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Data sources. Global mean sea level data from Church and White (1) and global temperature anomaly 
data from GISTemp (2) were processed as annual means, smoothed with a 15-year smoothing period 
(“embedding dimension”)  using Singular Spectrum Analysis, SSA (3) in order to reduce the 
extraneous impact of mostly short-term natural variability, in which we are not interested. After 
smoothing, data were binned into 15 year bins where not otherwise stated. This smoothing and binning 
was applied both to temperature and to sea level rate data. The choice of 15 years is the same as in 
Rahmstorf (2007) (4) and works well. It corresponds very roughly to a Nyqvist sampling period of 15 
years, or a spectral (Fourier) low-pass cut-off period of 30 years. The precise choice of smoothing 
method is not critical to our results (see below).

Statistical analysis. The dual model fit was performed using a modified version of Eq. 2:

dH/dt = a ( (T - T0) + λ dT/dt),

with λ = b/a; λ was varied iteratively to maximize the Pearson correlation r of the linear fit yielding T0 

and a. This produces least-squares estimates a, T0 and b for expressing dH/dt in terms of T and dT/dt. 
Then, when computing H from dH/dt by integration, an integration constant is introduced. The least-
squares value for this constant is obtained by minimizing the sum of squared residuals for the fit to sea 
level H; note that H and dH/dt differ only in their auto-covariance behaviour, and the least-squares 
estimate is invariant to this. So we have also found a least-squares solution a, b, T0, H(t0) for expressing 
H in terms of T and dT/dt.

Error bounds plotted in Figs. 1, 3 and 6 include the error contribution of the linear fit but not that of λ 
(or, equivalently, b). The autocorrelation introduced by smoothing was accounted for. The bounds 
represent one standard deviation and agree well with independent jackknife estimates. Standard deviat-
ions of fit parameters stated in the text were obtained by the delete-one jackknife applied to eight 15-
year data bins. That of b obtained this way for the observational data (Figs. 3 and 6) was ± 1.0 cm K-1. 
Together with a 21st Century temperature range of 1.4-6.1 K this yields uncertainties in 2100AD sea 
level of 1.4-6.1 cm, negligible against the other uncertainties.

In the text, Pearson correlation values are stated only informationally. We intentionally do not state 
confidence intervals or p-values, as these belong to hypothesis testing, which is not what we are doing. 
A p-value would only test against the null hypothesis “there is no relationship between global 
temperatures and the rate of sea level rise”, which is not a very meaningful test since this null 
hypothesis is a priori very unlikely. 

What we do here is model intercomparison by the Akaike information criterion, involving a priori two 
physically plausible models: the original Rahmstorf (2007) model, plausibly based on the degree-day 
notion of glaciologists, and the refined or dual model adding a rapid-response term b dT/dt, plausible 
on the basis of ocean mixed layer physics as shown by our studies here involving general circulation 
model output.



Artificial reservoir correction. The reservoir correction derived by Chao et al. (5) was used in a 
simple analytical form:

ΔH = 1.65 cm + (3.7 cm / π) arctan ( (t - 1978) / 13),

the integral of a Cauchy-Lorentz distribution approximating reservoir construction activity.

Ground water extraction sensitivity analysis. In the absence of a time series for this like we have 
for the artificial reservoir correction, we considered three educated guesses for this effect: a linear (in 
pumping rate) correction

ΔH = - α (t – 1870)2 / τ,

with α = 0.03 cm a-1 and τ = 132 a; and two different exponential corrections

ΔH = -ατ exp((t – 1870) / τ) + α (t – 1870) + ατ,

with either α = 0.00236 cm a-1 and τ = 40 a, or α = 0.012 cm a-1 and τ = 80 a. 

All three are designed to start from a rate of zero and produce a high-end (worst case) rate of some 
0.5...0.6 mm a-1 by 2000. In reality, estimates of this rate vary from 0.21 to 0.55 mm a-1 (6).

From Table S1 we see that the three scenarios have all very similar effects: mainly, a reduction of a by 
about 14%, while the quality of fit as expressed by r remains largely unaffected. Note that if the ground 
water extraction function were strictly proportional to sea level rise, then the effect on quality of fit 
would vanish exactly.

Table S1. Ground water extraction effect on estimated parameters of fit.

Scenario T0 a b r

None -0.41 0.56 -4.9 0.992

Linear -0.41 0.48 -4.9 0.988

Exp (40) -0.44 0.49 -5.1 0.985

Exp (80) -0.42 0.50 -5.0 0.988

 r is the Pearson correlation coefficient of fit.

The change in a seen for these worst-case scenarios is well within a's 2σ uncertainty bound, as will be 
the change in projected sea level rise by 2100 caused by this indirect effect, the propagated change in 
fit parameters. The direct effect, caused by ongoing ground water pumping over 1990-2100, will act to 
further reduce this; conservatively assuming it to remain constant at 0.6 mm a-1, this effect will be at 
least 6.6 cm over this time span.

We conclude that for the present state of our knowledge the ground water extraction effect yields an 
uncertainty contribution to projected sea level rise, and to the fit parameters themselves, that is likely 
small compared to, or at worst similar to, the formal uncertainty derived from the parameter fit.



Akaike information criterion. In order to compare the performance of both the original model, and the 
dual model, in reconstructing sea level over 1880-2000, we first computed the (sea level, not sea level 
rate) residual sum of squares (RSS) for both fit alternatives, re-centering H as noted above to eliminate 
the arbitrary integration constant and arrive at the least-squares fit. We used the Akaike Information 
Criterion (7, 8) in its small-sample version:

AICc = 2K + n ln (RSS / n) + 2K (K + 1) / (n – K - 1). 

Here n = 8 is the sample size and K the number of model parameters, including the intercept T0, the 
integration constant H(t0), and the error variance. We find:

Original model (a only) Dual model (a and b)

K 4 5

RSS (cm2) 1.053 0.098

AICc 5.11 4.75

Parameters a, T0, H(t0), error variance a, b,  T0, H(t0), error variance

The preferred model is that with the smallest AICc value. Both models are statistically plausible, their 
Akaike weights being 55% and 45%. What this means is that the extra parameter in the dual model 
does not lead to overfitting. Model selection, as pointed out in (8), should not be based on statistics 
only, but also consider the physics of the process being modeled.

Akaike used in the above form assumes independently distributed errors for the models compared; its 
applicability becomes questionable (8) if reality differs strongly from this assumption.

We performed an independence check on the residuals both from the original and from the dual fit 
model using the Ljung-Box test. It was found that the original model fit had significantly auto-
correlated residuals, with a Ljung-Box statistic of 8.236 for three degrees of freedom, yielding p = 0.04. 
The dual model fit, however, had its most significant Ljung-Box statistic, 5.232, at four DoF, for p = 
0.26. Figure S1 shows both the residuals of the two fits and their respective autocorrelation functions.

Fig. S1. (Left) sea level residuals after fit for the original (a only) model (red) and for the dual (a and b) model 
(blue). Drawn curves: annual residuals after recentering. Bullets and dotted lines: 15-year binned values. (Right) 
sea level residuals autocorrelations, original (a only) model (red) and dual (a and b) model (blue).



It may surprise the reader familiar with the long-term persistence (LTP) present in geophysical time 
series like global mean temperature and sea level, that we do not find significant autocorrelation here. 
The reason is that here we study one as a function of the other, not both as functions of time.  If the 
LTP in both is due to the same cause, it will cancel from their interdependence.

Our choice of Akaike is conservative in that, e.g., the Bayesian Information Criterion (BIC) would 
favour the dual model even more.

Cross-validation. A further test of the robustness of our result is using part of the data to predict the 
part that was withheld, as in Rahmstorf (2007) (4). We did this with the observational data 1880-2000, 
using first the first half (only four 15-year bins) and then the second half, to predict sea level for the 
other half. The results are included in Fig. 3; numerical results below. With only four calibration data 
points, performance is naturally degraded; even so, the error in sea level in the year 2000 is only 3 cm. 
For a good explanation of the RE and CE statistics shown in the table, see (9).

T0 (K) a (cm a-1 K-1) b (cm K-1) RE CE

Full data -0.41 0.56 -4.9

First half -0.37 0.72 -6.2 0.99 0.32

Last half -0.55 0.42 -3.2 0.99 0.91

A more powerful cross-validation, though for model-generated data, is that shown in Fig. 2, where 
calibration for 120 years is used to predict sea level changes over a millennium. 

Aliasing of τ and b. To demonstrate this effect we start from the Taylor expansion up to the second 
time derivative of temperature:

dH/dt = a T(t + τ) + b dT(t + τ)/dt = a T(t) + (aτ + b) dT(t)/dt + (½ aτ2 + bτ) d2T/dt2.

From this we see that the expansion in delayed temperature T and temperature rate dT/dt, with 
coefficients a and b, is equivalent to an expansion in undelayed T and dT/dt, but with coefficients a and 
b'=(aτ + b), provided that the second-derivative term vanishes:

(½ aτ2 + bτ) = 0 .

This happens trivially for τ = 0, and nontrivially for τ = -2b / a, for which b' = -b. 

To test this hypothesis, we produced a plot (Figure S2) of Pearson correlation values for delayed dual 
model fits to the observation data, on the space of (b,τ) value pairs.  Inspection of the plot shows that 
there are indeed two equivalent maxima: one corresponding to τ = 0 and b = -4.5 cm K-1, and the other 
to τ = -13 years and b = +4.5 cm K-1. We propose that the latter solution is the physically realistic one: 
a combination of a positive b coefficient, contributed to by thermosteric ocean surface layer expansion 
and possibly by the surface mass balance response of smaller glaciers (10), offset by a large delay of 
the response masquerading as a negative b coefficient. This aliasing works only for certain ratios of a, 
b and τ, and only thanks to the powerful smoothing (15 years) used on the data, making further terms in 
the above Taylor expansion negligible.

In the four panels of Figure S2 we investigate the influence of different smoothing parameters and bin 
sizes, ranging from 13 to 17 years. The choice of this parameter is tightly constrained: any shorter 



value will make natural variability, which we are not interested in, dominant; any longer will lose 
information. This is a model choice, not a tunable parameter.

Fig. S2. Pearson correlation r as a function of delay τ and coefficient b, computed for a dual model fit. In each 
panel, a different smoothing/binning parameter was used as indicated. (a): 8 bins of 13 years, total 104 years; (b 
and d): 7 bins of 15 years, total 105 years; (c): 6 bins of 18 years, total 108 years.

Note that when doing delayed fits of this kind, it is necessary to use only a subset of the available set of 
120 annual observation values. This means that the results of the fits are not directly comparable to the 
fit in the main paper using the full data set, or, indeed, to each other. As can be seen by visually 
intercomparing the panels, the details of the pattern found vary somewhat with this subset selection. 
However, the diagonal ridge and its central saddle point are robust against varying the smoothing 
parameters, and also there is no clear dependence of the location of the top right-hand maximum on the 
smoothing parameter value chosen. Thus, this maximum can in our judgement not be an artefact of 
smoothing.



For the curious reader we made a separate plot (panel d) including negative τ values, although we hold 
these to be unphysical. Note that one cannot choose a broad range of delay values for one plot as this 
would use only a very short subset of annual values.

Sensitivity to smoothing and binning parameters. We studied the effect of changing the smoothing 
parameter and binning time span on the dual model fit obtained; see table. It is clear that, although the 
fit parameter b is somewhat sensitive to changing these parameters, the projections for 2100AD are not 
sensitive, changing by only +/- 3 cm over a factor-2 change in smoothing and binning.

Smoothing 
(yrs)

Bin size 
(yrs)

T0  (K) a (cm a-1 K-1) b (cm K-1) r 2100AD (min 
B1, cm)

2100AD (max 
A1FI, cm)

10 10 -0.42 0.53 -3.68 0.95 79 176

15 15 -0.41 0.56 -4.91 0.99 81 179

20 20 -0.41 0.57 -5.22 0.99 83 182

Millennium fits to other models. We performed least-squares parameter fits to data generated by the 
models ECHO-G (11) and ECBilt-CLIO (12). Results are displayed in Figures S3 and S4.

Fig. S3. Millennium fit to data from ECHO-G. Fit parameters: a = 0.05 cm a-1 K-1, b = 2.2 cm a-1, variance 
explained 66%.



Fig. S4. Millennium fit to data from ECBilt-CLIO. Fit parameters: a = 0.13 cm a-1K -1, b = 1.8 cm a-1, variance 
explained 65%.
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