
Supplemental Material

I. SPHERICAL GROWTH

As an example of a tissue growth competition for which we can solve the complete dy-

namics given by the Eqs. 1-4 of the main text, we examine the growth of a spherical tissue

located in the center of a spherical compartment filled with another tissue of lower home-

ostatic pressure and enclosed by a rigid boundary. For now, we neglect all surface tension

effects. The force balance condition (Eq. 2, main text) in three dimensions takes the form:

∂σ′rr
∂r

+
2(σ′rr − σ′θθ)

r
=

∂p

∂r

σ′φφ = σ′θθ, (1)

where r, θ and φ are the spherical coordinates, while the constitutive equation (Eq. 3, main

text) reads:

σ′rr = 2η
∂v

∂r

σ′θθ = 2η
v

r
. (2)

The continuity equation (Eq. 1, main text), together with the expansion of kd − ka to first

order in ρ− ρh (Eq. 4, main text), gives:

∂ρ

∂t
+

1

r2

∂

∂r

(
r2ρv

)
= −κ(ρ− ρh)ρ. (3)

These equations need to be solved for the whole system composed of the two tissues, together

with the moving boundary between them. Boundary conditions are composed of two parts:

(a) in the center and at the rigid external wall, the velocity field vanishes, such that v(r =

0) = v(r = R) = 0; (b) at the interface of the two tissues, the velocity field and the stress

tensor are continuous. The continuity of the velocity field at the interface leads to the

following equation for the time-dependent location x(t) of the tissue boundary:

∂x

∂t
= v(x). (4)

The force-balance condition (1) can be integrated using:

∂σ′θθ
∂r

=
1

r
(σ′rr − σ′θθ) (5)
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from the constitutive equation (2) to give:

2η

(
∂v

∂r
+

2v

r

)
= p− pext. (6)

In the absence of surface tension, the integration constant pext is the external pressure

imposed by the rigid wall to satisfy the boundary condition of vanishing velocity. The

growth dynamics consisting of Eqs. (3) and (6) for each of the two compartments—together

with the moving boundary condition Eq. (4)—can be solved numerically using a finite-

difference method (Press et al., 1992). Results with the parameters of Table I are displayed

in Fig. 2 of the main text and show how the inner tissue takes over the whole compartment.

In the main text, a constant interfacial tension is introduced between the two tissues.

It is shown that this effect leads to the existence of an unstable critical radius in spherical

geometry. The growth dynamics with an unstable critical radius is illustrated in Fig. 5

of the main text. However, biologically relevant situations may involve tissues enclosed

in membranes whose tensions increase as the inner tissue grows. This is for example the

case for some benign tumors that undergo growth arrest due to the extracellular membrane

engulfing them. In that case, the surface tension is now dependent on the location x of the

boundary between the two tissues. For a purely elastic membrane that is put under tension

above a given radius x0, we have:

γ(x) = γ0
(x− x0)

2

x2
0

θ(x− x0), (7)

where θ(x) is the heaviside step function. A numerical solution of the growth dynamics with

this type of surface tension is presented in Fig. 3 of the main text (parameters are given in

Table I together with γ0 = 5 in scaled units).

II. TUMOR GROWTH DYNAMICS WITH REALISTIC PARAMETERS

The growth rate of tumor cells is possibly very slow compared to the viscous relaxation

time. In such a case, it can be assumed that the cell density in each compartment is constant.

In the absence of surface tension, the pressures in the two compartments balance, leading

to an equation relating the two densities:

χ−1
H (ρH − ρH,h) + pH,h = χ−1

T (ρT − ρT,h) + pT,h. (8)
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The change in density in each compartment has contributions coming from the total cell

division and apoptosis taking place in the compartment, as well as from the movement of

the boundary x(t):

ρ̇T = −κT (ρT − ρT,h) ρT − 3
ẋ

x
ρT

˙ρH = −κH (ρH − ρH,h) ρH + 3
ẋ

x

x3

R3 − x3
ρH . (9)

This system of differential equations can be solved numerically. Results with the parameters

given in Table II are displayed in Fig. 1.

III. NUTRIENT-LIMITED GROWTH

When studying the nutrient-limited growth of a tumor prior to angiogenesis, the depen-

dences of the cell division and apoptosis rates kd and ka on the nutrient and cell densities ρn

and ρ are constructed using two assumptions: (a) below a given concentration of nutrients

per cell c1, cells stop dividing; (b) below a second, lower concentration of nutrients per cell

c2, cells undergo apoptosis. We model these properties with the following functions[9]:

kd =
k̄1

1 + exp (α(ρ− ρh + ∆ρ))
× 1

1 + exp
(
−β1

(
ρn

ρ
− c1

))
ka =

k̄1

1 + exp (−α(ρ− ρh −∆ρ))
+

k̄2

1 + exp
(
β2

(
ρn

ρ
− c2

)) . (10)

Here, k̄1 tunes the amplitude of cell division and apoptosis in the system as functions of

cell density, as k̄2 tunes how strongly cells die when deprived of nutrients. The parameter α

tunes how sharply cell start to die or proliferate as the homeostatic density is passed. It is

the same in both functions kd and ka, such that kd−ka = 0 at ρ = ρh for large concentrations

of nutrients. ∆ρ sets the amount of cell turnover at homeostatic density. Finally, β1 and β2

tune how sharply the cell division and apoptosis rates change as the critical concentrations

of nutrients per cell c1 and c2 are passed. We illustrate the dependence of kd and ka on

ρ and ρn in Fig. 2, with parameters given in Tables I and III. Since only the difference

kd − ka enters the growth dynamics (Eq. 1-4, main text), we illustrate the dependence of

this combination on cell density and nutrient concentration in Figs. 3 and 4.

To describe how nutrients are distributed in the system, we suppose that they diffuse

freely throughout the system with a given diffusion constant Dn, while being consumed
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by living cells for their metabolism and their growth. Metabolism uptake happens at a

given rate µρn that is proportional to the available concentration of nutrients, and growth

dependence is described via an extra consumption term proportional to the number of cell

division kdρ with a coupling constant λ. For simplicity, we suppose no effect of cell apoptosis

on nutrient uptake. We finally suppose that nutrient diffusion is very fast compared to tissue

growth, such that only the steady-state diffusion equation needs to be considered:

Dn
1

r2

∂

∂r

(
r2∂ρn
∂r

)
− λkdρ− µρnρ = 0. (11)

Boundary conditions are as follows: the nutrient concentration is homogeneous and constant

in the healthy compartment and the flow of nutrients vanishes at the center of the tumor

compartment.

To compute the growth dynamics of a spherical tumor coupled to nutrient diffusion

through its surface, we use the same method as in Section I, while solving the steady-state

diffusion equation (11) at every timestep. The result with the parameters given in Table III

is shown in Fig. 4 of the main text. The characteristic nutrient profile in a tumor that is

nutrient-limited in its growth is given in Fig. 5.

IV. STOCHASTIC DYNAMICS

We solve the master equation (Eq. 5, main text) together with the rates given by Eq. 7

(main text), both analytically and numerically. Imposing an upper sink at nmax in addition

to the lower sink at nmin = 0, all clusters of cells end up in one of the two sinks when

time goes to infinity. The analytic solution—given by Eq. 8 (main text)—gives the splitting

probability, namely the probability for a cluster originating from a single cell to reach the

upper sink nmax when time goes to infinity. Numerically, we use a Monte Carlo simulation of

the master equation 5 (main text) based on the Gillespie algorithm (Gillespie, 1976), which

gives information on the temporal evolution of the process leading to the analytic result

Eq. 8 (main text) for long evolution times.

The Monte Carlo simulation is implemented according to the following standard pro-

cedure: at each step of the growth process (corresponding to a new division or apoptosis

event), the algorithm first sets the time delay between this event and the previous one, and

then chooses whether apoptosis or division takes place. These two choices are made by
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generating two random numbers x1 and x2 in the interval [0, 1] using a Mersenne Twister

algorithm (Matsumoto and Nishimura, 1998). x1 determines the time delay δt between two

events as:

δt = − log(x1)

r+
n + r−n

, (12)

where r+
n and r−n are the growth and death rates given by Eq. 7 (main text). The stochastic

variable x2 determines whether growth or recession takes place: growth is chosen if [(r+
n +

r−n )x2] ≤ r+
n , recession otherwise.

Parameters are chosen as follows: the upper sink is at nmax = 106 cells. The parameters

that enter the expression for the rates (Eq. 7, main text) are such that, at very large radii,

the tumor divides at a rate of one division per day on average, while having a vanishing

probability to shrink. This yields:

κd/a χT =
k

+/−
n→∞ − k0

pT,h − pH,h
, (13)

with

k+
n→∞ = lim

n→∞

r+
n

n
= 1

k−n→∞ = lim
n→∞

r−n
n

= 0 (14)

in invert units of days. Here, k0 is an adjustable parameter in the interval [k−n→∞, k
+
n→∞]

that tunes the amount of stochasticity in the system. Finally, we impose a critical radius rc

corresponding to a critical number of cells nc at density ρT,h, and choose the surface tension

accordingly as:

γ =
pT,h − pH,h

2

(
3nc

4πρT,h

)1/3

. (15)

The parameters used in Fig. 6 of the main text are given in Table IV.
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Tables

Parameter Value Description

x0 0.01 initial interface location

ρ0 1 initial density

v0 0 homogeneous initial velocity

tevol. 650 total time of evolution in Fig. 2 (main text)

600 total time of evolution in Figs. 3 and 5 (main text)

3000 total time of evolution in Fig. 4 (main text) and Fig. 5 here

κ 10 division constant (both tissues)

χ 0.2 compressibility (both tissues)

η 50 viscosity (both tissues)

TABLE I: Parameters used to compute the growth dynamics of spherical tumors in Figs. 2, 3, 4

and 5 of the main text and Fig. 5 here. Parameters are scaled in units of the total compartment size

R, the homeostatic pressure difference ∆p between the two tissues and the homeostatic densities

ρh which we assume to be identical for the two tissues. Total times are scaled to one in the figures.

Parameter Value Description

R 100 µm total compartment radius (Weinberg, 2007)

x0 10 µm initial interface location

ρh 0.001 µm3 homeostatic density (both tissues) (Weinberg, 2007)

∆p 1000 Pa difference in homeostatic pressures (both tissues) (Helminger et al., 1997)

χ 10−7 Pa−1·µm−3 compressibility (both tissues) (Tschumperlin et al., 2004)

κ · χ ·∆p 1 d−1 maximum division rate (both tissues) (Weinberg, 2007)

η 104 Pa·s tissue viscosity (Forgacs et al., 1998)

TABLE II: List of parameters used to compute the growth dynamics of spherical tumors in Fig. 1.

7



Parameter Value Description

c1 0 nutrients per cell for induction of apoptosis

c2 0.6 nutrients per cell for arrest of proliferation

k̄1 10 maximum cell division and apoptosis at high nutrient concentration

k̄2 500 apoptosis rate coefficient at starvation

α 10 response coefficient of cell division and apoptosis to cell density

β1 50 response coefficient of cell division to nutrient concentration per cell

β2 500 response coefficient of cell apoptosis to nutrient concentration per cell

∆ρ 0.1 shift in cell division and apoptosis tuning the amount of

cell turnover at homeostatic density

Dn 1 nutrient diffusion constant

λ 6 nutrient consumption for proliferation

µ 1000 nutrient consumption for metabolism

TABLE III: Parameters used to generate the plots of Fig. 4 of the main text and Figs. 2-5 here in

the coupling of the growth dynamics to nutrients as they enter in Eq. (10).

Parameter Value Description

k+
n→∞ 1 d−1 n infinity value of r+n /n

k−n→∞ 0 d−1 n infinity value of r−n /n

k0 0.9 d−1 cell turnover at homeostatic density

TABLE IV: Parameters used in Fig. 6 of the main text.

Figure Legends

8



FIG. 1: Radius and cell-density as functions of time for a growing tumor in conditions identical

to those of Fig. 2 of the main text, but with estimates of realistic parameters. Cell density

is one per 103 µm3, and cell division rate is one per day. The homeostatic pressure difference

and the tissue viscosity are 103 Pa and 104 Pa·s, respectively (Helminger et al., 1997; Kruse et

al., 2000; Forgacs et al., 1998). Tissue compressibility is 10−7 Pa−1·m−3 (Tschumperlin et al.,

2004). With these parameters, a separation of timescales between the slow cell division and the

comparatively fast viscous dynamics occurs, such that we can assume homogeneous cell densities

in both compartments. Starting from a single cell and neglecting nutrient coupling, a tumor needs

about 100 days to fill a compartment with radius 100µm.

FIG. 2: The cell division rate kd (A) and the negative apoptosis rate −ka (B) as functions of the

cell density ρ and the nutrient concentration ρn, as given by Eq. (10). Parameters are given in

Table III.

FIG. 3: Difference kd − ka as a function of cell density and nutrient concentration, as given by

Eq. (10). Parameters are given in Table III. (A) Top view in grey-scale coding. (B) Three-

dimensional view.

FIG. 4: Effect of nutrient concentration on the difference kd − ka as a function of cell density.

Parameters are given in Table III. At high nutrient concentrations, regulation towards the homeo-

static density ρh = 1 is intact, while at low nutrient concentrations cell division drops significantly.

At very low nutrient concentrations, cells undergo apoptosis at a high rate.

FIG. 5: Typical nutrient profile as a function of time in a growing tumor that arrests in a dormant

state. The flux at the center vanishes and the outside compartment has a constant concentration.

Parameters correspond to those given in Tables I and III.
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