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In this Supporting Information we fill in some missing mathematical steps
and supporting details for the results given in the main paper.

State Variables and Successor Points

The successor points m(i+) mentioned after Eq. 4 in the main text are explicitly

m(1+) = (mA + 1, mA, mB, mB)

m(2+) = (mA, mA + 1, mB, mB)

m(3+) = (mA, mA, mB + 1, mB)

m(4+) = (mA, mA, mB, mB + 1)

(1)

and similarly for the predecessor points m(i−), substituting minus for plus.
Figure S1 shows the state vector m and its successor states. Which successor
state is chosen depends, first, on whether a patient is assigned to treatment
A or B, and second, on whether the treatment is a success or a failure, which
occurs with respective probabilities a and b for A and B.

From the various definitions it is easy to prove relations like

aP (a|m) =
mA + 1

mA + mA + 2
P (a|m(1+)) ≡ 〈a〉m P (a|m(1+))

(1 − a)P (a|m) =
mA + 1

mA + mA + 2
P (a|m(2+)) ≡ 〈1 − a〉m P (a|m(2+))

(2)

and correspondingly for b, with m(3+) and m(4+).
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Figure 1: Schematic of the 4-dimensional state space. A state is a point on the
nonnegative integer lattice. It has one of 4 successor points, depending on whether
treatment A (blue) or B (red) is assigned and on whether the treatment succeeds
or fails.

Recurrence for the Exact Solution

The probability that a path that goes through m0 passes through a point m
is denoted p(m|a, b, r,m0). A forward recurrence for p(m|a, b, r,m0) simply
tracks where the probability at point m came from:

p(m|a, b, r,m0) =a rm(1−) p(m(1−)|a, b, r,m0)

+ (1 − a) rm(2−) p(m(2−)|a, b, r,m0)

+ b (1 − rm(3−)) p(m(3−)|a, b, r,m0)

+ (1 − b) (1 − rm(4−)) p(m(4−)|a, b, r,m0)

(3)

valid for m � m0. Of course we also have p(m0|a, b, r,m0) ≡ 1.
A backwards recurrence is obtained by explicitly enumerating how the prob-

ability at m0 devolves to its four successors:

p(m|a, b, r,m0) =a rm0 p(m|a, b, r,m(1+))

+(1 − a) rm0 p(m|a, b, r,m(2+))

+b (1 − rm0) p(m|a, b, r,m(3+))

+(1 − b) (1 − rm0) p(m|a, b, r,m(4+))

(4)
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Start with the definition of the total cost

C(m0|r, Mh) =

〈
M<Mh∑
m�m0

c(m|a, b, r)p(m|a, b, r,m0)

〉
m0

(5)

(main text Eq. 7). Writing the first term in the sum explicitly gives

C(m0|r, Mh) =

〈
c(m0|a, b, r) +

M<Mh∑
m�m0

c(m|a, b, r)p(m|a, b, r,m0)

〉
m0

(6)

Now substitute Eq. 4 for p(m|a, b, r,m0) and use Eq. 2 to get

C(m0|r, Mh) = 〈c(m0|a, b, r)〉m0

+ 〈a〉m0
rm0C(m

(1+)
0 ) + 〈1 − a〉m0

rm0C(m
(2+)
0 )

+ 〈b〉m0
(1 − rm0)C(m

(3+)
0 ) + 〈1 − b〉m0

(1 − rm0)C(m
(4+)
0 )

(7)

This is the principal result used in the main text. It is a backward recurrence
for the cost C(m0|r, Mh) in terms of the 4 costs C(m

(i+)
0 |r, Mh) with i =

1, 2, 3, 4, and can be started at the horizon Mh with

C(m0|r, Mh) ≡ 0 when M ≥ Mh (8)

If at each point we locally choose rm to minimize C, then, as noted in the
main text, the recurrence guarantees that each point will acquire the globally
smallest cost C to the horizon; so we get an optimal strategy r.

Fitting the Heuristic

Here we give some further justification for the functional form of main text
Eq. 23. We first consider the dependence of tcrit on the horizon Mh. For
definiteness, suppose that µA|m > µB|m so that t is positive, indicating that
treatment A is likely superior to B. The tail probability of this indication being
wrong scales as (neglecting polynomial terms) exp(−1

2
t2). If the indication is

wrong, but we follow it anyway, then lost successes accrue for ∼ Mh patients.
So the cost of the indication scales as

Cwrong ∼ exp(−1
2
t2)Mh (9)

On the other hand, if we don’t follow the indicated superiority of A, then we
are essentially throwing away ∼ M data points in favor of a new data set. The
cost of this scales as

Cright ∼ M (10)
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Equating Cwrong and Cright, to find the boundary, gives

tcrit ∼
√

log(Mh/M) (11)

Trying this functional form on data from the exact solutions, one finds that
the actual dependency on Mh is slightly weaker. Fitting for the best-fitting
exponent gives

tcrit ∼ [log(Mh/M)]0.42 (12)

as mentioned in the main text. There is nothing natural about this form, and it
seems more likely that the real answer is Eq. 11, but modified by subdominant
effects. However, Eq. 12 is good enough for present purposes.
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Figure 2: Residual dependence of tcrit on M after the dependence of Eq. 12 is
removed. One sees very nearly linear dependence on log M .

Now assuming that all dependence on Mh is captured in Eq. 12, we can
examine the dependence of tcrit on M , for a range of values 0 < M/Mh < 1.
Figure 2 shows typical data of this kind. One sees that the dependence is very
nearly linear in log M , and we adopt this functional dependence in the main
text’s Eq. 23.

One could get a more accurate, but more complicated, functional form by
noting in the Figure that different values of M/Mh have visibly slightly differ-
ent slopes and intercepts, indicating a slight dependency on Mh not modeled
by Eq. 12. One could in principle fit an empirical model to these small differ-
ences, but this is unnecessary here.
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Probability Distribution of Costs

successes lost to horizon = 100
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Figure 3: Cumulative distribution functions for the trial ESL costs for trials with
Mh = 100 and starting points (0, 0, 0, 0). These are distributions whose means are
given in Table 1 in the main text.

Table 1 in the main text compared various strategies by evaluating, via
Monte Carlo, their expected (i.e., mean) costs. However, other properties of
the distributions can also be relevant. Figure 3 shows the full distributions for
the case Mh = 100 and starting point (0, 0, 0, 0), that is, no prior information.
One sees that the exact and heuristic strategies are barely distinguishable.
Both have a finite CDF at near-zero cost, because there are occasional trials in
which an inferior treatment is assigned nearly zero times. The scaled-horizon
strategy is seen to be almost as good as the exact and heuristic strategies,
except in these unusually lucky cases.

Comparing the two horizonless strategies, one sees that the scaled-horizon
strategy is significantly superior to the local Bayes strategy. However, it is
somewhat heavier-tailed, so that it can produce poorer results in unfavorable
cases, about 4% of the time (CDF > 0.96). It is not difficult to design small
modifications to scaled-horizon that substantially improve its tail performance
at the expense of slightly widening the gap between it and the optimal (fixed
horizon) strategy.

Play the winner is roughly uniform up to about twice its (costly) mean,
falling off rapidly thereafter.
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