
Proc. Nadl. Acad. Sci. USA
Vol. 85, pp. 2029-2030, April 1988
Physics

Diffusion in a rough potential
ROBERT ZWANZIG
University of Maryland, College Park, MD 20742

Contributed by Robert Zwanzig, December 14, 1987

ABSTRACT Diffusion in a spatially rough one-dimension-
al potential is treated by analysis of the mean first passage
time. A general expression is found for the effective diffusion
coefficient, which can become very small at low temperatures.

This paper deals with diffusion in a rough potential. The
work was motivated in part by ideas of Frauenfelder and co-
workers concerning the dynamical behavior of proteins (for
a good summary with figures, see ref. 1). They suggest that
the potential surface of a protein might have a hierarchical
structure, with potential minima within potential minima,
etc. That is, the potential surface might be rough.
The treatment reported here of diffusion in a rough poten-

tial is restricted to one-dimensional systems and may not
have any immediate relevance to multidimensional protein
dynamics. However, the one-dimensional results seem inter-
esting in themselves. In particular, the roughness of a poten-
tial gives rise to a dramatic slowing down of diffusion at low
temperatures, especially when fluctuations in the potential
have a Gaussian distribution.
An example of what is meant by "rough" is shown in Fig.

1. This particular one-dimensional potential was constructed
from the arbitrarily chosen function

U(x) = x2 + 0.02(cos 167x + sin 73x).

x

FIG. 1. An example of a rough potential is shown. The potential
is given in Eq. 1 of the text.

tion determines the time (t) dependence of the probability
distribution p(x,t). It has the form

ap/at = -al/ax,

J = -De-U(x)a/axegu(x)p[1]

The general parabolic shape of the first term is clearly visi-
ble, but superimposed on it are many small potential barriers
distributed in a more or less random way. The amplitude E =
0.02 of the second term is a measure of the "roughness" of
the potential, a term which will be used here generally to
denote the characteristic energy scale E of the potential bar-
riers.
One expects that at very high temperatures, compared

with E, diffusion is essentially unaffected by the many small
barriers. But at temperatures that are small compared with E,
diffusion will be seriously hampered by having to cross over
the barriers. This is an important point made by Frauen-
felder and co-workers.
A rough potential U(x) has in general a smooth back-

ground U0(x) on which a rapidly, and perhaps randomly, os-
cillating perturbation Uj(x) is superimposed. The perturba-
tion has a typical amplitude E and a typical length scale Ax.
When U(x) is spatially averaged over Ax, the perturbation is
eliminated and only the smooth background remains. In the
given example, the length scale Ax is of the order of 0.1.
We are concerned only with diffusion on a much larger

length scale than Ax. This separation of the length scale of
roughness and the length scale of observed motion is essen-
tial to the following discussion. The results make sense only
if many fluctuations in roughness take place in the distance
of interest.
Brownian motion or diffusion of a system in a potential

U(x) is described by the Smoluchowski equation. This equa-

[2]

[3]

in which J is a current density, D is a diffusion coefficient,
and /3 = 1/kBT, where T is the temperature.
When the potential U is smooth, solution of the Smolu-

chowski equation is straightforward (although numerical
methods may be required). But when the potential is rough,
standard procedures are not so useful. This paper presents
an approximate treatment of diffusion in a rough one-dimen-
sional potential. The approach taken is an extension of some
old work of Lifson and Jackson (2). It makes use of an ana-
lytic expression for the mean first passage time (mfpt) to
move from one position to another. The main result is that
the original diffusion coefficient D is replaced by an effec-
tive diffusion coefficient D*, and the original potential U(x)
is replaced by an effective smooth potential U*(x). D* and
U* may depend very strongly on temperature, and D* may
be very much smaller than D. Illustrations will be given lat-
er.
We start with a familiar expression (2, 3) for the mean time

required for a system starting out at x0 to reach x for the first
time. This is the mfpt and is denoted by (t,x). For technical
reasons that are not relevant to the present discussion, we
assume that there is a reflecting barrier at some location x =
a. For convenience we consider only a < xO < x. The argu-
ment that follows does not depend critically on the values xo,
x, and a as long as all distances involved are large compared
with the length scale of the roughness. The mfpt is found by
solving the differential equation

e1u(x)a/axDe-&1u(x)a/ax(tx) = -1

Abbreviation: mfpt, mean first passage time.
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with an absorbing boundary condition at x = x0. The solution
is

t xdy
(t,x) = dy eQu(y) (1/D) Jdz e- u(z). [5]

amount q-/p. Also, the effective diffusion coefficient is in-
dependent of coordinate, D* = De-+ e-

If, for example, the perturbation is simply Ul(x) = Ecos(qx),
then by integration over one period we obtain

Observe that the integrations in this formula have the effect
of spatial averages. That is, the integral over a small dis-
tance Ax may be approximated by

f dz e-PU(z) f dz e-PU(z)(e-PU(z)) [6]

in which ( ) denotes the spatial average used to smooth the
potential. The average of the exponential can still be a func-
tion of the coordinate z, if the amplitude of the fluctuations
in U1 varies with z. For this reason, we denote the average
by

(ePU(z)) = e*l(Z). [7]

Exactly the same approximation may be applied to the inte-
gration over y, with the definition

en = enI = Io(13E) [14]

in which Io(P8e) is the modified Bessel function. This leads to
a well-known result (4) in the case where the background
potential is completely flat. At low temperatures, where
e/kBTis very large, the Bessel function grows exponentially,
so that D* is proportional to exp(-2E/kBT). This Arrhenius
behavior is due to slow hopping between the many minima in
the rough potential.

In another quite interesting example, suppose that the am-
plitude of the roughness is random and independent of x. In
particular, suppose that it has a Gaussian distribution, with a
probability proportional to exp(- U1/2E2) in which E is the
root-mean-squared roughness, E2 = (U2). Then by direct in-
tegration one finds

e = e = eP2E2/2 [15]

and the effective diffusion coefficient is

D* = D exp[-(e/kBT)2].
The result of the smoothing is the modified mfpt given by~~~~~~~~~~Y

(t~x)- dy euo(y)+*+(Y) (1/D) Idz e-PU°(z)+* (Z). [9xo ~~~~~~~~~a
But by working backwards, we can see that this result is
actually the mfpt for Brownian motion in the effective poten-
tial

U*(x) = Uo(x)- qf(x)/p, [10]

with the effective diffusion coefficient given by

1/D*(x) = ehI+(X)(1/D)e*J(x). [11]

The corresponding effective Smoluchowski equation, valid
only for distances much larger than the characteristic length
scale of the fluctuations in U, is expected to be

ap/at = -a/ax, [12]

J =-D*(x)e-U*(x)a/axeP]*(x)p. [13]

However, this is only a conjecture; there is no direct deriva-
tion of the effective Smoluchowski equation for a rough po-
tential. All that we can say is that the mfpt predicted by this
effective Smoluchowski equation agrees with the mfpt ob-
tained by the spatial averaging process. (Actually, a similar
argument can be made for higher moments of the first pas-
sage time distribution. They also are determined by D* and
U*. So the conjecture is likely to be true.)

If the amplitude of the roughness does not depend on the
coordinate, then U* is U0 shifted by an irrelevant constant

This quadratic temperature dependence is significantly
stronger than in the case of periodic roughness.

All of the preceding discussion was for one-dimensional
diffusion. Unfortunately, there seems to be no generaliza-
tion to higher dimensionalities of the approach used here
(however, see ref. 5 for an attempt in this direction). This is
especially sad because the potential surface of a protein mol-
ecule is surely multidimensional. One may conjecture that
something like what is seen in one dimension will also be
seen in higher dimensions; but this calls for further theoreti-
cal treatment.
The procedure followed here is a simple extension of the

one used by Lifson and Jackson (2). A treatment due to De
Gennes (6) of diffusion in a particular kind of random poten-
tial is similar to this one.
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