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SI Text
Formal Theoretical Framework. The theoretical framework that
underlies our account of the diminishing sensitivity to human
fatalities proposes that people evaluate a target ‘‘event-
associated death-toll’’ (EADT) by comparing it with other
EADTs sampled from memory. The final subjective value as-
signed to the target EADT is simply the proportion of pair-wise
comparisons in which it dominates or ties.

Formally, this can be expressed as follows: consider a standard
ranking system that ranks all the EADTs in a set by assigning a
rank of 1 to the largest EADT, the same rank-values to identical
EADTs, and progressively larger ranks to smaller EADTs.
Within this ranking system, if the rank of the target EADT is rt
when it is compared with the ns other EADTs that were sampled,
its subjective value �t will be:

�t �
ns � 2 � rt

ns � 1
[S1]

Thus, a target EADT is considered large if it ranks above most
sampled EADTs (small if it ranks below most of them), regard-
less of its absolute magnitude.

The proportion of pair-wise comparisons in which a target
EADT (xt) dominates or ties is equivalent to its percentile-rank,
which is the proportion of sampled EADTs that are smaller than
or equal to the target. Equivalently, this can be expressed as the
probability that xt is larger than or equal to a randomly drawn
comparison EADT: p(xt � Xs). Mathematically, this is repre-
sented by the cumulative distribution function F(xt).

The sampling process implies that the value assigned to a
target EADT will be determined by the distribution of compar-
ison EADTs from which a person can draw, which will be a
function of the EADTs (s)he has previously observed. If we
assume, for simplification, that people draw uniformly random
samples from the entire set of events they have observed, the
sample of events under consideration will be a representative
subset of all events in memory, and an EADT’s expected
percentile-rank within the sample will be equal to its percentile-
rank within the entire population of observed events (1, 2). This
implies that the psychophysical function relating an EADT’s
magnitude to its subjective evaluation can be approximated by
the cumulative distribution function of all relevant EADTs that
one has observed.

Mathematically, the cumulative distribution function is ob-
tained by integrating the probability density function. The
probability density function is simply the frequency distribution
function divided by the total number of EADTs in the sampled
population:

f�x� �
freq.�x�

N
[S2]

Because EADTs seem to roughly follow a power-law distribution
(see Study 1), their frequency distribution is reasonably well
approximated by a power function:

freq.�x� � qx� [S3]

with power �. Combining Eqs. S2 and S3, we obtain the
probability density function:

f�x� � bx� �where b �
q
N� [S4]

By integrating Eq. S4, we obtain the cumulative distribution
function:

F�x� � b� x1��

1 � �
� [S5]

As b is simply a normalizing constant with no real empirical
meaning, we can simplify Eq. S5 by setting b � 1 while still
conserving the main features of the relationship between an
EADT’s magnitude (x) and its cumulative frequency (or per-
centile):

��x� �
x1��

1 � �
[S6]

According to our account of the way people evaluate human
fatalities, Eq. S6 approximately describes the relationship be-
tween an event’s death toll and its associated disutility or shock
value. In fact, a common assumption in economics is that
preferences follow a utility function characterized by constant
relative risk aversion (CRRA) (3, 4). CRRA utility functions
often take the form:

U�x� �
x1��

1 � �
[S7]

where � describes the degree of concavity of the utility function.
[Note that when � � 1, U(x) � ln(x).] When x represents a
desirable gain, the CRRA parameter � describes the degree of
relative risk aversion for an individual. Here, however, x repre-
sents the number of human deaths and U(x) the disutility (i.e.,
negative utility) associated with this undesirable loss, so the
relationship is reversed (5–7): � describes the degree of relative
risk-seeking for an individual (i.e., the tendency to prefer risky
choice options). An individual is risk-averse if � � 0, risk-neutral
if � � 0, and risk-seeking if � � 0.

Notice that Eq. S7 is obtained from Eq. S6 simply by setting
� as ��. Thus, according to our account, the curvature (�) of the
disutility function for human deaths is approximately equal to
the negative value of the power parameter (�) that governs the
distribution of EADTs.

A potential issue with the framework we present concerns the
treatment of ties between EADTs. In the current account, a
target EADT’s disutility is equal to the proportion of pair-wise
comparisons in which it dominates or ties. One advantage of
having ties counted in favor of the target EADT is that it allows
individual deaths (X � 1) to produce relatively large amounts of
disutility, in line with the empirical evidence (8). Conversely, this
specification could also generate some counterintuitive predic-
tions in certain cases, notably when the target EADT is equal to
comparison EADTs in the middle of the sampled range. For
example, a target event involving 5 deaths would, in the current
framework, obtain a disutility value of 0.8 when compared with
the set [1, 5, 5, 10], whereas 0.5 might seem like a more intuitive
value as the target event falls in the middle of the distribution in
this case. However, the likelihood of drawing a sample of this sort
is extremely small, given the distribution of EADTs we observe.
In these power-law-like distributions, only the very lowest
EADTs have a nonnegligible probability of being sampled more
than once (or at all, for that matter). Therefore, it is highly
unlikely that ties will occur in the middle of the sampled range
(ties occurring in the very beginning or very end of the sampled
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range do not pose such an issue). Nevertheless, we examined how
different specifications concerning the treatment of ties might
impact our results. We found that our predictions and results are
qualitatively unchanged if we adopt specifications that separate
ties from inequalities between EADTs. In fact, even adopting a
‘‘strictly-greater-than’’ definition of percentile ranks, whereby a
target EADT’s disutility is equal to the proportion of pair-wise
comparisons that it strictly dominates,* was found to have a
negligible impact on the shapes of the cumulative probability
distributions reported in this article.

Methods
Study 1A: Centre for Research on the Epidemiology of Disasters (CRED)/
Emergency Events Database (EM-DAT) Data. Data on the occurrence of disasters
and their associated death tolls were obtained from the EM-DAT (www.em-
dat.net) maintained by CRED at Université Catholique de Louvain in Brussels,
Belgium. The EM-DAT is the only publicly available global database on the
occurrences and impacts of natural and industrial disasters. EM-DAT data are
compiled from a variety of reliable sources, including United Nations agencies,
governments, nongovernmental organizations, insurance companies, re-
search institutes, and press agencies. When new data are added to the dataset,
they undergo a validation process to minimize error before they become
public.

The types of disasters included in the EM-DAT dataset mostly fall into two
broad groups: natural disasters, which include droughts, earthquakes, epi-
demics, extreme temperatures, floods, insect infestations, slides, volcanoes,
waves/surges, wildfires, and windstorms; and industrial disasters, which in-
clude industrial accidents, miscellaneous accidents, and transport accidents.
Only events that meet specific criteria are classified as disasters and recorded
in the EM-DAT dataset: an event is added to the dataset if at least one of the
following conditions is met: (i) at least 10 people were killed; (ii) at least 100
people were affected, injured, or homeless; (iii) considerable damage was
incurred; (iv) a declaration of a state of emergency and/or an appeal for
international assistance was made; or (v) the event is considered noteworthy
for some other reason. One consequence of the first selection criterion is that
the frequency of events involving fewer than 10 deaths is underestimated.
Conversely, low-impact events are generally less salient and less likely to be
reported in the media than high-impact events. As a result, they may be rarely
observed, encoded in memory, or sampled during the evaluation process.

In the raw data we consider, the unit of analysis is a disaster. The EM-DAT
dataset contains a number of useful variables associated with each disaster,
including the country or countries affected, the number of people killed, and
the starting and ending dates of the event.

Starting in 2003, the CRED decided to alter the process for entering disasters
into the EM-DAT database, in an effort to improve its methodology. As a result
of this shift, there is a discontinuity in the way disasters are compiled before
and after 2003. We therefore only considered disasters that occurred between
2003 and the time the data were downloaded.

The data were downloaded on October 24, 2007, from the EM-DAT Web
site. Only disasters that caused at least one (human) death were considered in
our analyses. Disasters for which there was a mistake in the recording of the
start date and/or end date (e.g., the recorded end date occurred before the
recorded start date) were removed. Disasters for which no starting month or
ending month was available were removed. Disasters for which the classifi-
cation year did not correspond to the starting and/or ending year were
removed. As the deaths associated with a disaster that unfolds over an
extended period are spread out in time, it is unclear whether this loss of life
is coded as a single, high-mortality event or as a series of multiple, low-
mortality events. To avoid this potential ambiguity, we considered only events
that occurred over a period of 10 d or fewer (events lasting �10 d represented
12% of the sample). Finally, when the same disaster affected multiple coun-
tries, the death toll was aggregated across those countries and the resulting
total was coded as a single event. Overall, we selected 2,282 individual events.

The EM-DAT data were also used to produce the country-specific disaster-
mortality distributions in Study 3 (see Fig. 4A and Study 3 in Methods). For that
analysis, however, the death tolls were not aggregated when multiple coun-
tries were affected by the same disaster. In addition, only disasters affecting

India, Indonesia, Japan, and/or the United States were considered, and sepa-
rate analyses were carried out for each country. The data selection process was
identical in every other respect. Of the 2,282 disasters that were selected (as
detailed earlier), 153 affected India, 98 affected Indonesia, 28 affected Japan,
and 86 affected the United States.

Study 1B: Google News Archives (GNA) Data. Data on media attention to events
involving human deaths (i.e., EADTs) were obtained by iteratively searching
the GNA (http://news.google.com/archivesearch). The GNA allows users to
search for news articles (using key words) across a large collection of historical
archives from many countries, including major newspapers and magazines,
news archives, and legal archives. GNA searches draw from a large variety of
different sources, and include content that is publicly accessible as well as
content that requires a fee.

We searched the GNA for news articles whose titles contained keywords
related to losses (e.g., ‘‘10 people died’’) or gains (e.g., ‘‘10 people survived’’)
in human lives. For each search, the number of relevant articles returned (i.e.,
the number of hits) was recorded, thus providing a measure of the total media
attention allocated to events associated with a given loss (or gain) in human
lives. The search process was limited to English-language pages only and to
articles published between 2000 and 2007 (all searches were conducted in
2008). To minimize the number of articles about nonhuman losses (or gains),
stories were not counted if the keyword ‘‘animal’’ appeared anywhere in the
article. An iterative search process was carried out by an automated search
algorithm, which sequentially implemented searches and recorded the num-
ber of hits produced by each one.

Two general types of searches were carried out:
(I) ‘‘X [keyword],’’ where ‘‘X’’ represents the number of lives lost or saved

and ‘‘[keyword]’’ represents the specific word used to signify a loss or gain.
This search yielded articles with titles of the form ‘‘3 killed in car crash,’’ in
which no words appear between the number ‘‘X’’ and the keyword.

(II) ‘‘X * [keyword],’’ where the asterisk is used to signify any words
appearing between the number ‘‘X’’ and the keyword. This search yielded
articles with titles of the form ‘‘3 people killed in car crash.’’ Because this
approach also counts titles of the form ‘‘3 million killed’’ (thus yielding false
alarms), the search was designed to ignore articles with titles containing the
words ‘‘X hundred,’’ ‘‘X thousand,’’ or ‘‘X million.’’

Articles on events related to losses in human lives were counted using the
following keywords: ‘‘die,’’ ‘‘died,’’ ‘‘dead,’’ ‘‘deaths,’’ ‘‘killed,’’ ‘‘fatalities,’’
‘‘homicides,’’ ‘‘murders,’’ ‘‘murdered,’’ and ‘‘massacred.’’ Articles on events
related to gains in human lives were counted using the following keywords:
‘‘saved,’’ ‘‘rescued,’’ and ‘‘survive.’’ Keywords were adjusted to the singular
form for X � 1 whenever appropriate (e.g., ‘‘deaths’’ was replaced with
‘‘death’’). These key words were specifically chosen because test searches
showed that they seemed to yield the largest ratio of correct hits (i.e., relevant
stories) to false alarms (i.e., irrelevant stories). As GNA allows only a limited
number of words to be used in each search, we were required to divide the
search process into multiple search strings. However, keywords were grouped
(using the ‘‘OR’’ operator) to produce the fewest strings possible. This yielded
seven search strings for loss-events and two search strings for gain-events.
These search strings are provided in Table S1.

Searches were carried out for every integer-value of X between 1 and 1,000.
Beyond X � 1,000, numbers were sampled up to 1,000,000 in a different
manner: for each order of magnitude, 10m (with m � 3, 4, 5), the first 10 values
were sampled in increments of 10m�1 (e.g., 1,100; 1,200; […]; 2,000), and the
next 16 values were sampled in increments of 5 � 10m�1 (e.g., 2,500; 3,000; […];
10,000). This led to the selection of 78 salient integers: values yielding larger
numbers of GNA hits, as, for high death tolls, news articles are much more
likely to report approximate values (e.g., ‘‘3,000 dead following attack’’) than
exact values (e.g., ‘‘3,147 dead following attack’’).

To account for hits produced by nonsalient values of X, we randomly
sampled 10 integers between each of the 78 salient values. If an integer
appeared more than once, one of its occurrences was replaced with another
randomly sampled value from the same range (eight replacements were made
in total). The resulting 780 additional integers were then used as search values
for X. For each range, we calculated the average number of hits returned by
its 10 nonsalient values (based on a given search string). We then multiplied
this average by the size of the range [either (10m�1 � 1) or (5 � 10m�1 �1)], to
yield an estimate of the total number of hits contained within that range. The
resulting 78 estimates were added to the 78 salient values to produce, for each
search string, an approximation of the total number of hits that GNA would
produce for all values of X between 1,001 and 1,000,000. We also conducted
a few searches (by hand) using values beyond 1,000,000, but these failed to
produce any relevant hits (even for salient integers), suggesting that few if any

*Notice that any reasonable specification that explicitly accounts for ties must fall some-
where between a ‘‘greater-than-or-equal-to’’ [p(xt � Xs)] and a ‘‘strictly-greater-than’’ [p(xt

� Xs)] definition of percentile ranks, in terms of the subjective value it assigns to EADTs. The
‘‘strictly-greater-than’’ specification, in which ties do not contribute to disutility, therefore
provides the most stringent test of robustness to the treatment of ties that we could use.
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events reported in 2000 through 2007 were associated with more than 1
million deaths. We therefore decided to stop searching beyond this point.

The number of hits from each search string were added up, separately for
losses and gains, to produce the total number of hits associated with each
value of X � 1,000, as well as the estimated total number of hits for larger
values of X (up to 1,000,000). For events involving lives lost, we counted a total
of 119,769 search hits (X � 1,000) and estimated another 2,776 hits (1,000 �
X). For events involving lives saved, we counted a total of 3,160 search hits (X �

1,000) and estimated another 144 hits (1,000 � X).
It is worth noting that the number of hits obtained for X � 1 was likely

underestimated. Articles in which a single person dies are more likely to have
titles such as ‘‘man dies in car accident’’ than ‘‘1 man dies in car accident.’’ In
addition, the deaths of famous persons, although also constituting an indi-
vidual death, are likely to be missed as the relevant article titles usually refer
to the person by name, without a quantity indicator. However, single-death
events are probably less memorable, on average, than higher death toll
events, and thus less likely to be sampled during the evaluation process. It is
also possible that certain types of single-death events (e.g., the death of a
friend, family member, or celebrity) are categorized differently from events
typically encountered in the news, which involve the deaths of strangers.
These types of single-death events might not, therefore, be sampled in the
evaluation process.

Study 1C: Recalled EADTs. Data on recalled EADTs were obtained by adminis-
tering a survey that asked respondents to recall events involving human
deaths. We then repeatedly sampled these events to estimate the average
frequency and cumulative probability distribution of recalled EADTs.

Respondents were 160 university students in the United States (43% fe-
male) who participated for course credit.

The survey asked respondents to recall specific nonfictional events involv-
ing human deaths, and to report the first eight examples that came to mind.
They were encouraged to use real events that they had previously heard
about, read about, or seen on television, as long as these events had occurred
in their lifetime. They were asked to provide a brief description of each event

and their best estimate of the number of deaths involved (as a single number
rather than a range of values). Respondents were given the option of com-
pleting an alternate questionnaire of similar length (about recalling temper-
atures) if they felt uncomfortable with the survey’s topic. Only one respondent
requested this option. Another respondent who was noticeably distracted was
also removed from the sample. Many respondents reported fewer than eight
events and, of those reported, some events were excluded from the analysis
because they occurred before the respondent’s lifetime, referred to general
causes of death rather than specific events (e.g., ‘‘all deaths from cancer’’), or
referred to nonhuman deaths. Finally, events were excluded if their estimated
death tolls were missing, equal to zero, or reported as a range of numbers or
some other ambiguous indicator of quantity (e.g., ‘‘thousands’’). Using data
from those respondents who recalled at least 6 valid events (n � 108), we
randomly sampled one recalled event from each person and calculated the
frequency and percentile-rank distributions based on these 108 sampled
death tolls. This sampling process was repeated 1,000 times (with replace-
ment), and the resulting output was used to calculate mean frequencies and
percentiles for each death toll (Fig. 1C). Including all participants and events
with unambiguous, nonzero death tolls into our analyses produced qualita-
tively similar results.

It should be noted that explicitly asking participants to recall events involv-
ing human deaths could have generated a memory search process that differs
somewhat from how they might spontaneously recall EADTs when trying to
evaluate a target event. In particular, our task may have led them to focus
heavily on the loss of a close other (thereby producing many single-person
death tolls) and on extremely large death tolls. They might, for example, have
considered these two classes of events to be especially worth reporting, even
if they initially sampled more broadly. This tendency could have been further
reinforced by the instructions, which required respondents to not only recall
the number of deaths associated with each event but also to provide brief
descriptions. This may help to explain why the distribution of recalled EADTs
differs somewhat from the other two distributions we obtained in Study 1 (see
Fig. 1). Despite this potential limitation, however, the distribution of recalled
EADTs still makes qualitatively similar predictions concerning sensitivity to
human fatalities and risk preferences concerning human losses.
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Fig. S1. The decision scenario presented in Study 2.
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Fig. S2. The English-language version of the decision scenario presented in Study 3 (to American and Indian respondents).
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Fig. S3. The Indonesian version of the decision scenario presented in Study 3.
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Fig. S4. The Japanese version of the decision scenario presented in Study 3.
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Table S1. GNA search strings (Study 1B)

Search no. String

Losses (lives lost)
1 -animal intitle:	X (die OR dead OR died OR deaths OR killed OR fatalities)	
2 -animal intitle:	X (homicides OR murders OR murdered OR massacred)	
3 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (die OR dead)	
4 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (died OR deaths)	
5 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (killed OR fatalities)	
6 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (homicides OR murders)	
7 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (murdered OR massacred)	

Gains (lives saved)
1 -animal intitle:	X (saved OR rescued OR survive)	
2 -animal -intitle:	X hundred	 -intitle:	X thousand	 -intitle:	X million	 intitle:	X * (saved OR rescued)	

X represents an integer value. The keywords were adjusted to the singular form for X � 1 whenever appropriate (e.g., 	deaths	 was replaced with 	death	).
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Table S2. Experimental manipulation used in Study 2

Scenario

How does this event make you feel?
Please circle a number for each event,

indicating how it makes you feel.

776 people died following an earthquake in Central Asia. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

A week-long heat wave in Mexico led to 9 
283� deaths. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

Mudslides in Guyana left 175 
475� dead. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

An industrial chemical explosion killed 39 
426� people in China. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

A typhoon in the Pacific killed 1,000 people. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

A flash flood in Bangladesh killed 283 
519� people. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

2 people were killed in a car accident in Poland. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

Continuous droughts in Niger were responsible for 94 
448� deaths. 1–––2–––3–––4–––5–––6–––7–––8–––9–––10
Neutral Negative Very negative

Numbers outside the brackets represent the death toll magnitudes (i.e., EADTs) that were presented to participants in the concave distribution condition.
Italicized numbers inside the brackets represent the death toll magnitudes that were presented to participants in the S-shaped distribution condition. Events
without numbers in brackets were those for which the death toll was the same across conditions. In both treatment conditions, the death toll numbers that
participants saw (but not the rest of the sentence) were in bold (but not in brackets nor italicized).
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