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Electrophysiology. Electrophysiological methods and stimulus de-
sign were similar to those described (1, 2). Young adult cats were
given an initial dose of ketamine (22 mg/kg) and acepromazine
(0.11 mg/kg), and anesthesia was maintained with pentobarbital
sodium (Nembutal, 15–30 mg/kg) during the surgical procedure.
The animal’s temperature was maintained with a thermostatic
heating pad. Bupivicaine was applied to incisions and pressure
points. Surgery consisted of a tracheotomy, reflection of the soft
tissues of the scalp, craniotomy over AI, and durotomy. After
surgery, the animal was maintained in an areflexive state with a
continuous infusion of ketamine/diazepam (2–5 mg/kg per hr
ketamine, 0.05–0.2 mg/kg per hr diazepam in lactated Ringer’s
solution). All procedures were in strict accordance with the
policies of the University of California, San Francisco Commit-
tee for Animal Research.

With the animal in a sound-shielded anechoic chamber (IAC),
stimuli were delivered via a closed speaker system (diaphragms
from Stax). Multichannel silicon recording probes (kindly pro-
vided by the University of Michigan Center for Neural Com-
munication Technology) were used to make simultaneous ex-
tracellular recordings. The probes had 16 linearly spaced
recording channels, with each channel separated by 0.15 mm.
The impedance of each channel was 2–3 M�. Probes were
carefully positioned orthogonally to the cortical surface and
lowered to depths between 2.3 and 2.4 mm by using a microdrive
(David Kopf Instruments).

Recording Procedure. All recording locations were in AI, as
verified through initial multiunit mapping and determined by the
layout of the tonotopic gradient and bandwidth modules on the
ectosylvian gyrus (3). For each animal, a digital photo was
acquired that contained the suprasylvian, the posterior ectosyl-
vian, and the anterior ectosylvian sulci (Fig. S1). The image was
imported into Canvas software (ACD Systems). We then drew
a line on the image, which connected the tips of the posterior and
the anterior ectosylvian sulci. In cat AI, this line indicates the
ventral boundary of the central narrowly tuned region (4, 5); �2
mm dorsal to this line is the dorsal boundary of the central
narrowly tuned region. Recordings were obtained in this central
region. We then made another line on the image, which bisected,
and was orthogonal to, the line that connected the tips of the
sulci. Penetrations were made along this ventral–dorsal line in
AI. Before each penetration, we adjusted the multichannel array
by using a micromanipulator (Narshige). The array was visual-
ized along the dorsal–ventral and then the anterior–posterior
axes of AI, to ensure that the insertion was orthogonal to the
cortical surface. After insertion, each penetration was marked
on the digital image. Before recording, at least 20 min passed.
The first stimulus presented was a tuning curve stimulus that
lasted �17 min. Thus, the receptive field data presented in this
study were collected �40 min or more after electrode insertion,
which allowed cortical ‘‘dimpling’’ effects to be minimized.

This careful procedure helped ensure that the linear recording
array was orthogonal to the cortical surface and spanned all
cortical layers. Anatomical variation effects were minimized
with this approach, because the penetrations were geographi-
cally removed from each sulcus, and they were on the center of
the ectosylvian gyrus, which is relatively flat in cat AI (Fig. S1).
Operationally, we refer to this recording approach as ‘‘colum-
nar,’’ which implies that the activity of recorded neurons rep-
resents processing that spans the full vertical thickness of the

cortical laminae, but may include more interactions than repre-
sented by the extent of anatomical microcolumns, and less than
the extent of functional modules (6). Recording depths were
anatomically confirmed in selected cases. In each case, neurons
recorded at depths between 0.6 and 1.1 mm had the shortest
receptive field minimum latencies, and the depths of the neurons
(0.6 to 1.1 mm) coincided with the anatomical location of
granular layers 3B/4. After this confirmation, we predominantly
used depth recordings to localize the position of single units.

To further confirm the orthogonal nature of the penetrations,
we examined the depth distribution of characteristic frequency
(CF) and latency. How these parameters varied with depth
provided further evidence for the orthogonality of the penetra-
tions. First, the frequency preference of the neurons (with the
occasional exception for the deepest locations) was constant.
Across all penetrations in this study, the average CF disparity was
0.1 � 0.1 octaves (mean � SD) in a penetration (7). Second, the
latency profile matched the accepted pattern, where the shortest
values were found around thalamic input layers 3B/4.

Neural traces were bandpass-filtered between 600 and 6,000
Hz and recorded to disk with a Neuralynx Cheetah A/D system
at sampling rates between 18 and 27 kHz. The traces were sorted
off-line with a Bayesian spike-sorting algorithm (8). Each probe
penetration yielded 8–16 active channels, with �1–2 single units
per channel. Stimulus-driven neural activity was recorded for
�75 min at each location.

Stimulus. For any recording position, neurons were probed with
pure tones, then one or two presentations of a 15 or 20-min
dynamic moving ripple stimulus. Using the 15-min stimulus
allowed us to obtain multiple responses to the ripple stimulus,
which were used for later cross-correlation analysis (20). The
dynamic ripple stimulus was a temporally varying broadband
sound (500–20,000 or 40,000 Hz) composed of �50 sinusoidal
carriers per octave, each with randomized phase (9). The 20-kHz
ripple was used at sites with CFs �12 kHz. The 40 kHz ripple
stimulus was used at higher CF sites. The magnitude of the
logarithmically spaced carriers was modulated by the spectro-
temporal envelope, which was defined by spectral (0–4 cycles/
octave) and temporal (�40 to 40 cycles/s) modulation parame-
ters. Maximum modulation depth of the spectrotemporal
envelope was 40 dB. Mean intensity was set at 70 or 80 dB SPL,
which allowed us to set the intensity �40 dB above the minimum
threshold at a multicontact recording site.

Analysis. Data analysis was carried out in MATLAB (Math-
works). We used two techniques to derive auditory STRFs. In
the first, we used the reverse correlation method to derive the
spike-triggered average of the spectrotemporal stimulus enve-
lope immediately preceding a spike (STA) (9–13).

The second technique we used to estimate STRFs was the
method of MIDs, in which we followed previously reported
methodologies (14, 15). To find STRFs, we searched through the
stimulus space for those dimensions that maximized the MI
between the stimulus and the spiking response. The first MID
(MID1) is the STRF that accounts for the most MI between the
stimulus and the response. The second MID (MID2) was then
found as the STRF that, together with the first MID, further
maximized the information. The MI between projections onto an
individual STRF, v, and single spikes was computed according to
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I�v� � � dxPv�x�spike�log2� Pv�x �spike�

Pv�x� � ,

where x represents projections onto the STRF, v; subscript v
denotes the fact that the probability distributions change de-
pending on the STRF v. The STRF v was either MID1 or MID2.
The 1D nonlinearity was calculated via

P�spike�x� � P�spike�
P�x�spike�

P�x�
.

The 1D nonlinearity describes the spiking probability of a neuron
as a function of how well the stimulus matches the receptive field.
If the stimulus is similar to the receptive field (x � 0), then the
probability of a spike will increase. If the receptive field is not
similar to the stimulus (x � 0), then the probability of spiking
decreases.

The MI between single spikes and both MIDs was calculated
as

I�MID1, MID1� � �� dx1dx2P�x1, x2�spike�log2

� P�x1, x2�spike�

P�x1, x2�
� ,

where x1 and x2 represent the projections of the stimulus onto the
first and second MIDs, respectively. The 2D nonlinearity was
calculated via

P�spike�x1, x2� � P�spike�
P�x1, x2�spike�

P�x1, x2�
.

All estimates of relevant stimulus dimensions (STA, MID1,
MID2) were computed by separating the data four different ways
into training and test datasets. Each training set consisted of 3⁄4
of the data, and each test set consisted of 1⁄4 of the data (16). This
resulted in four different estimates for each STRF. Information
values were calculated by using different fractions of the test
dataset for each neuron. To accomplish this, the information
values were calculated over the first 80%, 90%, 92.5%, 95%,
97.5%, and 100% of the test dataset. The information calculated
from these data fractions was plotted against the inverse of the
data fraction percentage (1/80, 1/90, etc.). We extrapolated the
information values to infinite dataset size by fitting a line to the
plot and taking the ordinate intersect as the information value
for unlimited data size.

The separability of the STA, the MIDs, and the 2D nonlin-
earity was determined by performing singular value decompo-
sition (17). The separability index was defined as

SPI � �1
2��

i

� i
2,

where �1 is the largest singular value. The SPI, ranges between
0 and 1, with 1 indicating that the function can be described as
a product of two 1D functions. For STAs and MIDs, the SPI
quantifies how well frequency and time can be dissociated in the
receptive field. For a neuron with a symmetric or circular
excitatory region, frequency and time are relatively independent
in the receptive field, and the SPI would be near 1. For a neuron
with more diagonally oriented, or asymmetric, excitatory or
inhibitory regions, the SPI would be nearer to 0.

We computed the phase-locking index (PLI) for each neuron
by using the relation PLI 	 (max(STA) � min(STA))/(r
8),
where max(STA) and min(STA) are the maximum and minimum

values in the STRF, and r is the average firing rate (9). The PLI
ranges from 0 (not phase locked) to 1 (precisely phase locked).

To determine the stimulus selectivity of each neuron we
calculated a feature selectivity index (FSI) using previously
published methodologies (9, 18). For each spike generated by the
neuron, the ripple envelope that preceded the spike was cap-
tured and correlated with the neuron’s STA. First, we defined a
similarity index, SI, as

SI �

�
i

�
j

stim�i, j�STA�i, j�

��
i

�
j

stim�i, j�stim�i, j� ��
i

�
j

STA�i, j�STA�i, j�
,

where stim and STA are matrices that represent the stimulus
segment preceding a spike, and the STA of the neuron, respec-
tively, and i and j range over the number of rows and columns
in the STA. The SI ranges between �1 and �1 and is a measure
of the spectrotemporal correlation between the stimulus and the
STA. The SI is equivalent to the Pearson correlation coefficient.

We calculated a similarity index for each action potential,
forming a SI probability distribution, p(SI), of the driven activity.
Using a spike train of similar length but from random spikes (1,
18), we calculated SIs from the neuron’s STA and formed a
probability distribution, prand(SI), for a random selection of
stimulus segments. For each SI probability distribution we
calculated the cumulative distribution function according to

P�SI� � �
�1

SI

p�x�dx.

The difference between the random and driven spike trains was
quantified by obtaining the areas, A and Arand, under each
cumulative distribution function. We then calculated the FSI as

FSI �
Arand � A

Arand
.

FSI values vary between 0 and 1, where 0 corresponds to similar
distributions for Prand(SI), and P(SI), i.e., a neuron that responds
indiscriminately to stimulus segments, and 1 corresponds to a
neuron that responds to a very restricted range of stimulus
features. The FSI describes the stimulus integration properties of
a neuron. It quantifies the variability or range of stimulus
configurations that the neuron responds to. Higher FSI values
imply that the neuron is more stimulus selective, responding only
to tight matches between the stimulus and the receptive field,
e.g., because of a higher threshold for spiking. Lower FSI values
imply that the neuron integrates and responds to a wider range
of stimuli, and thus the variability in, and range of, the stimulus
set is greater for low FSI neurons than for high FSI neurons.

The first MID contribution was defined as

100
I�MID1�

I�MID1, MID2�
.

The synergy between the two MIDs was defined as

100
I�MID1, MID2�

I�MID1� � I�MID2�
.

For both measures we used the information values from the
extrapolation procedure.

The shape of each 1D nonlinearity was characterized by an
asymmetry index (ASI). The ASI is defined as (R �l)/(R � L),
where R and L are the sums of nonlinearity values that corre-
spond to projection values � 0 or � 0, respectively. Values near

Atencio et al. www.pnas.org/cgi/content/short/0908383106 2 of 5

http://www.pnas.org/cgi/content/short/0908383106


0 indicate a symmetric nonlinearity, implying that the neuron
responds regardless of the stimulus phase or polarity. ASIs near
�1 or �1 indicate neurons that have an increased probability of
spiking when the stimulus is either positively or negatively
correlated with the filter, respectively. Neurons that only fire
when there is a positive correlation between stimulus and
receptive field (i.e., high stimulus energy falls onto excitatory
regions and low energy on inhibitory regions) have a highly

asymmetric nonlinearity or firing probability function. Those
neurons do not fire when the stimulus is negatively correlated
with the STRF, i.e., with low energy falling on excitatory regions
and high energy falling on inhibitory regions. Neurons that
respond when stimulus–STRF correlations are either positive or
negative have a more symmetric nonlinearity (values near 0).
These neurons tend to have a lower FSI because they respond
independently of the sign of the envelope phase.
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Fig. S1. Auditory cortical areas. (a) Auditory responsive areas in the cat brain. Gray signifies areas that respond to auditory stimuli, but do not have tonotopic
organization. Blue denotes fields that have a tonotopic organization. White lines depict field boundaries. Black lines depict sulci. Three main sulci provide
geographic boundaries for AI: SSS (suprasylvian sulcus); PES (posterior ectosylvian sulcus); and AES (anterior ectosylvian sulcus). AI lies on the gyrus between PES
and AES. D: dorsal; C: caudal. Modified from ref. 1. (b) Schematic of columnar inputs and outputs to/from AI. A representative section of cortex, spanning the
full cortical thickness, will receive cortical (Ctx) inputs from ipsilateral (ipsi) and contralateral (contra) hemispheres. Three types of thalamic inputs segregate
according to layer, with MGB1 representing lemniscal input to granular layers, and MGB2 and MGB3 coming from nonlemniscal auditory thalamus (2). Outputs
from AI proceed to other regions of AI, and other cortical fields, in both the ipsilateral and contralateral hemispheres. Terminations of input and outputs are
layer specific. Also depicted is the excitatory interlaminar circuit, whereby information proceeds from granular (white) to supragranular (gray) and then to
infragranular (dark gray) layers. Modified from ref. 3.
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Table S1. Factor analysis of receptive field parameters using the varimax approach (19)

Parameter Factor 1 Factor 2 Factor 3 Factor 4

Latency �0.050 �0.003 0.334 0.828
Firing rate �0.793 0.266 0.057 �0.150
Phase locking 0.859 0.331 0.076 �0.159
STA separability 0.647 0.113 0.218 �0.502
STA feature selectivity 0.919 �0.153 0.007 �0.007
First MID nonlinearity asymmetry 0.168 0.198 0.758 0.016
MID 2D nonlinearity inseparability 0.411 �0.471 �0.452 0.395
First MID contribution 0.133 0.855 0.186 �0.206
MID synergy �0.009 �0.936 �0.038 �0.023
Second MID nonlinearity asymmetry �0.013 0.123 �0.575 �0.210
Second MID separability 0.322 0.654 �0.382 0.114

The eigenvalues for the analysis were 3.35, 2.35, 1.42, and 1.07, accounting for 74.3% of the data variance. The greatest factor contribution of each parameter
is shown in bold.
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