## Supporting Information

## Biochemical Analysis of the Biosynthetic Pathway of an Anticancer Tetracycline SF2575

Lauren B. Pickens<sup>1</sup>, Woncheol Kim<sup>1</sup>, Peng Wang<sup>1</sup>, Hui Zhou<sup>1</sup>, Kenji Watanabe<sup>2</sup>, Shuichi Gomi<sup>3</sup>, Yi Tang<sup>1,\*</sup>

## Contents

| Table S1. Sequences of primers used for plasmid construction        | 2  |
|---------------------------------------------------------------------|----|
| Table S2. NMR data for 6 and 7                                      | 3  |
| Figure S1. <sup>1</sup> H NMR spectrum for <b>6</b>                 | 4  |
| Figure S2. <sup>1</sup> H NMR spectrum for <b>7</b>                 | 5  |
| Figure S3. High accuracy mass spectrometry data for 6               | 6  |
| Figure S4. High accuracy mass spectrometry data for 7               | 7  |
| Figure S5. Biological activity assay                                | 8  |
| Figure S6. Construction of $\Delta ssfB$ knockout and results       | 9  |
| Figure S7. Expression and purification of SsfL2 and SsfX3           | 10 |
| Figure S8. LCMS mass spectrometry data for in vitro formation of 20 | 11 |
| Figure S9. Enzymatic hydrolysis of 1 and 7                          | 12 |

| Primers          | Sequence <sup>a</sup>                                                  |
|------------------|------------------------------------------------------------------------|
| SsfAB_fwd        | 5'-GG <i>TTAATTAA<u>GGAGG</u>AGCCAGC<b>ATG</b>CGCGAGGCGCGCGGGT-3'</i>  |
| SsfAB_rev        | 5'-GGTCTAGATCACGCTGTCTTGCGCACGAT-3'                                    |
| SsfC_fwd         | 5'-GGTCTAGA <u>GGAGGA</u> GCCCATATGTCCGAGTTCGTGATCCA-3'                |
| SsfC_rev         | 5'-GGACTAGTCTAGACGCGCTCGGTGATCA-3'                                     |
| SsfD_fwd         | 5'-AAA <i>TCTAGA<u>GGAGG</u>AGCCCATA<b>TG</b>TGTGGCATTGCAGGATG-3'</i>  |
| SsfD_rev         | 5'-TTTACTAGTTCACACGTCGAGGGTGACGT-3'                                    |
| SsfU_fwd         | 5'-AAGGACTAGT <u>GGAGG</u> AAGCCATA <b>TG</b> GAGACCACGAACACGAC-3'     |
| SsfU_rev         | 5'-AAAGCTAGCTCAGTAGATGCCCAGGCCGCC-3'                                   |
| SsfO2_fwd        | 5'-AAGGACTAGT <u>GGAGG</u> AGCACCGATGCAATCACCCGACGACG-3'               |
| SsfO2_rev        | 5'-AAGGGCTAGCTCAGACCACCAGGTCCTTCT-3'                                   |
| SsfM1_fwd        | 5'-AAGGACTAGT <u>GGAGG</u> AGCACCGATGACCGACGCCGCCGCTATCTC-3'           |
| SsfM1_rev        | 5'-AAGGGCTAGCTCAGGCCTTGTGGGGCGATGG-3'                                  |
| SsfM3_fwd        | 5'-AAAACTAGT <u>GGAGG</u> AGCACATATGCCGGACACGGCAGGTGC-3'               |
| SsfM3_rev        | 5'-AAAGCTAGCTCATGACGGAAGTCCCTCCTTC-3'                                  |
| SsfM4_fwd        | 5'-AAGGACTAGT <u>GGAGG</u> AAGCCATATGACCAGCACCGACACCGA-3'              |
| SsfM4_rev        | 5'-AAAGCTAGCTCAGCTCGCCACCGTGCACT-3'                                    |
| SsfY1_fwd        | 5'-AAGGACTAGT <u>GGAGG</u> AAGCCATATGTCCACTGGGCAGTCCCGGCA-3'           |
| SsfY1_rev        | 5'-AAAGCTAGCTCAGGCCGGCCTCCACGAACG-3'                                   |
| SsfY2_fwd        | 5'-AAGGACTAGT <u>GGAGG</u> AAGCCATATGACGGTCACGACGGCAGC-3'              |
| SsfY2_rev        | 5'-AAAGCTAGCTCAGGCGTGGCAGGTGGGCA-3'                                    |
| SsfY3_fwd        | 5'-AAGG <i>ACTAGT<u>GGAGG</u>AAGCCATA<b>TG</b>ACCGGCGCACCGTTCAC-3'</i> |
| SsfY3_rev        | 5'-AAAGCTAGCTCACGCGGCGCCGCCGAGCA-3'                                    |
| SsfY4_fwd        | 5'-AAGGACTAGT <u>GGAGG</u> AAGCCATATGCGGTTCCTCGACAGC-3'                |
| SsfY4_rev        | 5'-AAAGCTAGCTCACTTGGGCAGGTCGTCCCGGT-3'                                 |
| SsfL2_fwd        | 5'-AAAACTAGT <u>GGAGG</u> AGCACATATGGCAACGACAGACTTGACG-3'              |
| SsfL2_rev        | 5'-AAAGCTAGCTCAGCCCAGCTCGCCGGCCA-3'                                    |
| SsfL1_fwd        | 5'-AAAACTAGT <u>GGAGG</u> AGCACATATG GATGAGGGATTCGTGCCC-3'             |
| SsfL1_rev        | 5'-AAAGCTAGCTCA TCTGACCAGGTCCCGCA-3'                                   |
| SsfX3_fwd        | 5'-AAGGACTAGT <u>GGAGG</u> AAGCCATATGACCACACAGAACACCGC-3'              |
| SsfX3_rev        | 5'-AAAGCTAGCTCAGCCGCGGACCGGCAGCAC-3'                                   |
| KS2-LEK-S        | 5'-GAATTCGACGCCATCAAGGCGACGACCGCACG-3'                                 |
| KS2-LEK-A2       | 5'-GGTACCGCCCCGCACGCGAAGGGCGGCAT-3'                                    |
| KS2-RPH-S        | 5'- <i>UIGCAG</i> GCGGGCTCGACGCCGTCTCCAAGG-3'                          |
| <u>кэ2-крн-ч</u> | J - AAGCIICAGCAGCIGGCCCGGCGICIIGG-3                                    |

**Table S1:** Primers used for amplification of *ssf* genes from cosmids containing genomic DNA encoding the SF2575 gene cluster.

<sup>*a*</sup>The introduced restriction sites are shown in italics. The optimal ribosomal binding site GGAGG was introduced at the 5' of each gene and is underlined. The start and stop codons are shown in bold.

|                       |                                                                                                                                                                    | 6'<br>7'                                                          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                       | $HO = \begin{bmatrix} 6 & 7 & 6 \\ 4 & CH_3 \\ HO & 3 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 1 & 5 \\ 1 & 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | HO = HO = OH = OH = OH = OH = OH = OH =                           |
| Proton                | $\mathbf{U}$                                                                                                                                                       | $^{1}$ H $\delta$ (ppm) multiplicity (L_(Hz))                     |
| 3 OH                  | $(\mathbf{J}_{\text{HH}}(\mathbf{I}\mathbf{Z}))$                                                                                                                   | $(110 \text{ (ppm)}, \text{ multiplicity}, (J_{\text{HH}}(112)))$ |
| J-0П<br>Л_Н           | 4 57 d (5 1)                                                                                                                                                       | $6.09 \pm (5.1)$                                                  |
| 4-11<br>4-0H          | 5.88  hr                                                                                                                                                           | -                                                                 |
| 4-011<br>49-H         | 2.80 m                                                                                                                                                             | 3 23 m                                                            |
| -μ-11<br>5-H          | 2.09, m<br>2.11 m: 1.30 m                                                                                                                                          | 2.18 m: 1.61 m                                                    |
| 59-11<br>59-H         | 3 32 m                                                                                                                                                             | 3.46 m                                                            |
| 6-0CH3                | 3.02, m<br>3.08 s                                                                                                                                                  | 3.16 s                                                            |
| о осн <i>э</i><br>7-Н | 6 95 d (8 0)                                                                                                                                                       | 695 d (80)                                                        |
| 8-H                   | 7.67. d. (8.0)                                                                                                                                                     | 7.66, d, (8.0)                                                    |
| 10-OH                 | 12.11, s                                                                                                                                                           | 12.07. s                                                          |
| 12-OH                 | 14.88, s                                                                                                                                                           | 14.87, s                                                          |
| 12a-OCH3              | 3.4, s                                                                                                                                                             | 3.49, s                                                           |
| a-NH2                 | 9.17, s                                                                                                                                                            | 9.46, s                                                           |
|                       | 9.26, s                                                                                                                                                            | 9.4, s                                                            |
| 14-CH3                | 0.98, s                                                                                                                                                            | 1.02, s                                                           |
| 1'-H                  | 4.72, d, (10.2)                                                                                                                                                    | 4.70, d, (10.4)                                                   |
| 2'-H                  | 2.13, m; 1.36, m                                                                                                                                                   | 2.09, m; 1.32, m                                                  |
| 3'-Н                  | 3.50, m                                                                                                                                                            | 3.52, m                                                           |
| 3'-OH                 | 4.92, br                                                                                                                                                           | 4.93, br                                                          |
| 4'-H                  | 2.89, m                                                                                                                                                            | 2.84, m                                                           |
| 4'-OH                 | 4.92, br                                                                                                                                                           | 4.93, br                                                          |
| 5'-H                  | 3.18, m                                                                                                                                                            | 3.20, m                                                           |
| 6'-CH3                | 1.23, d, (6.12)                                                                                                                                                    | 1.21, d, (6.1)                                                    |
| 3"-ОН                 | -                                                                                                                                                                  | 10.33, s                                                          |
| 4"-H                  | -                                                                                                                                                                  | 7.03, d, (7.8)                                                    |
| 5"-Н                  | -                                                                                                                                                                  | 7.55, m                                                           |
| 6"-H                  | -                                                                                                                                                                  | 7.0, d, (7.2)                                                     |
| 7"-H                  | -                                                                                                                                                                  | 7.84, d, (7.9)                                                    |

| Table S2: | H NMR | chemical | shifts | of 6 and ' | 7. | Measured in | DMSO- | $d_6$ at | 400MHz |
|-----------|-------|----------|--------|------------|----|-------------|-------|----------|--------|
|-----------|-------|----------|--------|------------|----|-------------|-------|----------|--------|



**Figure S1:** <sup>1</sup>H NMR spectrum of **6.** Measured in DMSO- $d_6$  at 400MHz



**Figure S2**: <sup>1</sup>H NMR spectrum of **7.** Measured in DMSO- $d_6$  at 400MHz



Chemical Formula: C<sub>35</sub>H<sub>37</sub>NO<sub>14</sub> Molecular Weight: 695.67



Figure S3: High accuracy mass spectrometry analysis of semisynthetically prepared 7.



Chem cal Formula  $C_{2\epsilon}H_{33}NO_{12}$  Mc ecular Weight 575 56



Figure S4: High accuracy mass spectrometry analysis of semisynthetically prepared 6.



 $Log(IC_{50}) \pm Std.$  Error

| Cell line | Туре                            | 1                   | 7                   | 6                   |
|-----------|---------------------------------|---------------------|---------------------|---------------------|
| Nalm-6    | human B cell precursor leukemia | $-8.056 \pm 0.0518$ | $-6.485 \pm 0.0753$ | $-5.285 \pm 0.0958$ |
| HeLa      | human cervix carcinoma          | $-7.466 \pm 0.0769$ | $-6.196 \pm 0.153$  | > -5.0              |
| MCF-7     | human breast adenocarcinoma     | $-7.619 \pm 0.112$  | $-5.068 \pm 0.0813$ | > -5.0              |
| M249      | human melanoma                  | $-8.134 \pm 0.144$  | $-6.788 \pm 0.0921$ | > -5.0              |

**Figure S5:** Dose response curve was obtained from cell proliferation experiments. Cells were analyzed 72 hours after treatment with **1**, **7**, or **6**. Data is normalized to the response of untreated cells during the same time period. Adherent cells (HeLa, MCF-7, and M249) were analyzed by MTS assay. Nalm-6 suspension cells were analyzed by direct cell counting. Data was analyzed using Prism software (GraphPad).



**Figure S6:** Construction and verification of *ssfB* disruption mutant. A) Wild type *S*. sp. SF2575 were transformed with disruption vector and double-crossover recombinants were screened based on the antibiotic resistance and verified the insertion of neomycin resistance gene by PCR. B) Chromosomal DNA was used as template for both wild type and mutant. 1, 1kb plus ladder; 2, *S*. sp. SF2575 wild type with primer a and b; 3, *S*. sp. SF2575  $\Delta$ ssfB with primer a and b; 4, *S*. sp. SF2575 wild type with primer c and d; 5, *S*. sp. SF2575  $\Delta$ ssfB with primer c and d; 6, *S*. sp. SF2575 wild type with primer e and f; 7, *S*. sp. SF2575  $\Delta$ ssfB with primer c and d; 6, *S*. sp. SF2575  $\Delta$ ssfB with primer e and f. C.) HPLC trace of extracts of *S*. sp. SF2575 $\Delta$ ssfB culture following 7 days of growth on solid Benette's media, shown with wild type *S*. sp. SF2575 production.



**Figure S7:** Protein gel showing purified protein SsfL1 (58 kDa) and SsfX3 (40 kDa). Lane 1: Benchmark protein ladder (Invitrogen); lane 2: SsfL1; lane 3: SsfX3.



**Figure S8:** MS spectrum obtained from LCMS analysis of enzymatic formation of salicylyl-CoA by SsfL1 using positive electrospray ionization. [M+H] m/z = 888



Figure S9: Enzymatic hydrolysis of 1 and 7 by SsfX3. (A) Treatment of 1 with SsfX3 resulted in incomplete hydrolysis of 1 and a new peak 60 with MW=657 confirmed by mass spectrometry which corresponds to the loss of salicylic acid. (B.) Treatment of 7 with SsfX3 resulted in nearly complete conversion of 7 to 6 as confirmed by mass spectrometry and comparison to semisynthetic standards. Reaction mix includes 50 mM HEPES, pH 7.9, 10 mM MgCl<sub>2</sub> 5  $\mu$ M SsfX3, and 20  $\mu$ M of either 1 or 7. All reactions were incubated at 25°C overnight, extracted with organic solvent and analyzed by HPLC (358 nm). (C) UV spectra of 60 formed from enzymatic hydrolysis of 1. (D) LCMS mass spectrometry data 60. Mass spectrometry data was obtained by electrospray ionization ion scan in both positive and negative mode. [M+H] m/z = 658; [M-H] m/z = 656.