-C29-O30	124.5(3)
O31-C29-C2	123.7(3)	O30-C29-C2	111.8(3)	O38-C39-C40	107.3(3)
C45-C40-C41	118.7(3)	C45-C40-C39	121.1(3)	C41-C40-C39	120.2(3)
C42-C41-C40	120.5(4)	C43-C42-C41	120.1(4)	C42-C43-C44	120.2(4)
C43-C44-C45	119.3(4)	C44-C45-C40	121.2(4)	O48-C46-O47	124.0(3)
O48-C46-C13	124.1(3)	O47-C46-C13	111.8(3)	C1-O21-C22	122.0(3)
C29-O30-C32	115.3(3)	C7-O36-C37	116.9(3)	C12-O38-C39	123.2(2)
C46-O47-C49	115.8(3)	C18-O53-C54	117.2(3)	Cl1-C55-Cl3	110.2(2)
Cl1-C55-Cl2	109.7(2)	Cl3-C55-Cl2	109.9(2)	Cl4-C56-Cl5	110.3(2)
Cl4-C56-Cl6	110.5(2)	Cl5-C56-Cl6	109.8(2)		

- 1. CrystalClear: Rigaku Corporation, 1999.
- 2. teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1992).
- <u>SIR92</u>: Altomare, A., Burla, M.C., Camalli, M., Cascarano, M., Giacovazzo, C., Guagliardi, A., Polidoro, G. (1994). J. Appl. Cryst., 27, 435.
- 4. <u>SHELXL-93</u>: Program for the Refinement of Crystal Structures, Sheldrick, G.M. (1993), University of Göttingen, Germany.
- 5. $R_1 = \sum ||F_o| |F_c|| / \sum |F_o|$ $wR_2 = \{ \sum w (F_o^2 F_c^2)^2 / \sum w(F_o^2)^2 \}^{1/2}$ $GOF = \{ \sum w (F_o^2 F_c^2)^2 / (n p) \}^{1/2}$ where n = the number of reflections and p = the number of parameters refined.
- "ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.