# **Supporting Information**

# Chen et al. 10.1073/pnas.0902179106

## SI Text

**Strains and Cloning.** UTI89 has been described in ref. 1. Deletion of *fimH* and integration of mutant *fimH* alleles was performed using the Red recombinase system described by Datsenko and Wanner (2), and Murphy and Campellone (3). C3H/HeN mice were obtained from the National Cancer Institute and Harlan. All experiments involving mice were performed using protocols approved by the animal studies committee of Washington University.

**Reagents.** Conjugated BSA (BSA-mannose and BSA-mannotriose) were kindly provided by MedImmune. Guinea pig red blood cells were purchased from Colorado Serum. Enzymes were purchased from New England Biolabs, Invitrogen, and Fisher.

**DNA Sequencing.** The fimH and fimC genes were separately amplified in PCR reactions using colonies or purified genomic DNA as template. The primers used to amplify fimH were uti8 +4913338 and uti8-4915222 (Table S4). The primers used to amplify fimC were uti8+4908948 and uti8-4910744. PCRs contained  $1 \times$  PCR buffer (Invitrogen) supplemented with 2.5 mM MgCl<sub>2</sub>, 1.4 M betaine, 1.3% DMSO, and 200 µM dNTPs, 5 ng template, 12.5 pmol of each primer, and 1 unit Taq polymerase (Invitrogen). Reactions were held at 95 °C for 5 min, cycled 35 times between 95 °C (1 min), 55 °C (1 min), and 72 °C (3 min), and finished at 72 °C for 10 min. Products were purified (PerfectPrep, Eppendorf) and submitted for capillary sequencing with an ABI 3730xl instrument (SeqWright, Inc.). Sequencing primers included the PCR primers as well as uti8+4913927 for *fimH* and uti8-4910078 for *fimC*. Base calling and assembly was done using Phred and Phrap (4, 5).

Sequence Manipulation. Sequences were aligned using CLUST-ALW (6) with default parameters, and trimmed to the start and stop codons of *fimH* and *fimC* as annotated in the UTI89 genome sequence (7). Identical sequences from multiple strains were filtered so that each sequence was represented only once. GENECONV (8) and GARD (9) were used with default parameters to detect recombination. The AICc criterion was used for GARD. Maximum likelihood trees were inferred using PHYML (10), with 100 bootstrap replicates.

Analysis of Positive Selection. PAML version 4 (11) was used for all positive selection analyses. The following models were run on the entire set of *fimH* and *fimC* sequences: M1, M2, M7, and M8. Subtrees of *fimH* were identified based on visual inspection and previous studies of FimH phylogenetic trees (12). Previous analysis of *fimH* sequences identified two major groups based on amino acids coded by positions 70 and 78. This was recapitulated in our analysis by the division between subtree 1 from subtrees 2 and 3. Subtree 2 was identified because these fimH sequences were closer to each other than to any in subtree 3 and this division had high bootstrap support (99/100 replicates). Subtrees of *fimC* were more difficult to identify, and less clearly defined than the *fimH* subtrees. Subtrees of *fimC* were therefore chosen to give a similar number of subtrees and similar numbers of fimC alleles within each subtree as found for fimH. To control against possible bias in *fimC* subtree identification, additional positive selection analysis was performed on the following subdivisions of the *fimC* sequences: (i) all sequences from urine isolates versus those from fecal isolates; and (ii) all fimC sequences whose corresponding *fimH* sequence fell in subtree 1 (or 2 or 3) of the fimH phylogeny (i.e., imposing the fimH phylogeny and subtree divisions upon the fimC sequences). All of these tests gave the same result of no detectable positive selection in fimC.

The bsA model was run with foreground branches as specified in Fig. 1 and Fig. S1. Additional site models were run using only sequences within each subtree; for these, additional maximum likelihood phylogenetic trees were inferred using PHYML before running the M1, M2, M7, and M8 models again. Likelihood ratio tests (LRTs) were done assuming a  $X^2$  distribution, using twice the difference in log likelihoods as  $X^2$  and the parameter difference as reported by PAML as the degrees of freedom. A Bonferroni correction was applied for each set of comparisons; this was 4 for the whole tree and bsA models, 5 for the *fimH* subtree analyses, and 4 for the *fimC* subtree analyses. Corrected *P* values <0.05 were considered significant.

Site-Directed Mutagenesis of *fimH*. The *fimH* gene was amplified by PCR (all PCR for cloning used the same recipe described above under DNA Sequencing) from UTI89 genomic DNA with primers uti8+4913338 and uti8-4914820 and cloned into pCR4-TOPO (Invitrogen), resulting in plasmid pSLC2-12-fimH-TOPO-1. The kanamycin resistance cassette from plasmid pKD4 was amplified with primers MluI-KanL and AscI-KanR, cut with MluI and AscI, and cloned into the MluI site of pSLC2-12-fimH-TOPO-1. A clone with the kanamycin resistance cassette transcribed in the same direction as *fimH* was isolated based on restriction digest and PCR assays and named pSLC2-16-2. The 2.4-kb fragment containing *fimH* and the kanamycin resistance gene was cut out from pSLC2-16-2 by digestion with NotI and SpeI, blunted with the Klenow fragment of E. coli DNA Polymerase I, and ligated to the 2.4-kb fragment of pUC19 resulting from complete digestion with PvuII, giving plasmid pSLC2-24-3.

Site-directed mutagenesis of *fimH* was done by PCR on pSLC2–24-3 using primers uti8+4913338, uti8–4915222, and sew primers (Table S4). Two PCR products resulting from amplification of plasmid pSLC2-24-3 (or a mutated derivative) with (*i*) a sew-R primer and uti8+4913338 and (*ii*) a sew-L primer and uti8+4915222 were purified with the QiaQuick PCR purification kit and eluted in 50  $\mu$ L of the supplied EB buffer. One microliter of each of these purified products was added as template to a final PCR using primers uti8+4913338 and uti8-4915222, yielding a 2.9-kb product. This 2.9-kb fragment was digested with *Mlu*I and *Pvu*II and cloned into pSLC2-24-3 that had been fully digested with *Mlu*I and partially digested with *Pvu*II (cut within the *fimH* gene but not the kanamycinresistance gene) to yield a mutant derivative of pSLC2-24-3.

**Construction of Chromosomal Mutant fimH Strains.** The Red recombinase system was used as described in refs. 2 and 3 to replace the chromosomal *fimH* gene in UTI89 with a kanamycin resistance cassette from the pKD4 plasmid (2), using a linear PCR fragment made with primers uti8+4913515\_fimH-pKD4-left and uti8-4914747\_fimH-pKD4-right, resulting in strain SLC2-12-1. The kanamycin resistance cassette was removed by transient expression of the Flp recombinase from plasmid pCP20 (13), resulting in strain SLC2-14-1. The pKM208 plasmid (3) was transformed into SLC2-14-1, yielding strain SLC2-17-fimH. Strain SLC2-17-fimH was made competent per the protocol described in Murphy and Campellone (3) and transformed with the 2.4-kb fragment that resulted from the digestion of pSLC2-24-1 (or a derivative plasmid containing a mutated *fimH* allele) with *Eco*RI and *Bsa*I, and integrants were isolated by plating on

LB-kan. All manipulations were verified to have yielded the correct size product when amplified with PCR primers uti8+ 4913338 and uti8-4915222. Chromosomal integration junctions and the entire *fimH* gene sequence were verified by sequencing for all *fimH* mutant strains.

**Construction of Phase-Locked ON Mutants.** This was done as described in ref. 14, using primers FimBE KO#1 and FimBE KO #2, except the template plasmid used was pKD3 (2), resulting in a chloramphenicol-resistant strain.

**Type 1 Phase Assay.** This assay was modified from Roesch and Blomfield (15) and Struve and Krogfelt (16). Primers used were uti8-phaseL and uti8-phaseR. A 50- $\mu$ L PCR was run using 1× PCR buffer (Invitrogen), 2.5 mM MgCl<sub>2</sub>, 200  $\mu$ M dNTPs (each), 10 pmol of each primer, and 1 unit Taq polymerase. One microliter of bacterial culture was used as template. The reaction was heated to 95 °C for 5 min then cycled 35 times between 95 °C (1 min), 55 °C (1 min), and 72 °C (1 min). Ten microliters of this reaction was mixed with 2  $\mu$ L of 10× *Hin*fI buffer and 1 unit *Hin*fI restriction enzyme in a 20- $\mu$ L reaction, incubated at 37 °C for 1 h, and analyzed on a 2% agarose gel.

**Type 1-Inducing Cultures.** A single colony on solid media was inoculated into 10 mL Luria–Bertani (LB) media (Fisher Scientific) in a 125-mL flask and incubated without shaking at 37 °C for 18–24 h. Ten microliters of this culture was inoculated into 10 mL fresh LB media in a second 125-mL flask and incubated without shaking at 37 °C for 18–24 h.

**Immunoblotting.** Bacteria grown under type 1 inducing conditions were pelleted (4,000 × g for 10 min at 4 °C) and resuspended in PBS to a final OD<sub>600</sub> of 1.0. One milliliter of this cell suspension was pelleted and resuspended in 100  $\mu$ L of 4× SDS loading buffer and stored at -20 °C. Before electrophoresis, samples were thawed, mixed thoroughly with 3  $\mu$ L of 1 M HCl, heated to 95 °C for 5 min, neutralized with 3  $\mu$ L of 1 M NaOH, and centrifuged at 14,000 × g for 2 min. Ten microliters of the resulting supernatant was loaded onto a 12% SDS/PAGE gel, transferred to a nitrocellulose membrane, blotted with a polyclonal rabbit anti-FimA or anti-FimCH sera (1:5,000 dilution), blotted with a monoclonal HRP-conjugated goat anti-rabbit IgG antibody (1:10,000 dilution, Pierce), and detected with the SuperSignal Pico (Pierce) luminescence substrate.

**Electron Microscopy.** Bacteria were grown under type 1 inducing conditions then prepared for microscopy as described in ref. 17. A semiquantitative scale (from 1 to 10) for three parameters was used to compare pili between different mutants: fraction of piliated cells, average number of pili per piliated cell, and average pilus length.

**Hemagglutination Titers.** HA titers were performed as described in ref. 18, with minor modifications. Briefly, 1 mL of an OD<sub>600</sub> 1.0 suspension of bacterial cells in PBS was gently pelleted ( $4,000 \times g, 2$  min) and resuspended in 100  $\mu$ L PBS. Twenty-five microliters of this was serially diluted in a row of a 96-well V-bottom plate where each well contained 25  $\mu$ L PBS (dilution range 1:2 to 1:4,096). Twenty-five microliters of guinea pig red blood cells were added to each well, agitated, and incubated overnight at 4 °C. The HA titer reported was the greatest dilution of cells that resulted in visible clumping of erythrocytes.

**Mannose-Conjugated BSA ELISA.** Cells were prepared as for HA titers. Ninety-six-well ELISA plates were coated at 37 °C for 1 h with 0.8  $\mu$ g BSA-mannotriose, BSA-mannose, or bovine RNaseB in 100  $\mu$ L PBS. Wells were washed three times with 200  $\mu$ L 0.005% Tween-20 in PBS and blocked with 200  $\mu$ L of 4%

milk in PBS for 2 h at 37 °C. One hundred microliters of a 2-fold dilution series (dilution range 1:1 to 1:2,048) of cell suspension was added to each row of the ELISA plate, bound for 1 h at 37 °C while shaking at 100 rpm, then washed three times in 200  $\mu$ L PBS. Detection was done by adding polyclonal rabbit anti-FimH sera (1:500 dilution) for 30 min at 37 °C, washing three times with 200 µL PBS, adding a monoclonal AP-conjugated goat antirabbit IgG antibody (1:1,000 dilution) for 2 h at 37 °C, and washing again with PBS. Wells were subsequently washed two times with 200  $\mu$ L PBS and twice with ELISA buffer (100 mM Tris, pH 9.5; 50 mM MgCl<sub>2</sub>; and 100 mM NaCl). One hundred microliters of 2 mg/mL para-nitrophenylphosphate (Sigma) in ELISA buffer was added for 30 min and absorbance at 405 nm was measured. The titer reported was the greatest dilution of cells that exceeded a baseline absorbance, calculated as three standard deviations above the mean fluorescence of control wells that contained no bacteria.

**Binding and Invasion to Cultured Bladder Epithelial Cells.** This assay was performed as described in refs. 19 and 20.

**In Vivo Fitness Assay.** Infection of 7- to 8-week-old C3H/HeN mice was performed as described in ref. 21, with minor modifications. Briefly, bacteria were grown under type 1 inducing conditions, harvested, then resuspended to an OD600 of 0.5 in PBS. Fifty microliters of this suspension was instilled transurethrally into the bladder. After 24 h, mice were killed, and bladders were aseptically removed and homogenized in 1 mL PBS. Serial dilutions were plated and total bacterial load per bladder was calculated.

**In Vivo IBC Formation Assay.** This assay was performed as described in ref. 22.

In Vivo Gentamicin Protection Assay. This assay was performed according to (21) with minor modifications. Briefly, cells were prepared and mice infected as described above for the in vivo fitness assay. One hour postinfection, mice were killed and bladders were aseptically removed. Bladders were hemisected and washed three times with 500  $\mu$ L PBS. These three washes were combined and plated to obtain titers for loosely adherent and extracellular bacteria (Wash 1). Washed bladders were then incubated with shaking for 90 min at 37 °C in 100  $\mu$ g/mL gentamicin. Bladders were then washed twice with 1 mL PBS to remove gentamicin, homogenized in 1 mL PBS, and titered. Bacterial titers from the bladder homogenate were presumed to represent intracellular bacteria.

In Vivo Competitive Gastrointestinal Colonization Assay. Bacteria were grown under type 1 inducing conditions. Two hundred microliters of an equal mixture of UTI89 (kanamycin sensitive) and a mutant strain (kanamycin resistant) carrying either a wild-type *fimH* or the A27V/V163A allele in PBS ( $2 \times 10^8$  total CFUs/200  $\mu$ L) was gavaged into 6- to 8-week-old C57/Bl6 female mice (five mice per strain). Mice for each group were housed in separate gnotobiotic isolators. At 1, 4, 7, 11, and 14 days post-gavage, fecal pellets were collected from each mouse, homogenized, and titered on nonselective media for total CFUs. Fifty individual colonies were then assayed for kanamycin resistance to measure the ratio of mutant (kanamycin resistant) to UTI89 (kanamycin sensitive) titers.

**Coinfection with GFP-Producing FimH Mutant Strains.** FimH mutant strains were transformed with the pComGFP plasmid as described in ref. 23. Coinfection of mice, bladder harvest and staining, and confocal microscopy were performed as described in ref. 24.

**Supporting Discussion.** FimH mutations have been previously tested for mannose binding affinity in several studies (12, 25–28). Our mannose binding assays are largely consistent with these previous reports; discrepancies noted here may be due to one of several possibilities: (*i*) different *E. coli* strains; (*ii*) different background FimH amino acid sequence (not previously tested systematically); and (*iii*) differences in phase regulation.

We found that all FimH mutants have strong binding to tri-mannose (Fig. S3), as previously reported. Mutation of Ala-27 to Val-27 has been shown to cause a change from low- to

- Mulvey MA, Schilling JD, Hultgren SJ (2001) Establishment of a persistent *Escherichia* coli reservoir during the acute phase of a bladder infection. *Infect Immun* 69:4572– 4579.
- Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645.
- Murphy KC, Campellone KG (2003) Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol 4:11.
- Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194.
- Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. *Genome Res* 8:175–185.
- Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. *Nucleic Acids Res* 22:4673–4680.
- Chen SL, et al. (2006) Identification of genes subject to positive selection in uropathogenic strains of *Escherichia coli*: A comparative genomics approach. *Proc Natl Acad Sci* USA 103:5977–5982.
- 8. Sawyer S (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6:526-538.
- 9. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) GARD: A genetic algorithm for recombination detection. *Bioinformatics* 22:3096–3098.
- Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704.
- Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. *Mol Biol Evol* 24:1586–1591.
- Sokurenko EV, Courtney HS, Maslow J, Siitonen A, Hasty DL (1995) Quantitative differences in adhesiveness of type 1 fimbriated *Escherichia coli* due to structural differences in fimH genes. J Bacteriol 177:3680–3686.
- Cherepanov PP, Wackernagel W (1995) Gene disruption in *Escherichia coli*: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. *Gene* 158:9–14.
- Hannan TJ, et al. (2008) LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis. Mol Microbiol 67:116–128.
- Roesch PL, Blomfield IC (1998) Leucine alters the interaction of the leucine-responsive regulatory protein (Lrp) with the fim switch to stimulate site-specific recombination in *Escherichia coli*. Mol Microbiol 27:751–761.

high-mannose binding (12). Using FimH sequences identical to those previously reported, we do not consistently see the same effect (Fig. S3, mutants 7 and 15). However, by comparing mutants 5, 6, and 8 with mutants 13, 14, and 16, respectively, in Fig. S3, our results extend previous studies and demonstrate that there is, indeed, consistently lower mono-mannose binding affinity for FimH variants containing Ala-27 compared with those possessing Val-27. This result holds when position 27 is mutated in several different FimH sequences.

- Struve C, Krogfelt KA (1999) In vivo detection of *Escherichia coli* type 1 fimbrial expression and phase variation during experimental urinary tract infection. *Microbiology* 145:2683–2690.
- 17. Wright KJ, Seed PC, Hultgren SJ (2005) Uropathogenic *Escherichia coli* flagella aid in efficient urinary tract colonization. *Infect Immun* 73:7657–7668.
- Hultgren SJ, Schwan WR, Schaeffer AJ, Duncan JL (1986) Regulation of production of type 1 pili among urinary tract isolates of *Escherichia coli*. Infect Immun 54:613–620.
- Elsinghorst EA (1994) Measurement of invasion by gentamicin resistance. Methods Enzymol 236:405–420.
- Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ (2000) Type 1 pilusmediated bacterial invasion of bladder epithelial cells. *EMBO J* 19:2803–2812.
- Mulvey MA, et al. (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497.
- Justice SS, Lauer SR, Hultgren SJ, Hunstad DA (2006) Maturation of intracellular Escherichia coli communities requires SurA. Infect Immun 74:4793–4800.
- Justice SS, et al. (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101:1333–1338.
- Garofalo CK, et al. (2007) Escherichia coli from urine of female patients with urinary tract infections is competent for intracellular bacterial community formation. *Infect Immun* 75:52–60.
- Aprikian P, et al. (2007) Interdomain interaction in the FimH adhesin of *Escherichia coli* regulates the affinity to mannose. J Biol Chem 282:23437–23446.
- Sokurenko EV, Courtney HS, Ohman DE, Klemm P, Hasty DL (1994) FimH family of type 1 fimbrial adhesins: Functional heterogeneity due to minor sequence variations among fimH genes. J Bacteriol 176:748–755.
- Sokurenko EV, Courtney HS, Abraham SN, Klemm P, Hasty DL (1992) Functional heterogeneity of type 1 fimbriae of *Escherichia coli*. Infect Immun 60:4709–4719.
- Sokurenko EV, Chesnokova V, Doyle RJ, Hasty DL (1997) Diversity of the Escherichia coli type 1 fimbrial lectin. Differential binding to mannosides and uroepithelial cells. J Biol Chem 272:17880–17886.



**Fig. S1.** Maximum likelihood trees, cloning scheme, and crystal structure. Maximum likelihood trees for *fimC* (*A*) and *fimH* (*B*). Unique sequences are labeled as arbitrarily assigned allele numbers (58 total for *fimC* and 78 for *fimH*, see Table S1). Bootstrap values (100 replicates) are indicated below and to the left of their respective nodes. Light gray trapezoids indicate manually identified subtrees. (Scale bar at lower left, number of mutations per nucleotide.) Color map indicates branches that include *fimC* or *fimH* sequences from urine (red) and fecal (green) strains, with black indicating nodes that were found in no urine or fecal strains (some *fimH* sequences are from strains not isolated from either urine or feces, see Table S1). (C) Scheme for construction of *fimH* mutants. The chromosomal region of UTI89 surrounding *fimH* is shown in each step. Before Steps 1 and 3, a linear piece of DNA is shown below the chromosomal map. Red and green areas represent homologous DNA sequences. Angled crossing black lines represent homologous recombination. Thicker blue vertical bars represent FRT (Flp recombinase target) sites. A mutation in *fimH* is represented by an asterisk. Kan is a kanamycin resistance cassette. P, *Pvull* restriction site. (*D*) Location of positively selected and mutated amino acids. Space-filled representation of crystal structure of FimH in complex with FimC (ribbon representation) is shown (derived from PDB 1KLF). PSAA residues mutated (27, 62, 66, and 163) are colored and labeled in red. Non-PSAA residues mutated (70 and 78) are colored and labeled in blue. Bound mannose (purple, Man) is shown at the top, embedded within the mannose-binding pocket (dark gray). Image on the *Right* is rotated 180° about the *y* axis relative to the image on the *Left*.



**Fig. 52.** In vivo fitness assays. (*A* and *B*) CFUs/bladder at 24 hpi. Mutations present are shown on the *x* axis. The *y* axis indicates the logarithm (base 10) of the bacterial CFUs measured in mouse bladders 24 hpi. Data are represented as box-and-whisker plots summarizing data from 15 to 20 mice for each strain. \*, P < 0.05, \*\*, P < 0.001, two-tailed Mann–Whitney test. (*C*) In vivo CFUs and IBC formation at 6 hpi. Mutations present are shown on the *x* axis. Left three lanes and *y* axis plot CFUs/bladder at 6 hpi. Dotted line represents the limit of detection. Right three lanes and *y* axis show IBCs formed per bladder. Data are represented as box-and-whisker plots summarizing data from 10 mice for each strain. \*, P < 0.05, \*\*, P < 0.001, two-tailed Mann–Whitney test. (*D* and *E*) Competition assays for gut colonization in gntobiotic mice. (*D*) Total bacterial load in feces. *y* axis plots the log (base 10) of the total colony forming units per gram of feces. Each dot represents one fecal pellet from one mouse. Filled circles represent data for mice colonized with UTI89 and the A27V/V163A mutant. Black bars indicate medians. (*E*) Relative abundance of mutant and UTI89 colonies recovered from feces. The number of days after gavage is shown on the *x* axis. *y* axis plots the log (base 10) of the ratio of mutant (antibiotic resistant) colonies to wild-type parental UTI89 (antibiotic sensitive) colonies in fecal pellets. Each dot represents one fecal pellet from one mouse. \*, P < 0.05, two-tailed Mann–Whitney test.



**Fig. S3.** In vitro mannose binding ELISA and hemagglutination assays. FimH sequence at positions 27, 62, 70, 78, and 163 are indicated on the *x* axis. Black indicates that the sequence is identical to the UTI89 FimH allele at that position, and red indicates a mutation. An arbitrary mutant number is also assigned for ease of reference. Upper panel indicates the log (base 2) of the titer for binding to BSA conjugated with mannose. Black/gray bars indicate binding titer in each of two independent experiments to BSA conjugated to monomannose. Red/pink bars, titer in two experiments for BSA conjugated to mannotriose. Lower panel indicates the log (base 2) of the decrease in hemagglutination (HA) titer relative to UTI89. Mean decrease is represented by bars, error bars indicate standard deviation. Each bar, at least *n* = 3 experiments.





**Fig. 54.** In vitro biofilm formation and binding and invasion assays. (A) FimH sequence at positions 27, 62, 70, 78, and 163 and mutant number are indicated on the *x* axis as in Fig. 53. UTI89 indicates the parental UTI89 strain. The *y* axis plots the percentage of biofilm formation relative to a strain carrying the wild-type UTI89 *fimH* allele (mutant number 1) as measured by crystal violet staining. Black/gray bars represent mean biofilm formation of triplicate measurements after 24 h in two separate assays. Red/pink bars represent biofilm formation of triplicate measurements after 24 h in two separate assays. Red/pink bars represent biofilm formation of triplicate measurements after 26 for the *x* axis on the *x* axis plots the logarithm of bacterial CFUs per well. Black/gray bars represent bacterial CFUs added to cultured 5637 (human) bladder epithelial cells. Red/pink bars, CFUs remaining bound to 5637 cells after washing. White/gray bars outlined in black represent CFUs remaining after gentamicin treatment, indicating invasion. Bars, the average of three wells. Data from three independent experiments are shown.

В



**Fig. 55.** Phase assay and in vivo fitness of Q133K (FimH mannose-binding pocket mutant) strain. (*A*) Phase assay under type 1 inducing conditions. Left lane contains DNA markers from 100 to 500 bp at 100-bp intervals. Phase ON and phase OFF bands are indicated on the right. FimH mutant strain is indicated at the bottom. (*B*) In vivo gentamicin protection assay. Mutations present in tested strains are shown on the *x* axis. The *y* axis plots the logarithm (base 10) of the number of bacterial CFUs per mL of wash or homogenate. The two left lanes show CFUs per mL of wash solution, representing luminal and loosely bound extracellular bacteria in the bladder. Right two lanes are CFUs per bladder after treatment with gentamicin and homogenization in 1 mL PBS, representing intracellular bacteria. (*C*) In vivo CFUs and IBC formation at 6 hpi. Mutants indicated on the *x* axis. Left two lanes and *y* axis are logarithm of CFUs/bladder at 6 hpi. Right two lanes and y axis display IBCs formed per bladder. Bladders with no IBCs detected are graphed as having one IBC. (*D*) Twenty-four hours postinfection in vivo fitness the logarithm (base 10) of the bacterial CFUs measured in mouse bladders at 24 hpi. The dotted line represents the limit of detection. Data are represented as box-and-whisker plots summarizing results from 30 to 40 mice per strain. \*\*, P < 0.001, \*\*\*, P < 0.0001, two-tailed Mann–Whitney test.

### Table S1. List of strains sequenced

Genome sequences

| <i>fimH</i><br>allele                                                                                                                                    | <i>fimC</i><br>allele                                                                                                                                                                                               | N                                                                                                                                                                                                                                                                                                                           | ame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GenBank<br>Accession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>fimH</i><br>subtree                                             | <i>fimC</i><br>subtree                                                                                                                         |                                                                                                       |                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 7                                                                                                                                                        | 29                                                                                                                                                                                                                  | K12                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC_000913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                  | 3                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 7                                                                                                                                                        | 29                                                                                                                                                                                                                  | W3110                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AC_000091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                  | 3                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 14                                                                                                                                                       | 5                                                                                                                                                                                                                   | EDL933                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC_002655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                  | 3                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 27                                                                                                                                                       | 17                                                                                                                                                                                                                  | CFT073                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC_004431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 30                                                                                                                                                       | 52                                                                                                                                                                                                                  | Shigella flex                                                                                                                                                                                                                                                                                                               | neri 2a 2457T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NC_004741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                  | 3                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 30                                                                                                                                                       | 52                                                                                                                                                                                                                  | Shigella flex                                                                                                                                                                                                                                                                                                               | meri 2a 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC_004337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                  | 3                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 68                                                                                                                                                       | 8                                                                                                                                                                                                                   | APEC O1                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC_008563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 69                                                                                                                                                       | 8                                                                                                                                                                                                                   | UTI89                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NC_007946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| aborator                                                                                                                                                 | ry strains                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                                |                                                                                                       |                                                                                                                           |
| fimH                                                                                                                                                     | fimC                                                                                                                                                                                                                | Ori                                                                                                                                                                                                                                                                                                                         | ginal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fimH                                                               | fimC                                                                                                                                           |                                                                                                       |                                                                                                                           |
| allele                                                                                                                                                   | allele                                                                                                                                                                                                              | N                                                                                                                                                                                                                                                                                                                           | ame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | subtree                                                            | subtree                                                                                                                                        |                                                                                                       |                                                                                                                           |
| 7                                                                                                                                                        | 29                                                                                                                                                                                                                  | MG1655                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                  | 3                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 69                                                                                                                                                       | 8                                                                                                                                                                                                                   | UTI89                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 33                                                                                                                                                       | 17                                                                                                                                                                                                                  | ASB1298                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 27                                                                                                                                                       | 17                                                                                                                                                                                                                  | CFT073                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 14                                                                                                                                                       | 5                                                                                                                                                                                                                   | EDL933                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                  | 3                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 69                                                                                                                                                       | 8                                                                                                                                                                                                                   | NU14                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 7                                                                                                                                                        | 6                                                                                                                                                                                                                   | J96                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                  | 3                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 27                                                                                                                                                       | 17                                                                                                                                                                                                                  | D\$17                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 69                                                                                                                                                       | 8                                                                                                                                                                                                                   | EC45                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 65                                                                                                                                                       | 54                                                                                                                                                                                                                  | E80                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 7                                                                                                                                                        | 37                                                                                                                                                                                                                  | GR12                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                  | 3                                                                                                                                              |                                                                                                       |                                                                                                                           |
| 73                                                                                                                                                       | 55                                                                                                                                                                                                                  | 536                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
| Clinical str                                                                                                                                             |                                                                                                                                                                                                                     | 550                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                  | 1                                                                                                                                              |                                                                                                       |                                                                                                                           |
|                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                                | <i>a</i>                                                                                              |                                                                                                                           |
| <i>fimH</i><br>allele                                                                                                                                    | <i>fimC</i><br>allele                                                                                                                                                                                               | Original<br>Name                                                                                                                                                                                                                                                                                                            | Isolation<br>Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Isolation<br>Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Study/<br>Collection                                               | Patient<br>Number                                                                                                                              | <i>fimH</i><br>subtree                                                                                | <i>fim</i><br>subtr                                                                                                       |
|                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                                |                                                                                                       |                                                                                                                           |
| 3                                                                                                                                                        | 33                                                                                                                                                                                                                  | PY2                                                                                                                                                                                                                                                                                                                         | Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                | 2                                                                                                     | 2                                                                                                                         |
| 3<br>60                                                                                                                                                  | 33<br>26                                                                                                                                                                                                            | PY2<br>PY3                                                                                                                                                                                                                                                                                                                  | Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                                                                | 2<br>3                                                                                                | 2                                                                                                                         |
|                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ТОР                                                                | 2                                                                                                                                              | 3                                                                                                     | 2                                                                                                                         |
| 60                                                                                                                                                       | 26<br>33                                                                                                                                                                                                            | PY3<br>TOP115                                                                                                                                                                                                                                                                                                               | Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    | 2<br>2                                                                                                                                         | 3<br>2                                                                                                | 2<br>2                                                                                                                    |
| 60<br>3<br>56                                                                                                                                            | 26<br>33<br>41                                                                                                                                                                                                      | PY3<br>TOP115<br>TOP320                                                                                                                                                                                                                                                                                                     | Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Human Female<br>Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOP                                                                | 2                                                                                                                                              | 3<br>2<br>3                                                                                           | 2<br>2<br>2                                                                                                               |
| 60<br>3<br>56<br>50                                                                                                                                      | 26<br>33<br>41<br>8                                                                                                                                                                                                 | PY3<br>TOP115<br>TOP320<br>TOP409                                                                                                                                                                                                                                                                                           | Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Human Female<br>Human Female<br>Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOP<br>TOP                                                         | 2<br>5                                                                                                                                         | 3<br>2<br>3<br>1                                                                                      | 2<br>2<br>2<br>1                                                                                                          |
| 60<br>3<br>56<br>50<br>7                                                                                                                                 | 26<br>33<br>41<br>8<br>6                                                                                                                                                                                            | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207                                                                                                                                                                                                                                                                                 | Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOP<br>TOP<br>TOP                                                  | 2<br>5<br>5                                                                                                                                    | 3<br>2<br>3<br>1<br>3                                                                                 | 2<br>2<br>1<br>3                                                                                                          |
| 60<br>3<br>56<br>50<br>7<br>67                                                                                                                           | 26<br>33<br>41<br>8<br>6<br>15                                                                                                                                                                                      | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599                                                                                                                                                                                                                                                                       | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOP<br>TOP<br>TOP<br>TOP                                           | 2<br>5<br>5<br>9                                                                                                                               | 3<br>2<br>3<br>1<br>3<br>3                                                                            | 2<br>2<br>1<br>3<br>3                                                                                                     |
| 60<br>3<br>56<br>50<br>7<br>67<br>62                                                                                                                     | 26<br>33<br>41<br>8<br>6<br>15<br>21                                                                                                                                                                                | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227                                                                                                                                                                                                                                                             | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOP<br>TOP<br>TOP<br>TOP<br>TOP                                    | 2<br>5<br>5<br>9<br>9                                                                                                                          | 3<br>2<br>3<br>1<br>3<br>3<br>3                                                                       | 2<br>2<br>1<br>3<br>3<br>2                                                                                                |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62                                                                                                               | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21                                                                                                                                                                          | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578                                                                                                                                                                                                                                                   | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOP<br>TOP<br>TOP<br>TOP<br>TOP<br>TOP                             | 2<br>5<br>9<br>9<br>11                                                                                                                         | 3<br>2<br>3<br>1<br>3<br>3<br>3<br>3<br>3                                                             | 2<br>2<br>1<br>3<br>3<br>2<br>2                                                                                           |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65                                                                                                         | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>21<br>9                                                                                                                                                               | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263                                                                                                                                                                                                                                         | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР                      | 2<br>5<br>9<br>9<br>11<br>11                                                                                                                   | 3<br>2<br>3<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                              | 2<br>2<br>1<br>3<br>2<br>2<br>2<br>2<br>2                                                                                 |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65<br>65                                                                                                   | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>21<br>9<br>9                                                                                                                                                          | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799                                                                                                                                                                                                                               | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР               | 2<br>5<br>9<br>11<br>11<br>12                                                                                                                  | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                    | 2<br>2<br>2<br>1<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2                                                                  |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65<br>65<br>65                                                                                             | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>21<br>9<br>9<br>9<br>9                                                                                                                                                | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876                                                                                                                                                                                                                     | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР        | 2<br>5<br>9<br>11<br>11<br>12<br>12                                                                                                            | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                          | 2<br>2<br>2<br>1<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                        |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65<br>65<br>65<br>7                                                                                        | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9                                                                                                                                                 | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379                                                                                                                                                                                                           | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР        | 2<br>5<br>9<br>11<br>11<br>12<br>12<br>12<br>12                                                                                                | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 2<br>2<br>2<br>1<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3                                                             |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65<br>65<br>65<br>7<br>7                                                                                   | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>6<br>6                                                                                                                                       | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP379<br>TOP291                                                                                                                                                                                       | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13                                                                                          | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 2<br>2<br>2<br>1<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3                                              |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>7                                                                         | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6                                                                                                                                  | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP379<br>TOP291<br>TOP291<br>TOP498                                                                                                                                                                   | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13                                                                                    | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 2<br>2<br>2<br>1<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3                                         |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>7<br>27                                                             | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17                                                                                                                       | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP876<br>TOP379<br>TOP291<br>TOP291<br>TOP498<br>TOP344                                                                                                                                               | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13                                                                         | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1           | 2<br>2<br>2<br>1<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>1                                    |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>7<br>27<br>27                                                             | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17                                                                                                                 | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP379<br>TOP291<br>TOP291<br>TOP498                                                                                                                                                                   | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17                                                             | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 2<br>2<br>2<br>1<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3                                         |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>7<br>27                                                             | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17                                                                                                                       | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP876<br>TOP379<br>TOP291<br>TOP291<br>TOP498<br>TOP344                                                                                                                                               | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13                                                                         | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1           | 2<br>2<br>2<br>1<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>1                                    |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>7<br>27<br>27                                                             | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17                                                                                                                 | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP876<br>TOP379<br>TOP291<br>TOP291<br>TOP498<br>TOP344<br>TOP344                                                                                                                                     | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17                                                             | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1                     | 2<br>2<br>2<br>1<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>1<br>1                               |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>7<br>27<br>27<br>73                                                       | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>17<br>55                                                                                                | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP876<br>TOP379<br>TOP291<br>TOP291<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345                                                                                                                 | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20                                                       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1                     | 2<br>2<br>2<br>2<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>1<br>1<br>1                               |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>62<br>65<br>65<br>7<br>7<br>7<br>27<br>27<br>73<br>73                                                            | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55                                                                                                | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP876<br>TOP379<br>TOP291<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP493                                                                                                       | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20                                                 | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1                     | 2<br>2<br>2<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1                     |
| 60<br>3<br>56<br>50<br>7<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>27<br>27<br>73<br>73<br>73<br>73                                                | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55                                                                                               | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP493<br>TOP587                                                                                                       | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20                                                       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1<br>1                     | 2<br>2<br>2<br>2<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1                     |
| 60<br>3<br>56<br>50<br>7<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>27<br>27<br>73<br>73<br>73<br>73<br>73                                          | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55                                                                                    | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP493<br>TOP587<br>TOP356                                                                                             | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>21                                     | 3<br>2<br>3<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| 60<br>3<br>56<br>50<br>7<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>27<br>27<br>73<br>73<br>73<br>73<br>73<br>45                                    | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>13                                                            | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP345<br>TOP356<br>TOP356<br>TOP596                                                                                                       | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Human Female<br>Human Female                                                                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>26             | 3<br>2<br>3<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| 60<br>3<br>56<br>50<br>7<br>67<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>27<br>27<br>73<br>73<br>73<br>73<br>73<br>45<br>45                              | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>13<br>13                                                     | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP345<br>TOP493<br>TOP587<br>TOP356<br>TOP356<br>TOP596<br>TOP1090                                                                        | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Human Female<br>Human Female                                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>26<br>26 | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1 |
| 60<br>3<br>56<br>50<br>7<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>27<br>27<br>73<br>73<br>73<br>73<br>73<br>73<br>45<br>9                         | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>13<br>13<br>13                                               | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP345<br>TOP345<br>TOP356<br>TOP356<br>TOP356<br>TOP596<br>TOP1090<br>TOP1002                                                             | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Human Female<br>Human Female                                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>26<br>26<br>31       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| 60<br>3<br>56<br>50<br>7<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>27<br>27<br>73<br>73<br>73<br>73<br>73<br>73<br>45<br>9<br>65                   | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>13<br>13<br>13<br>15<br>9                                         | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP345<br>TOP356<br>TOP356<br>TOP356<br>TOP596<br>TOP1090<br>TOP1002<br>TOP1074                                                            | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Human Female<br>Human Female                                                                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>26<br>26 | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| 60<br>3<br>56<br>50<br>7<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>27<br>27<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>45<br>9<br>65<br>27 | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>13<br>13<br>13<br>15<br>9<br>17                                   | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP345<br>TOP356<br>TOP356<br>TOP356<br>TOP596<br>TOP1000<br>TOP1002<br>TOP1074<br>UTI 3                                                   | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Human Female<br>Human Female                                                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>26<br>26<br>31       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| 60<br>3<br>56<br>50<br>7<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>27<br>27<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>7             | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55                              | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP345<br>TOP356<br>TOP493<br>TOP587<br>TOP356<br>TOP673<br>TOP596<br>TOP1000<br>TOP1002<br>TOP1074<br>UTI 3<br>UTI 8                      | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine | Human Female<br>Human Female                                                                                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>26<br>26<br>31       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| 60<br>3<br>56<br>50<br>7<br>62<br>65<br>65<br>65<br>65<br>7<br>7<br>7<br>27<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>7                   | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55                              | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP345<br>TOP356<br>TOP493<br>TOP587<br>TOP356<br>TOP673<br>TOP596<br>TOP1000<br>TOP1002<br>TOP1074<br>UTI 3<br>UTI 8<br>UTI 10            | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine | Human Female<br>Human Female                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>26<br>26<br>31       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| 60<br>3<br>56<br>50<br>7<br>62<br>62<br>65<br>65<br>65<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                  | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>13<br>13<br>13<br>15<br>9<br>17<br>9<br>16<br>9 | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP493<br>TOP587<br>TOP356<br>TOP493<br>TOP587<br>TOP586<br>TOP596<br>TOP1090<br>TOP1090<br>TOP1002<br>TOP1074<br>UTI 3<br>UTI 8<br>UTI 10<br>UTI 28 | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Human Female<br>Human Female | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>26<br>26<br>31       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| 60<br>3<br>56<br>50<br>7<br>62<br>65<br>65<br>65<br>65<br>7<br>7<br>27<br>27<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>7                  | 26<br>33<br>41<br>8<br>6<br>15<br>21<br>21<br>9<br>9<br>9<br>9<br>9<br>9<br>6<br>6<br>6<br>6<br>17<br>17<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55                              | PY3<br>TOP115<br>TOP320<br>TOP409<br>TOP207<br>TOP599<br>TOP227<br>TOP578<br>TOP263<br>TOP799<br>TOP876<br>TOP379<br>TOP291<br>TOP498<br>TOP344<br>TOP746<br>TOP345<br>TOP345<br>TOP345<br>TOP356<br>TOP493<br>TOP587<br>TOP356<br>TOP673<br>TOP596<br>TOP1000<br>TOP1002<br>TOP1074<br>UTI 3<br>UTI 8<br>UTI 10            | Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine<br>Urine | Human Female<br>Human Female                                                                 | ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР<br>ТОР | 2<br>5<br>9<br>9<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>17<br>17<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>26<br>26<br>31       | 3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |

| <i>fimH</i><br>allele | <i>fimC</i><br>allele | Original<br>Name     | Isolation<br>Location | Isolation<br>Species         | Study/<br>Collection | Patient<br>Number | <i>fimH</i><br>subtree | <i>fimC</i><br>subtree |
|-----------------------|-----------------------|----------------------|-----------------------|------------------------------|----------------------|-------------------|------------------------|------------------------|
|                       |                       |                      |                       |                              |                      |                   |                        |                        |
| 42                    | 57<br>26              | ASB 452<br>ASB 640   | Urine<br>Urine        | Human Female<br>Human Female |                      |                   | 1<br>3                 | 1                      |
| 60<br>73              | 26<br>55              |                      | Urine                 |                              |                      |                   | 3<br>1                 | 2<br>1                 |
| 73<br>32              | 55<br>17              | ASB 1061<br>ASB 1273 |                       | Human Female                 |                      |                   | 1                      | 1                      |
|                       |                       |                      | Urine                 | Human Female<br>Human Female |                      |                   | 3                      | 2                      |
| 16<br>22              | 41                    | ASB 1286             | Urine                 |                              |                      |                   |                        | 2                      |
| 33                    | 17                    | ASB 1297             | Urine                 | Human Female                 |                      |                   | 1                      |                        |
| 69<br>46              | 8                     | ASB 131              | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 46                    | 17                    | ASB 167              | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 65                    | 9                     | ASB 229              | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 65                    | 9                     | ASB 389              | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 60                    | 26                    | ASB 556              | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 69                    | 8                     | ASB 586              | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 73                    | 55                    | ASB 957              | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 60                    | 26                    | ASB 1134             | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 60                    | 26                    | ASB 1158             | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 67                    | 43                    | ASB 271              | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 7                     | 6                     | ASB 277              | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 78                    | 7                     | ASB 278              | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 79                    | 55                    | ASB 506              | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 69                    | 8                     | ASB 781              | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 57                    | 31                    | ASB 1111             | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 73                    | 55                    | ASB 1135             | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 32                    | 17                    | ASB 1282             | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 60                    | 26                    | ASB 933              | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 25                    | 28                    | ASB 934              | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 18                    | 6                     | ASB 941              | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 60                    | 26                    | ASB 942              | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 18                    | 6                     | ASB 950              | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 18                    | 6                     | ASB 951              | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 32                    | 17                    | ASB 351<br>ASB 1231  | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
|                       |                       | ASB 1231<br>ASB 451  |                       |                              |                      |                   |                        |                        |
| 61<br>50              | 51                    |                      | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 59                    | 30                    | ASB 795              | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 76                    | 55                    | ASB 967              | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 7                     | 6                     | ASB 1230             | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 7                     | 6                     | rASB 1154–1          | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 7                     | 6                     | rASB 1154–2          | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 7                     | 6                     | rASB 1154–3          | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 57                    | 31                    | rASB 1021-2          | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 57                    | 31                    | rASB 1021-2          | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 57                    | 31                    | rASB 1021–3          | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 60                    | 26                    | rASB 2289–1          | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 60                    | 26                    | rASB 2289–2          | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 60                    | 26                    | rASB 2289–3          | Urine                 | Human Female                 |                      |                   | 3                      | 2                      |
| 33                    | 17                    | ASB 1298             | Urine                 | Human Female                 |                      |                   | 1                      | 1                      |
| 15                    | 34                    | TB226A               | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 47                    | 48                    | TB334C               | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 28                    | 23                    | TBUTI01              | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 15                    | 34                    | TB352C               | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 71                    | 5                     | TB2755               | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 12                    | 1                     | TB154A               | Urine                 | Human Female                 |                      |                   | 2                      | 2                      |
| 15                    | 34                    | TB285A               | Urine                 | Human Female                 |                      |                   | 3                      | 3                      |
| 34                    | 21                    | ECOR1                | Feces                 | Human Female                 | ECOR                 |                   | 2                      | 2                      |
| 34<br>34              | 21                    | ECOR2                | Feces                 | Human Male                   | ECOR                 |                   | 2                      | 2                      |
| 54<br>65              |                       |                      |                       |                              | ECOR                 |                   | 2                      | 2                      |
|                       | 18                    | ECOR3                | Feces                 | Dog<br>Human Famala          |                      |                   |                        |                        |
| 43                    | 21                    | ECOR5                | Feces                 | Human Female                 | ECOR                 |                   | 3                      | 2                      |
| 9                     | 44                    | ECOR7                | Feces                 | Orangutan                    | ECOR                 |                   | 3                      | 3                      |
| 34                    | 21                    | ECOR8                | Feces                 | Human Female                 | ECOR                 |                   | 2                      | 2                      |
| 3                     | 33                    | ECOR9                | Feces                 | Human Female                 | ECOR                 |                   | 2                      | 2                      |
| 74                    | 34                    | ECOR10               | Feces                 | Human Female                 | ECOR                 |                   | 3                      | 3                      |
| 18                    | 6                     | ECOR11               | Urine                 | Human Female                 | ECOR                 |                   | 3                      | 3                      |
| 7                     | 6                     | ECOR12               | Feces                 | Human Female                 | ECOR                 |                   | 3                      | 3                      |
| 7                     | 6                     | ECOR14               | Urine                 | Human Female                 | ECOR                 |                   | 3                      | 3                      |

| <i>fimH</i><br>allele | <i>fimC</i><br>allele | Original<br>Name | Isolation<br>Location | Isolation<br>Species | Study/<br>Collection | Patient<br>Number | <i>fimH</i><br>subtree | <i>fimC</i><br>subtree |
|-----------------------|-----------------------|------------------|-----------------------|----------------------|----------------------|-------------------|------------------------|------------------------|
| 35                    | 19                    | ECOR16           | Feces                 | Loopard              | ECOR                 |                   | 3                      | 2                      |
| 35<br>54              | 40                    | ECOR16<br>ECOR17 | Feces                 | Leopard<br>Pig       | ECOR                 |                   | 3                      | 2                      |
| 4                     | 35                    | ECOR17<br>ECOR18 | Feces                 | Celebese ape         | ECOR                 |                   | 3                      | 1                      |
| 34                    | 21                    | ECOR19           | Feces                 | Celebese ape         | ECOR                 |                   | 2                      | 2                      |
| 54<br>54              | 21                    | ECOR19<br>ECOR20 | Feces                 | Steer                | ECOR                 |                   | 3                      | 2                      |
| 54<br>54              | 3                     | ECOR20<br>ECOR21 | Feces                 | Steer                | ECOR                 |                   | 3                      | 3                      |
| 35                    | 50                    | ECOR21<br>ECOR23 |                       | Elephant             | ECOR                 |                   | 3                      | 2                      |
| 55<br>7               | 6                     | ECOR25<br>ECOR24 | Feces                 | •                    | ECOR                 |                   | 3                      | 2                      |
|                       |                       |                  | Feces                 | Human Female         |                      |                   |                        |                        |
| 74                    | 34                    | ECOR25           | Feces                 | Dog                  | ECOR                 |                   | 3                      | 3<br>3                 |
| 6                     | 44                    | ECOR26           | Feces                 | Human<br>Giraffe     | ECOR                 |                   | 3                      |                        |
| 6                     | 45                    | ECOR27           | Feces                 |                      | ECOR                 |                   | 3                      | 3                      |
| 6                     | 44                    | ECOR28           | Feces                 | Human Female         | ECOR                 |                   | 3                      | 3                      |
| 6                     | 14                    | ECOR29           | Feces                 | Kangaroo rat         | ECOR                 |                   | 3                      | 3                      |
| 34                    | 21                    | ECOR30           | Feces                 | Bison                | ECOR                 |                   | 2                      | 2                      |
| 31                    | 20                    | ECOR31           | Feces                 | Leopard              | ECOR                 |                   | 3                      | 2                      |
| 34                    | 21                    | ECOR32           | Feces                 | Giraffe              | ECOR                 |                   | 2                      | 2                      |
| 34                    | 21                    | ECOR33           | Feces                 | Sheep                | ECOR                 |                   | 2                      | 2                      |
| 6                     | 10                    | ECOR34           | Feces                 | Dog                  | ECOR                 |                   | 3                      | 3                      |
| 65                    | 54                    | ECOR35           | Feces                 | Human Male           | ECOR                 |                   | 3                      | 1                      |
| 65                    | 54                    | ECOR36           | Feces                 | Human Female         | ECOR                 |                   | 3                      | 1                      |
| 35                    | 26                    | ECOR37           | Feces                 | Marmoset             | ECOR                 |                   | 3                      | 2                      |
| 29                    | 2                     | ECOR39           | Feces                 | Human Female         | ECOR                 |                   | 3                      | 3                      |
| 29                    | 2                     | ECOR40           | Urine                 | Human Female         | ECOR                 |                   | 3                      | 3                      |
| 17                    | 47                    | ECOR42           | Feces                 | Human Male           | ECOR                 |                   | 3                      | 3                      |
| 41                    | 1                     | ECOR43           | Feces                 | Human Female         | ECOR                 |                   | 2                      | 2                      |
| 1                     | 36                    | ECOR44           | Feces                 | Cougar               | ECOR                 |                   | 3                      | 2                      |
| 67                    | 15                    | ECOR45           | Feces                 | Pig                  | ECOR                 |                   | 3                      | 3                      |
| 77                    | 12                    | ECOR46           | Feces                 | Celebese ape         | ECOR                 |                   | 3                      | 3                      |
| 56                    | 39                    | ECOR47           | Feces                 | Sheep                | ECOR                 |                   | 3                      | 2                      |
| 24                    | 53                    | ECOR48           | Urine                 | Human Female         | ECOR                 |                   | 3                      | 2                      |
| 24<br>53              | 4                     | ECOR48<br>ECOR49 | Feces                 | Human Female         | ECOR                 |                   | 2                      | 3                      |
|                       |                       |                  |                       |                      |                      |                   |                        | 2                      |
| 12                    | 1                     | ECOR50           | Urine                 | Human Female         | ECOR                 |                   | 2                      |                        |
| 55                    | 17                    | ECOR52           | Feces                 | Orangutan            | ECOR                 |                   | 1                      | 1                      |
| 7                     | 6                     | ECOR53           | Feces                 | Human Female         | ECOR                 |                   | 3                      | 3                      |
| 39                    | 17                    | ECOR54           | Feces                 | Human                | ECOR                 |                   | 1                      | 1                      |
| 39                    | 17                    | ECOR55           | Feces                 | Human Female         | ECOR                 |                   | 1                      | 1                      |
| 60                    | 26                    | ECOR56           | Urine                 | Human Female         | ECOR                 |                   | 3                      | 2                      |
| 27                    | 17                    | ECOR57           | Feces                 | Gorilla              | ECOR                 |                   | 1                      | 1                      |
| 2                     | 11                    | ECOR58           | Feces                 | Lion                 | ECOR                 |                   | 3                      | 3                      |
| 66                    | 55                    | ECOR59           | Feces                 | Human Male           | ECOR                 |                   | 1                      | 1                      |
| 5                     | 55                    | ECOR60           | Urine                 | Human Female         | ECOR                 |                   | 1                      | 1                      |
| 7                     | 6                     | ECOR61           | Feces                 | Human Female         | ECOR                 |                   | 3                      | 3                      |
| 7                     | 6                     | ECOR62           | Urine                 | Human Female         | ECOR                 |                   | 3                      | 3                      |
| 19                    | 22                    | ECOR63           | Feces                 | Human Female         | ECOR                 |                   | 1                      | 1                      |
| 7                     | 6                     | ECOR64           | Urine                 | Human Female         | ECOR                 |                   | 3                      | 3                      |
| 75                    | 55                    | ECOR65           | Feces                 | Celebese ape         | ECOR                 |                   | 1                      | 1                      |
| 48                    | 46                    | ECOR66           | Feces                 | Celebese ape         | ECOR                 |                   | 1                      | 1                      |
| 20                    | 24                    | ECOR67           | Feces                 | Goat                 | ECOR                 |                   | 3                      | 3                      |
| 6                     | 44                    | ECOR68           | Feces                 | Giraffe              | ECOR                 |                   | 3                      | 3                      |
| 58                    | 26                    | ECOR69           | Feces                 | Celebese ape         | ECOR                 |                   | 3                      | 2                      |
| 7                     | 6                     | ECOR70           | Feces                 | Gorilla              | ECOR                 |                   | 3                      | 3                      |
| 7                     | 6                     | ECOR70<br>ECOR71 | Urine                 | Human Female         | ECOR                 |                   | 3                      | 3                      |
| 6                     | 6<br>44               | ECOR71<br>ECOR72 | Urine                 | Human Female         | ECOR                 |                   | 3                      | 3                      |
|                       |                       |                  |                       |                      | ECUN                 |                   |                        |                        |
| 71                    | 56                    | TB1828A          | Urine                 | lluman Erusti        | TOP                  | 2                 | 3                      | 3                      |
| 56                    | 41                    | TOP326           | Periurethra           | Human Female         | TOP                  | 2                 | 3                      | 2                      |
| 50                    | 8                     | TOP413           | Urine                 | Human Female         | TOP                  | 5                 | 1                      | 1                      |
| 67                    | 15                    | TOP690           | Urine                 | Human Female         | TOP                  | 9                 | 3                      | 3                      |
| 62                    | 21                    | TOP699           | Urine                 | Human Female         | TOP                  | 11                | 3                      | 2                      |
| 65                    | 9                     | TOP855           | Urine                 | Human Female         | TOP                  | 12                | 3                      | 2                      |
| 11                    | 42                    | TOP845           | Periurethra           | Human Female         | TOP                  | 12                | 1                      | 1                      |
| 65                    | 9                     | TOP870           | Periurethra           | Human Female         | TOP                  | 12                | 3                      | 2                      |
| 7                     | 6                     | TOP294           | Urine                 | Human Female         | TOP                  | 13                | 3                      | 3                      |

| <i>fimH</i><br>allele | <i>fimC</i><br>allele | Original<br>Name   | Isolation<br>Location | Isolation<br>Species | Study/<br>Collection | Patient<br>Number | <i>fimH</i><br>subtree | <i>fimC</i><br>subtree |
|-----------------------|-----------------------|--------------------|-----------------------|----------------------|----------------------|-------------------|------------------------|------------------------|
| 7                     | 6                     | TOP295             | Periurethra           | Human Female         | ТОР                  | 13                | 3                      | 3                      |
| 7                     | 6                     | TOP542             | Urine                 | Human Female         | TOP                  | 13                | 3                      | 3                      |
| 7                     | 6                     | TOP537             | Periurethra           | Human Female         | TOP                  | 13                | 3                      | 3                      |
| 7                     | 6                     | TOP920             | Urine                 | Human Female         | TOP                  | 14                | 3                      | 3                      |
| 7                     | 6                     | TOP924             | Urine                 | Human Female         | TOP                  | 14                | 3                      | 3                      |
| 7                     | 6                     | TOP925?            | Periurethra           | Human Female         | ТОР                  | 14                | 3                      | 3                      |
| ,<br>27               | 17                    | TOP764             | Urine                 | Human Female         | ТОР                  | 17                | 1                      | 1                      |
| 27                    | 17                    | TOP758             | Periurethra           | Human Female         | ТОР                  | 17                | 1                      | 1                      |
| 73                    | 55                    | TOP551             | Periurethra           | Human Female         | ТОР                  | 20                | 1                      | 1                      |
| 73                    | 55                    | TOP775             | Urine                 | Human Female         | ТОР                  | 20                | 1                      | 1                      |
| 73                    | 55                    | TOP769             | Periurethra           | Human Female         | ТОР                  | 21                | 1                      | 1                      |
| 45                    | 13                    | TOP1126            | Urine                 | Human Female         | ТОР                  | 26                | 1                      | 1                      |
| 45                    | 13                    | TOP1120            | Periurethra           | Human Female         | ТОР                  | 26                | 1                      | 1                      |
| 45<br>9               | 15                    | TOP1104<br>TOP1069 | Urine                 | Human Female         | ТОР                  | 31                | 3                      | 3                      |
|                       |                       |                    |                       |                      |                      |                   | 3                      | 3                      |
| 9                     | 15                    | TOP1070            | Periurethra           | Human Female         | TOP                  | 31                |                        |                        |
| 69                    | 8                     | TOP1187            | Urine                 | Human Female         | TOP                  | 34                | 1                      | 1                      |
| 69                    | 8                     | TOP1274            | Urine                 | Human Female         | TOP                  | 34                | 1                      | 1                      |
| 69                    | 8                     | TOP1250            | Periurethra           | Human Female         | TOP                  | 34                | 1                      | 1                      |
| 73                    | 55                    | TOP1193            | Urine                 | Human Female         | TOP                  | 35                | 1                      | 1                      |
| 73                    | 55                    | TOP1207            | Urine                 | Human Female         | TOP                  | 35                | 1                      | 1                      |
| 73                    | 55                    | TOP1233            | Urine                 | Human Female         | TOP                  | 35                | 1                      | 1                      |
| 73                    | 55                    | TOP1218            | Periurethra           | Human Female         | TOP                  | 35                | 1                      | 1                      |
| 8                     | 58                    | TOP1416            | Urine                 | Human Female         | TOP                  | 41                | 1                      | 1                      |
| 8                     | 58                    | TOP1490            | Urine                 | Human Female         | TOP                  | 41                | 1                      | 1                      |
| 8                     | 58                    | TOP1509            | Urine                 | Human Female         | TOP                  | 41                | 1                      | 1                      |
| 8                     | 58                    | TOP1501            | Periurethra           | Human Female         | TOP                  | 41                | 1                      | 1                      |
| 74                    | 34                    | TOP1543            | Urine                 | Human Female         | TOP                  | 41                | 3                      | 3                      |
| 74                    | 34                    | TOP1561            | Urine                 | Human Female         | TOP                  | 41                | 3                      | 3                      |
| 74                    | 34                    | TOP1552            | Periurethra           | Human Female         | TOP                  | 41                | 3                      | 3                      |
| 65                    | 9                     | TOP101             | Urine                 | Human Female         | TOP                  | 1                 | 3                      | 2                      |
| 27                    | 17                    | TOP118             | Urine                 | Human Female         | TOP                  | 3                 | 1                      | 1                      |
| 22                    | 25                    | TOP195             | Urine                 | Human Female         | ТОР                  | 6                 | 3                      | 2                      |
| 65                    | 9                     | TOP204             | Urine                 | Human Female         | ТОР                  | 8                 | 3                      | 2                      |
| 34                    | 16                    | TOP204             | Urine                 | Human Female         | ТОР                  | 10                | 2                      | 2                      |
| 54<br>73              | 55                    | TOP210<br>TOP309   |                       | Human Female         | ТОР                  | 15                | 2                      | 2                      |
|                       |                       |                    | Urine                 |                      |                      |                   |                        |                        |
| 52                    | 38                    | TOP373             | Urine                 | Human Female         | TOP                  | 22                | 1                      | 1                      |
| 36                    | 31                    | TOP387             | Urine                 | Human Female         | TOP                  | 23                | 1                      | 1                      |
| 7                     | 6                     | TOP591             | Urine                 | Human Female         | TOP                  | 25                | 3                      | 3                      |
| 67                    | 15                    | TOP599             | Urine                 | Human Female         | TOP                  | 9                 | 3                      | 3                      |
| 57                    | 31                    | TOP739             | Urine                 | Human Female         | TOP                  | 27                | 1                      | 1                      |
| 65                    | 9                     | TOP837             | Urine                 | Human Female         | TOP                  | 28                | 3                      | 2                      |
| 26                    | 31                    | TOP998             | Urine                 | Human Female         | TOP                  | 30                | 1                      | 1                      |
| 65                    | 9                     | TOP1006            | Urine                 | Human Female         | TOP                  | 29                | 3                      | 2                      |
| 33                    | 31                    | TOP1186            | Urine                 | Human Female         | TOP                  | 36                | 1                      | 1                      |
| 56                    | 39                    | TOP1290            | Urine                 | Human Female         | TOP                  | 38                | 3                      | 2                      |
| 72                    | 49                    | TOP1371            | Urine                 | Human Female         | TOP                  | 39                | 2                      | 3                      |
| 47                    | 10                    | TOP1378            | Urine                 | Human Female         | TOP                  | 40                | 3                      | 3                      |
| 37                    | 34                    | TOP1425            | Urine                 | Human Female         | TOP                  | 42                | 3                      | 3                      |
| 65                    | 9                     | TOP1564            | Urine                 | Human Female         | TOP                  | 46                | 3                      | 2                      |
| 74                    | 34                    | TOP1565            | Urine                 | Human Female         | TOP                  | 45                | 3                      | 3                      |
| 74                    | 34                    | TOP1580            | Urine                 | Human Female         | TOP                  | 47                | 3                      | 3                      |
| 60                    | 26                    | TOP1605            | Urine                 | Human Female         | ТОР                  | 48                | 3                      | 2                      |
| 27                    | 17                    | TOP1609            | Urine                 | Human Female         | ТОР                  | 49                | 1                      | 1                      |
| 27                    | 17                    | TOP1621            | Urine                 | Human Female         | ТОР                  | 49                | 1                      | 1                      |
| 60                    | 26                    | TOP1648            | Urine                 | Human Female         | ТОР                  | 49                | 3                      | 2                      |
|                       |                       |                    |                       |                      |                      |                   | 3<br>1                 | 2                      |
| 70<br>62              | 17                    | TOP1649            | Urine                 | Human Female         | TOP                  | 50                |                        |                        |
| 63                    | 44                    | TOP1650            | Urine                 | Human Female         | TOP                  | 51                | 3                      | 3                      |
| 49                    | 55                    | TOP1729            | Urine                 | Human Female         | TOP                  | 53                | 1                      | 1                      |
| 74                    | 34                    | TOP1829            | Urine                 | Human Female         | TOP                  | 54                | 3                      | 3                      |
| 74                    | 34                    | TOP1858            | Urine                 | Human Female         | TOP                  | 54                | 3                      | 3                      |
| 10                    | 30                    | TOP1950            | Urine                 | Human Female         | TOP                  | 56                | 3                      | 3                      |
| 79                    | 55                    | TOP1961            | Urine                 | Human Female         | TOP                  | 57                | 1                      | 1                      |

PNAS PNAS

| fimH   | fimC   | Original     | Isolation | Isolation    | Study/     | Patient | fimH    | fimC   |
|--------|--------|--------------|-----------|--------------|------------|---------|---------|--------|
| allele | allele | Name         | Location  | Species      | Collection | Number  | subtree | subtre |
| 74     | 34     | TOP1987      | Urine     | Human Female | ТОР        | 54      | 3       | 3      |
| 27     | 17     | TOP2116      | Urine     | Human Female | TOP        | 56      | 1       | 1      |
| 73     | 55     | TOP2161      | Urine     | Human Female | TOP        | 59      | 1       | 1      |
| 73     | 55     | TOP2199      | Urine     | Human Female | TOP        | 59      | 1       | 1      |
| 48     | 46     | TOP2205      | Urine     | Human Female | TOP        | 60      | 1       | 1      |
| 27     | 17     | TOP2216      | Urine     | Human Female | TOP        | 56      | 1       | 1      |
| 6      | 30     | TOP2293      | Urine     | Human Female | TOP        | 63      | 3       | 3      |
| 7      | 6      | TOP2303      | Urine     | Human Female | TOP        | 65      | 3       | 3      |
| 7      | 6      | TOP2315      | Urine     | Human Female | TOP        | 64      | 3       | 3      |
| 7      | 6      | TOP2316      | Urine     | Human Female | TOP        | 64      | 3       | 3      |
| 69     | 8      | TOP2339      | Urine     | Human Female | TOP        | 66      | 1       | 1      |
| 7      | 27     | TOP2362      | Urine     | Human Female | TOP        | 67      | 3       | 3      |
| 63     | 44     | TOP2363      | Urine     | Human Female | TOP        | 69      | 3       | 3      |
| 67     | 43     | TOP2364      | Urine     | Human Female | TOP        | 70      | 3       | 3      |
| 52     | 38     | TOP2385      | Urine     | Human Female | TOP        | 71      | 1       | 1      |
| 52     | 38     | TOP2417      | Urine     | Human Female | TOP        | 71      | 1       | 1      |
| 60     | 26     | TOP2433      | Urine     | Human Female | TOP        | 74      | 3       | 2      |
| 69     | 8      | TOP2434      | Urine     | Human Female | TOP        | 73      | 1       | 1      |
| 73     | 55     | TOP2445      | Urine     | Human Female | TOP        | 75      | 1       | 1      |
| 40     | 55     | TOP2634      | Urine     | Human Female | TOP        | 78      | 1       | 1      |
| 38     | 17     | TOP2652      | Urine     | Human Female | TOP        | 72      | 1       | 1      |
| 48     | 46     | TOP2653      | Urine     | Human Female | TOP        | 79      | 1       | 1      |
| 65     | 9      | TOP2801      | Urine     | Human Female | TOP        | 68      | 3       | 2      |
| 13     | 35     | pyelo19      | Urine     | Human Female |            |         | 3       | 1      |
| 21     | 30     | pyelo31      | Urine     | Human Female |            |         | 3       | 3      |
| 7      | 6      | pyelo33      | Urine     | Human Female |            |         | 3       | 3      |
| 57     | 31     | pyelo37      | Urine     | Human Female |            |         | 1       | 1      |
| 7      | 6      | pyelo41      | Urine     | Human Female |            |         | 3       | 3      |
| 19     | 22     | 1003 UTI     | Urine     | Human Female |            |         | 1       | 1      |
| 47     | 44     | 1003 Rectal  | Feces     | Human Female |            |         | 3       | 3      |
| 73     | 55     | 1182 UTI     | Urine     | Human Female |            |         | - 1     | 1      |
| 51     | 55     | 1182 Rectal  | Feces     | Human Female |            |         | 1       | 1      |
| 23     | 13     | 1254 UTI     | Urine     | Human Female |            |         | 1       | 1      |
| 44     | 32     | 1254 Rectal  | Feces     | Human Female |            |         | 3       | 2      |
| 64     | 6      | 1266 UTI     | Urine     | Human Female |            |         | 3       | 3      |
| 63     | 44     | 1266 Rectal1 | Feces     | Human Female |            |         | 3       | 3      |
| 63     | 44     | 1266 Rectal2 | Feces     | Human Female |            |         | 3       | 3      |
| 7      | 6      | 1333 UTI     | Urine     | Human Female |            |         | 3       | 3      |
| 60     | 26     | 1333 Rectal  | Feces     | Human Female |            |         | 3       | 2      |
| 65     | 35     | 17 Rectal1   | Feces     | Human Female |            |         | 3       | 1      |
| 65     | 35     | 17 Rectal2   | Feces     | Human Female |            |         | 3       | 1      |

Strain names, isolation locations (where known), and other information are shown. *fimH* and *fimC* alleles are coded as numbers that correspond to labels on phylogenetic trees in Fig. S1. The subtree in which the *fimH* and *fimC* sequences fall for each strain is indicated in the right two columns.

1. ECOR Ochman H, Selander RK (1984) Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157:690-693

2. TOP Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ (2007) Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4:e329.

#### Table S2. PAML results

Whole tree and branch-site models

| Gene | Subtree | M1       | M2       | p value | M7       | M8       | p value | BSA      | p value | w    | amino acids (prob)        | Bonferron<br>correction<br>(# tests) |
|------|---------|----------|----------|---------|----------|----------|---------|----------|---------|------|---------------------------|--------------------------------------|
| fimH |         | -2751.36 | -2747.87 | 0.1526  | -2751.71 | -2747.77 | 0.0973  |          |         |      |                           | 5                                    |
|      | 1       |          |          |         |          |          |         | -2748.42 | 0.2650  |      |                           | 5                                    |
|      | 1*      |          |          |         |          |          |         | -2746.7  | 0.0473  | 10.7 | 27A (0.944), 62S (0.948), | 5                                    |
|      |         |          |          |         |          |          |         |          |         |      | 74T (0.940), 163V (0.978) |                                      |
|      | 2       |          |          |         |          |          |         | -2750.39 | 1.0000  |      |                           | 5                                    |
|      | 3       |          |          |         |          |          |         | -2751.42 | 1.0000  |      |                           | 5                                    |
| fimC |         | -1773.09 | -1772.49 | 1.0000  | -1773.28 | -1772.39 | 1.0000  |          |         |      |                           | 4                                    |
|      | 1       |          |          |         |          |          |         | -1773.09 | 1.0000  |      |                           | 4                                    |
|      | 2       |          |          |         |          |          |         | -1773    | 1.0000  |      |                           | 4                                    |
|      | 3       |          |          |         |          |          |         | -1771.63 | 0.9292  |      |                           | 4                                    |

Site models using subtrees

PNAS PNAS

| Gene | Subtree | M1       | M2       | p value | М7        | M8       | p value | w    | proportion of codons<br>under positive selection | amino acids (prob)                                                        | Bonferroni<br>correction<br>(# tests) |
|------|---------|----------|----------|---------|-----------|----------|---------|------|--------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|
| fimH | 1       | -1624.3  | -1617.9  | 0.0067  | -1624.5   | -1617.9  | 0.0055  | 6.96 | 0.02983                                          | 27A (0.998), 62S<br>(0.940), 66G (0.928),<br>74T (0.912), 163V<br>(0.998) | 4                                     |
|      | 1*      | -1555.48 | -1546.97 | 0.0008  | - 1555.69 | -1546.97 | 0.0007  | 9.12 | 0.02788                                          | 27A (0.999), 62S<br>(0.958), 66G (0.951),<br>74T (0.940), 163V<br>(0.999) | 4                                     |
|      | 2       | -1293.37 | -1293.37 | 1.0000  | -1293.37  | -1293.37 | 1.0000  |      |                                                  |                                                                           | 4                                     |
|      | 3       | -2155.24 | -2154.51 | 1.0000  | -2155.45  | -2154.52 | 1.0000  |      |                                                  |                                                                           | 4                                     |
| fimC | 1       | -1140.95 | -1138.15 | 0.1823  | -1141.09  | -1138.15 | 0.1582  |      |                                                  |                                                                           | 3                                     |
|      | 2       | -1146.11 | -1145.62 | 1.0000  | -1145.62  | -1149.76 | 1.0000  |      |                                                  |                                                                           | 3                                     |
|      | 3       | -1395.6  | -1391.69 | 0.0600  | -1395.69  | -1391.95 | 0.0712  |      |                                                  |                                                                           | 3                                     |

Top half shows data for site and branch-site models using the entire *fimH* or *fimC* tree. Bottom half shows data for site models applied to individual subtrees. FimH subtree 1\* is subtree 1 but excluding the three sequences that do not encode for Ser70.

| Table S3. Correlation of FimH amino acid variation with habitat from which | the strain was isolated |
|----------------------------------------------------------------------------|-------------------------|
|----------------------------------------------------------------------------|-------------------------|

| Amino acid | Urine            | Fecal           | <i>p</i> value |
|------------|------------------|-----------------|----------------|
| 70N, 78N   | 6                | 1               |                |
| 70N, 78S   | 110 <sup>+</sup> | 53 <sup>+</sup> | 0.0001**       |
| 70S, 78N   | 72†              | 8†              |                |
| 27A        | 149†             | 52 <sup>†</sup> | 0.3541         |
| 27T        | 0                | 1               |                |
| 27V        | 39*              | 9†              |                |
| 62A        | 13†              | 0†              | 0.0423*        |
| 625        | 175†             | 62 <sup>+</sup> |                |
| 66C        | 4                | 1               |                |
| 66G        | 174 <sup>+</sup> | 57†             | 0.7533         |
| 66S        | 10*              | 4†              |                |
| 163A       | 15*              | 1†              | 0.1287         |
| 1631       | 0                | 1               |                |
| 163V       | 173†             | 60 <sup>+</sup> |                |

The number of strains with *fimH* sequences predicted to code for each of the amino acid variants is shown. Cells marked by <sup>†</sup> were used in Fisher's exact test for correlation between amino acid variation and site of isolation, and the 2-tailed p-value is shown. \* P < 0.05, \*\* P < 0.001.

### Table S4. List of DNA primers, plasmids, and strains

**DNA** Primers

| Name                         | Sequence                                                               | Notes                                                                                        |
|------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| uti8+4908948                 | CTACCGGGCGTCGGGTTACT                                                   | Used to sequence fimC                                                                        |
| uti8–4910078                 | CGATACGTCCCTGGCGGTAA                                                   | Used to sequence fimC                                                                        |
| uti8–4910744                 | ATCACCGGGGCAAATCCTCT                                                   | Used to sequence fimC                                                                        |
| uti8+4913338                 | ACCGCGCAAAACATCCAGTT                                                   | Used to clone fimH, sequence fimH, and for diagnost<br>PCR                                   |
| uti8+4913927                 | CCGGTGGCGCTTTATTTGAC                                                   | Used to sequence fimH                                                                        |
| uti8–4914820                 | GGTATTCGGCATTGGCCTGA                                                   | Used to clone fimH                                                                           |
| uti8–4915222                 | GATCGTTTGGGCCGTACCAG                                                   | Used to sequence fimH and for diagnostic PCR                                                 |
| Mlul-KanL                    | GATCACGCGTGGTTGGGAAGCCCTGCAAAG                                         | Used to amplify and clone the kanamycin gene from pKD4, tailed with a Mlul restriction site  |
| Ascl-KanR                    | GATCGGCGCCCCGGTCATTTCGAACCCCAGA                                        | Used to amplify and clone the kanamycin gene from pKD4, tailed with an AscI restriction site |
| uti8+4913515_fimH-pKD4-left  | ATCACCTATACCTACAGCTGAACCCAAA-                                          | Used to knock out fimH                                                                       |
|                              | GAGATGATTGTAATGAAACGAGGTGTAG-<br>GCTGGAGCTGCTTC                        |                                                                                              |
| uti8–4914747_fimH-pKD4-right | CCTCTTAGATTACTTTGACCTGTCAGTA-                                          | Used to knock out fimH                                                                       |
|                              | AAAGACACGTTGAAAACCTGGGCATAT-                                           |                                                                                              |
|                              | GAATATCCTCCTTAG                                                        |                                                                                              |
| ıti8-phaseL                  | GAGAAGAAGCTTGATTTAACTAATTG                                             | Used for type 1 phase assay                                                                  |
| uti8-phaseR                  | AGAGCCGCTGTAGAACTCAGG                                                  | Used for type 1 phase assay                                                                  |
| A27V-sew-L                   | TATGTAAACCTTGCGCCTGTGGTGAAT-<br>GTGGGGCAAAAC                           | Used to make A27V mutation                                                                   |
| A27V-sew-R                   | GTTTTGCCCCACATTCACCACAGGCGCAAGGTTTACATA                                | Used to make A27V mutation                                                                   |
| A62S-sew-L                   | GTCACACTGCAACGAGGTAGCGCTTATG-<br>GCGGCGTGTTA                           | Used to make A62S mutation                                                                   |
| A62S-sew-R                   | TAACACGCCGCCATAAGCGCTACCTCGTTGCAGTGTGAC                                | Used to make A62S mutation                                                                   |
| G66C-sew-L                   | CGAGGTGCGGCTTATGGCTGCGTGTTATCTAGTTTTTCC                                | Used to make G66C mutation                                                                   |
| G66C-sew-R                   | GGAAAAACTAGATAACACGCAGCCATA-<br>AGCCGCACCTCG                           | Used to make G66C mutation                                                                   |
| G66R-sew-L                   | CGAGGTGCGGCTTATGGCCGTGTGTTATCTAGTTTTCC                                 | Used to make G66R mutation                                                                   |
| G66R-sew-R                   | GGAAAAACTAGATAACACACGGCCATA-<br>AGCCGCACCTCG                           | Used to make G66R mutation                                                                   |
| G66S-sew-L                   | CGAGGTGCGGCTTATGGCAGCGTGTTATCTAGTTTTCC                                 | Used to make G66S mutation                                                                   |
| G66S-sew-R                   | GGAAAAACTAGATAACACGCTGCCATA-                                           | Used to make G66S mutation                                                                   |
|                              | AGCCGCACCTCG                                                           |                                                                                              |
| S70N/N78S-sew-L              | GCTTATGGCGGCGTGTTATCTAACTTT-<br>TCCGGGACCGTAAAATATAGCGGCAG-            | Used to make \$70N/N78S mutation                                                             |
| S70N/N78S-sew-R              | TAGCTATCCTTTCCCT<br>AGGGAAAGGATAGCTACTGCCGC-                           | Used to make \$70N/N78S mutation                                                             |
|                              | TATATTTTACGGTCCCGGAAAAGTTA-<br>GATAACACGCCGCCATAAGC                    |                                                                                              |
| Q133K-sew-L                  | GCCGTGCTTATTTTGCGAAAAACCAACAACTATAACAGC                                | Used to make Q133K mutation                                                                  |
| Q133K-sew-R                  | GCTGTTATAGTTGTTGGTTTTCGCAAAATAAGCACGGC                                 | -                                                                                            |
| /163A-sew-L                  | CCCACTGGCGGCTGCGATGCGTCTGCTCGTGATGTCACC                                | Used to make V163A mutation                                                                  |
| /163A-sew-R                  | GGTGACATCACGAGCAGACGCATCG-<br>CAGCCGCCAGTGGG                           | Used to make V163A mutation                                                                  |
| FimBE KO #1                  | GGCAGGAATAATCGCTAGGGACCTAAG-<br>CATTAGCATGATAATAGCGTGTAGGCTGGAGCTGCTTC | Used to knock out fimB and fimE, from Hannan et al (14)                                      |
| FimBE KO #2                  | GTCTTGTATTTATTTGTTTTTTAACTT-<br>TATTATCAATTAGTTAAAATGGGAATTAGCCATGGTCC | Used to knock out fimB and fimE, from Hannan et al                                           |

| Name                 | Parent plasmid     | Notes                                                    | Source                          |
|----------------------|--------------------|----------------------------------------------------------|---------------------------------|
| pKM208               |                    | Source of Red recombinase                                | Murphy and Campellone (3)       |
| pKD4                 |                    | Source of kanamycin resistance cassette                  | Datsenko and Wanner (2)         |
| pCP20                |                    | Source of FLP recombinase                                | Cherepanov and Wackernagel (13) |
| pUC19                |                    | General cloning vector                                   | NEB                             |
| pCR4-TOPO            |                    | General cloning vector                                   | Invitrogen                      |
| pSLC2–12-fimH-TOPO-1 | pCR4-TOPO          | Contains fimH sequence from UTI89                        | This study                      |
| pSLC2–16–2           | pSLC2–12-fimH-TOPO | Contains fimH sequence and kanamycin resistance cassette | This study                      |

#### Plasmids

PNAS PNAS

| Name          | Parent plasmid    | Notes                                                                         | Source     |
|---------------|-------------------|-------------------------------------------------------------------------------|------------|
| pSLC2-24-3    | pUC19, pSLC2–16–2 | Contains fimH sequence and kanamycin resistance<br>cassette, moved into pUC19 | This study |
| Strains       |                   |                                                                               |            |
| Name          | Parent strain     | Notes                                                                         | Source     |
| TOP10         |                   | General cloning strain                                                        | Invitroger |
| SLC2-12-1     | UTI89             | Kan resistant, fimH knockout                                                  | This study |
| SLC2-14-1     | SLC2-12-1         | Kan sensitive, fimH knockout                                                  | This study |
| SLC2–17-fimH  | SLC2-14-1         | Contains pKM208 plasmid for expression of Red recombinase system              | This study |
| SLC2-33-1     | SLC2–17-fimH      | Wild type control                                                             | This study |
| SLC2-35-1     | SLC2–17-fimH      | Q133K                                                                         | This study |
| SLC2-37-10    | SLC2–17-fimH      | S70N, N78S                                                                    | This study |
| SLC2-39-1     | SLC2–17-fimH      | A27V                                                                          | This study |
| SLC2-45-4     | SLC2–17-fimH      | V163A                                                                         | This study |
| SLC2-46-1     | SLC2–17-fimH      | A62S                                                                          | This study |
| SLC2-46-6     | SLC2–17-fimH      | A62S, S70N, N78S                                                              | This study |
| SLC2-51-1-1   | SLC2–17-fimH      | A27V, V163A                                                                   | This study |
| SLC2-68-4-1   | SLC2–17-fimH      | A27V, A62S, S70N, N78S                                                        | This study |
| SLC2-68-6-1   | SLC2–17-fimH      | A27V, A62S                                                                    | This study |
| SLC2-68-48-1  | SLC2–17-fimH      | A27V, S70N, N78S                                                              | This study |
| SLC2-68-184-1 | SLC2–17-fimH      | S70N, N78S, V163A                                                             | This study |
| SLC2-73-4-1   | SLC2–17-fimH      | A27V, A62S, S70N, N78S, V163A                                                 | This study |
| SLC2-73-48-1  | SLC2–17-fimH      | A27V, S70N, N78S, V163A                                                       | This study |
| SLC2-75-5-1   | SLC2–17-fimH      | A62S, S70N, N78S, V163A                                                       | This study |
| SLC2-76-2-1   | SLC2–17-fimH      | A62S, V163A                                                                   | This study |
| SLC2-89-3     | SLC2–17-fimH      | A27V, A62S, V163A                                                             | This study |
| SLC4-16-1-C1  | SLC2–17-fimH      | G66C                                                                          | This study |
| SLC4-16-1-R9  | SLC2–17-fimH      | G66R                                                                          | This study |
| SLC4-16-1-S8  | SLC2–17-fimH      | G66S                                                                          | This study |

Primer name, sequence, and comments are shown. Plasmids and strains used in the construction of *fimH* mutants are listed. Parent strain or plasmid, notes on usage, and source are shown.