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SI Methods
To compute the standard free energy of binding �G0 or equiv-
alently, the dissociation constant Kd, we follow a recently devel-
oped method by Henchman and coworkers (1). The two quan-
tities of interest are related by Kd � V0exp(��Go/RT) where V0

� 1.661 nm3 is the standard volume corresponding to a standard
concentration of 1 M. The original derivation assumes that a
potential of mean force (PMF) is sampled along a 1D reaction
coordinate such as the channel axis along z, whereas at the same
time orthogonal movement is restricted by a harmonic confine-
ment potential. Here, we do not employ such a potential but use
the fact that simulations with periodic boundary conditions also
provide the confinement necessary to formally evaluate the
statistical mechanical integrals. In this case, �G0 can be com-
puted as the sum

�G0 � �GPMF � �GV

of the free energy change of binding between the ligand-bound
and unbound state based on the PMF and the free energy change
from unbound volume to standard-state volume; the term �GR
in the original equation 6 in ref. 1 vanishes because there is no
change in free energy associated with the introduction of con-
finement restraints. The final standard binding free energy is
then

�G0 � �W � RTln
lbAu

vV0

where all terms are computed as in the original formulation
except for Au, which has the value of the average cross sectional
area of the simulation box perpendicular to the membrane
normal, and the number of particles � that were sampled in the
same umbrella simulations (� � 3, in the present case). The

depth of the binding site, �W, is calculated as an exponential
average over the unbound region of the PMF W(z),

�W � ln�exp���W�z� � min
z

W�z� /RTunbound.

We defined the bound state by inspecting the PMF to be the
region �3.4 Å � z � 3.4 Å (and hence, the unbound region
contains all data points with z � �3.4 Å and z 	 3.4 Å), but the
value of the binding free energy is generally insensitive to the
exact boundaries due to the exponential average. For consistency
and to reflect the geometry of the OrpP pore, we used the same
definition of the binding site for both chloride and phosphate;
choosing a chloride site between �1 and 3.4 nm gives virtually
the same values. The bound length lb is a configurational integral
of the PMF over the bound state and computed as

lb � �
bound

exp���W�z� � min
z

W�z�
 /RT�dz .

The error on the observables �G0 and Kd were calculated from
the SD of the PMFs (from block averaging over three 200-ps
blocks) and the PMFs themselves. With the assumption that the
data on each data point of the PMF, W(z), are normally
distributed with mean W(z) and width equal to the SD, N �
10,000 PMFs were randomly sampled. Observables were calcu-
lated from these N PMFs as described above. The reported
values are the mean and SD of these N samples. The error
estimation procedure converged for N 	 1,000 samples.

The error for the selectivity, Kd(Cl�)/Kd(PO4
3�), as calculated

via error propagation from the errors on the dissociation con-
stants, is 1.2 for a 7.3-fold stronger binding of phosphate over
chloride.
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Fig. S1. Correlation between the phosphate ion and pore lining basic side chains. (A–C) The z-position of the ion together with the position of the N� of the
lysine or the center of mass of the guanidino groups of the arginine residues. Data are shown for each monomer separately (Upper). Correlation coefficients
between the positions in each umbrella window (Lower). Data are smoothed with a running average over six windows. (A) R60; (B) K121; (C) R133.
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Fig. S2. Flexibility of the OprP pore. (A) Average pore profiles of a OprP monomer with phosphate present at z � 0 (W2), �0.25 (B1), and �0.5 (W1) nm, created
with HOLE (2). (B) shows pore-lining surfaces which are scaled and aligned to correspond to the pore profile above with a presence of R34, R59, R60, K121, S125,
and R133. The black dash line represents a phosphate position.
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Fig. S3. Time-resolved hydrogen bond existence between the phosphate and the pore-lining amino acids during molecular dynamics (MD). Hydrogen-bonding
network resulting from steered (S)MD (A and B), and from unbiased MD simulations in both �z and �z directions (C and D).
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Fig. S4. Analysis of hydration of phosphate and chloride anions reveals differential desolvation in the OprP pore. (A) Radial distribution function g(r) of water
oxygen around the anion in bulk water. The Pi first hydration shell is characterized by a water oxygen-anion center of mass distance r � 0.275 nm, and the one
of chloride by r � 0.3 nm. (B) Average number of contacts (distance, �0.3 nm) between anion and protein from the umbrella sampling simulations. (C) Number
of water molecules in the first hydration shell of phosphate from the SMD simulations starting at the center. The SMD data agree with the ones derived from
umbrella sampling (Fig. 5).
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