Table S3. Description of genes with transcription rate quantified by qPCR in this study and biological information of their respective	е
mutants	

Gene	Description	Pathogenicity	Transmission	References
<i>pglA</i> * (PD1485)	Required for pectin degradation	Non-virulent	ND	(1)
<i>rpfF</i> (PD0407)	Required for synthesis of DSF "cell-cell signaling factor"	Hyper-virulent	Non-transmissible	(2)
hxfA (PD2118)	Hemagglutinin-like secreted protein (afimbrial adhesin)	Hyper-virulent	Affected	(3); (4)
hxfB (PD1792)	Hemagglutinin-like secreted protein (afimbrial adhesin)	Hyper-virulent	Affected	(3); (4)
gumJ (1389)	Required for EPS synthesis (biological data are for mutants of <i>gumD</i> (PD1894) and <i>gumH</i> (1319), both are required for EPS synthesis)	Non-virulent †	Affected ⁺	D. Cooksey
fimA (PD0062)	Required for type I pilus (short pilus) synthesis	Hyper-virulent	Affected ⁺	(5)
<i>pilY1</i> (PD0023)	Component of type IV pilus (long pilus)	Non-virulent⊥	Affected⊥†	(5)
<i>engxcA</i> (PD1851)	Required for glucan degradation	ND	ND	

* Mutant produced from Fetzer strain, all other mutants produced from Temecula1.

⁺ Unpublished data based on plant-to-plant transmission tests using *Graphocephala atropunctata* as a vector (Killiny and Almeida). ND, not determined.

 \perp Biological data is based on a *pilB* (PD1027) mutant, not *pilY1*; phenotype and gene regulation is expected to be similar for these genes.

References

- 1. Roper MC, Greve LC, Labavitch JA, Kirkpatrick BC (2007) Detection and visualization of an exopolysaccharide produced by *Xylella fastidiosa* in vitro and in planta. *Appl Environ Microbiol* 73:7252-7258.
- 2. Newman KL, Almeida RPP, Purcell AH, Lindow SE (2004) Cell-cell signaling controls *Xylella fastidiosa* interactions with both insects and plants. *Pro Nat Acad Sci USA* 101:1737-1742.
- 3. Guilhabert MR, Kirkpatrick BC (2005) Identification of *Xylella fastidiosa* antivirulence genes: Hemagglutinin adhesins contribute to *X. fastidiosa* biofilm maturation and colonization and attenuate virulence. *Mol Plant Microbe Interact* 18:856-868.
- 4. Killiny N, Almeida RPP (2009) *Xylella fastidiosa* afimbrial adhesins mediate cell transmission to plants by leafhopper vectors. *Appl Environ Microbiol*. 75:521-528.
- 5. Meng Y, et al. (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol. 187:5560-5567.