Supporting Information

Hoskins et al. 10.1073/pnas.0911937106

SI Methods

GFP-15 Unfolding Assay. Reaction mixtures (100 μ L) contained buffer A [20 mM Tris HCl, pH 7.5, 100 mM KCl, 5 mM DTT, 0.1 mM EDTA, and 10% glycerol (vol/vol)], 0.005% Triton X-100 (vol/vol), 4 mM ATP or 2 mM ATP, and 2 mM ATP_yS (Roche) where indicated, an ATP regenerating system (20 mM creatine phosphate and 6 μ g creatine kinase), 10 mM MgCl₂, 2.0 µM GFP-15, 3.0 µM GroEL_{trap}, and 1.0 µM total ClpB. GFP-15 contains the N-terminal 15 aa of the P1 RepA replication initiator protein fused to the C-terminus of GFP (1). A mutant form of GroEL, GroEL_{trap}, that binds but does not release unfolded proteins was included in the reaction mixtures to prevent GFP-15 refolding (2). Unfolding was monitored over time at 23 °C using a Varian Cary Eclipse fluorescence spectrophotometer with a well-plate reader. Excitation and emission wavelengths were 395 and 510 nm, respectively. For subunit mixing experiments, ClpB_(wt) and ClpB mutant proteins, as indicated, were added to a total ClpB concentration of 1.0 µM and reactions initiated by the addition of MgATP. GFP-15 unfolding rates were determined from the initial linear decrease in fluorescence intensities.

GFP Reactivation. GFP reactivation assays (100 μ L) contained buffer A, 4 mM ATP, an ATP regenerating system as above, 10 mM MgCl₂, 10 μ L heat-aggregated GFP (heated 10 min at 80 °C at 4.5 μ M), and 1.0 μ M total ClpB, either ClpB_(wt), ClpB mutant, or a mixture containing both in various ratios as indicated. Reactions were initiated by the addition of MgATP, and reactivation was monitored over time at 23 °C as described above for GFP-15 unfolding. GFP reactivation rates were determined from the initial linear increase in fluorescence intensities.

MDH Disaggregation. Reaction mixtures (60 μ L) contained buffer A, 5 mM ATP, an ATP regenerating system as above, 0.005% Triton X-100 (vol/vol), 17 mM MgCl₂, 25 μ L heat-aggregated [³H]MDH (prepared by heating 2.0 μ M [³H]MDH in 50 mM Tris·HCl, pH 7.5, 150 mM KCl, 2 mM DTT, and 0.1 mM EDTA for 33 min at 47 °C), 1.4 μ M DnaK, 0.25 μ M DnaJ, and 0.13 μ M

GrpE, and 0.5 μ M total ClpB, either ClpB_(wt), ClpB mutant, or a mixture containing both in various ratios as indicated. Reactions were initiated by the addition of MgATP. After a 40-min incubation at 30 °C, reactions were stopped with 75 mM EDTA and 75 mM (NH₄)₂SO₄. The soluble fraction of [³H]MDH was separated by centrifugation and quantified by scintillation counting.

GFP-38 Reactivation. Reactivation assays (100 μ L) contained buffer A, 4 mM ATP, an ATP regenerating system as above, 10 mM MgCl₂, 5 μ L heat-aggregated GFP-38 (heated 15 min at 80 °C at 14 μ M, frozen on dry ice, thawed, and used immediately), 0.9 μ M DnaK, 0.15 μ M DnaJ, 0.08 μ M GrpE, and 0.5 μ M total ClpB, either ClpB_(wt), ClpB mutant, or a mixture containing both in various ratios as indicated. Reactions were initiated by the addition of MgATP, and reactivation was monitored over time at 23 °C as described above for GFP-15 unfolding. GFP-38 reactivation rates were determined from the initial linear increase in fluorescence intensities.

RepA Activation. Reaction mixtures (20 μ L) contained buffer A, 4 mM ATP, 10 mM MgCl₂, 50 μ g/mL BSA, 0.005% Triton X-100 (vol/vol), 4 nM RepA, and 1.0 μ M total ClpB, either ClpB_(wt), ClpB_(B1,B2), or a mixture containing both in various ratios as indicated. Reactions were initiated by the addition of MgATP. After 10 min at 23 °C, 25 mM EDTA was added, and the reactions were chilled to 0 °C. Calf thymus DNA (1 μ g) and 15 fmol of [³H]*ori*P1 plasmid DNA were added. After 5 min at 0 °C, the mixtures were filtered through nitrocellulose filters, and retained radioactivity was measured.

ATPase. Reaction mixtures (50 μ L) contained buffer A, 0.005% Triton X-100 (vol/vol), 4 mM ATP or 2 mM ATP, and 2 mM ATP γ S as indicated, 0.1 μ Ci of [γ -³³P]ATP (>3,000 Ci/mM; Perkin Elmer), 10 mM MgCl₂, and 1.0 μ M total ClpB, either ClpB_(wt), ClpB_(B1,B2), or a mixture containing both in various ratios as indicated. Reactions were initiated by the addition of MgATP, incubated 30 min at 25 °C, and analyzed as described in ref. 3.

Hoskins JR, Yanagihara K, Mizuuchi K, Wickner S (2002) ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. *Proc Natl Acad Sci* USA 99:11037–11042.

Weber-BanEU, Reid BG, Miranker AD, Horwich AL (1999) Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401:90–93.

^{3.} Shacter E (1984) Organic extraction of Pi with isobutanol/toluene. Anal Biochem 138:416-420.