MMBGX Supplementary Material

Ernest Turro, Alex Lewin, Anna Rose, Margaret J. Dallman and Sylvia Richardson August 25, 2009

FIGURE S1. Plot of mean background probe log intensities by GC category and associated central 95% confidence interval on a whole-transcript GeneChip. On the real scale, the variability of non-specific hybridisation within GC categories is very large.

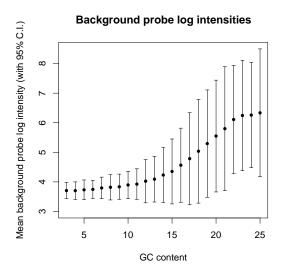


FIGURE S2. Plots showing the means and variances of log PM intensities of single-matching probes against the means and variances of PM intensities of multi-match probes. Each point represent one of the 33 arrays in the Affymetrix human Gene 1.0 ST array tissue mixture data set. Both the means and variances are consistently higher for multi-match probes, supporting the assumption that the contribution to the signal from each transcript is additive.

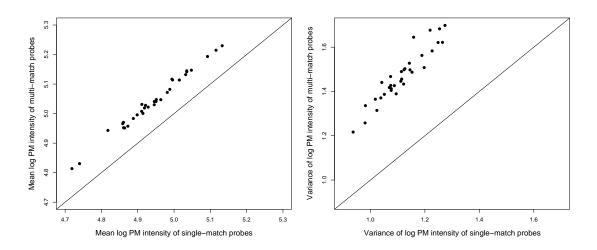


FIGURE S3. Speed-up from parallel computations. A human Gene array analysis was carried out with MMBGX three times using 1, 2, 3, 4, 5, 6, 7 and 8 cores on an 8-core machine. The average speed was recorded and a speedup graph plotted. The base of 2 hours 45 minutes was reduced to only 22 minutes using 8 cores, a speedup of 7.36.

Typical speedup

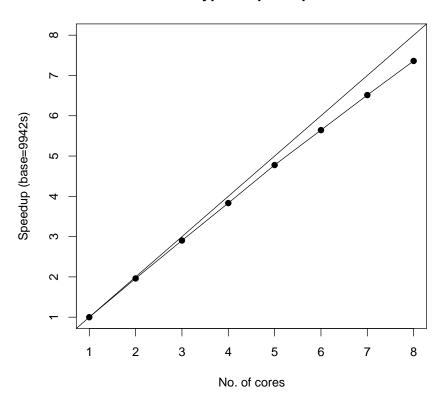


FIGURE S4. We ran MMBGX on a human Gene 1.0 ST array discarding (masking) probes that match to multiple gene-probesets. The two scatterplots show that the standard errors of the log expression measure for probesets without multi-match probes are not affected by the masking while the errors for multi-mapping probesets with at least one single-match probe increase as a result of the masking. The histogram of standard errors for multi-mapping probesets with no single-match probes is mostly within the range of single-mapping probesets (standard error < 1.5), indicating that the expression of genes that are completely eliminated by masking can be well estimated by MMBGX.

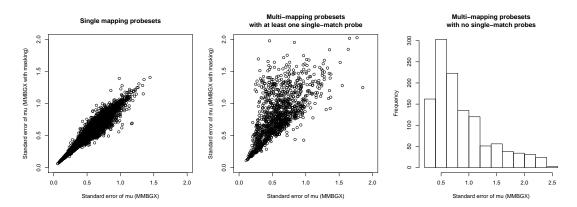


FIGURE S5. Full representation of the 2309 multi-mapping probesets on the human Gene 1.0 ST array. Red dots represent probesets while black dots represent probes. Small groups of two or three probesets are near the periphery of the figure, while more complicated structures appear in the centre.

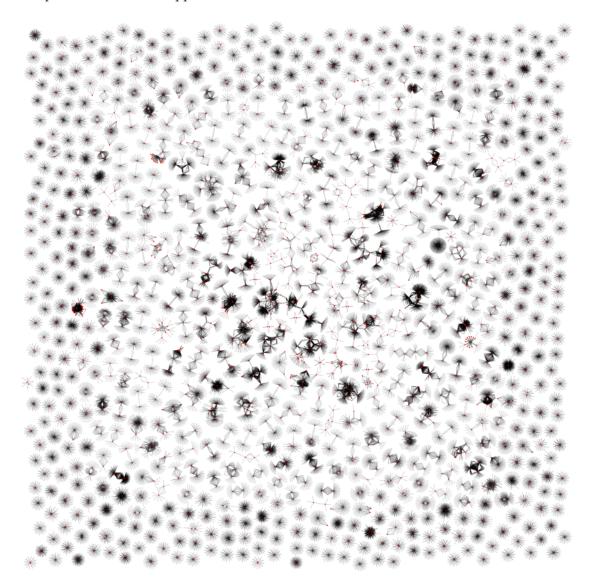


FIGURE S6. Histogram of the proportion of multi-match probes in each transcript-targeting probeset on the human Exon 1.0 ST array. About half the probesets are made up of 90% or less multi-match probes.

Proportion of multi-match probes per probeset in Exon arrays

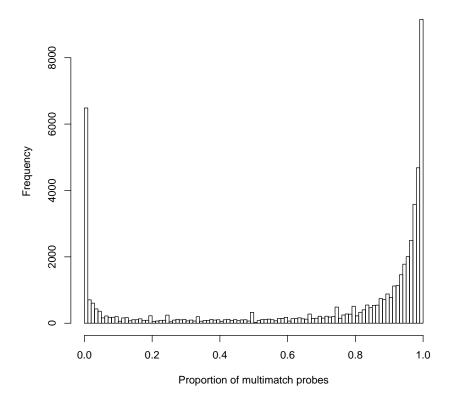
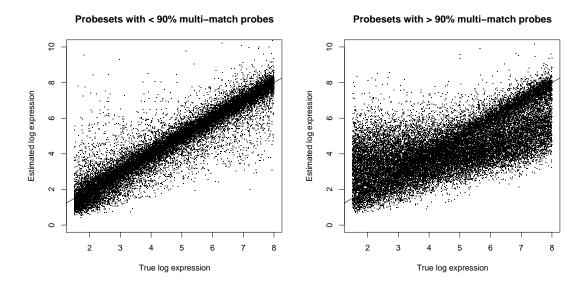



FIGURE S7. Scatterplots showing the performance of MMBGX on simulated Exon array data. MMBGX recovers the signal very well for probesets with less than 90% multi-match probes. There is increased variability and some shrinkage when the proportion of multi-match probes exceeds 90%, but the error in the estimates increases commensurately: 95% central credible intervals from the posterior distributions contain the true simulated value about 95% of the time (not shown).

ALGORITHM S1. A fully Bayesian model of α_c , the mean of the prior on $\log(\sigma_{gc}^2)$, exhibited slow mixing of the MCMC sampler, making reliable inference computationally inefficient. We therefore developed an Empirical Bayes algorithm that estimates α_c very accurately prior to making inference on the other parameters. Before MCMC sampling, the algorithm proceeds once as follows:

- 1. For each k, c, r
 - (a) Set $\widehat{\gamma_{kcr}}$ to the empirical mean of the logarithm of background probes in affinity category k, array r and condition c.
 - (b) Set $\widehat{\delta_{kcr}^2}$ to the empirical variance of the logarithm of background probes in affinity category k, array r and condition c.
- 2. For each j, c, r
 - (a) Sample $\log \widehat{H_{jcr}}$ from $N(\widehat{\gamma_{k(j)cr}}, \widehat{\delta_{k(j)cr}^2})$
 - (b) If $PM_{jcr} \widehat{H_{jcr}} > 1$, then $\widehat{S_{jcr}} := PM_{jcr} \widehat{H_{jcr}}$. Otherwise, return to step a.
- 3. For each g, c

(a)
$$\widehat{\mu_{gc}} := (|R(c)| \cdot |J(g)|)^{-1} \cdot \sum_{R(c)} \sum_{J(g)} \log \frac{\widehat{S_{jcr}}}{|G(j)|}$$

(b)
$$\widehat{\sigma_{gc}^2} := (|R(c)| \cdot |J(g)| - 1)^{-1} \cdot \sum_{R(c)} \sum_{J(g)} \left[\log \frac{\widehat{S_{jcr}}}{|G(j)|} \right]^2 - (|R(c)| \cdot |J(g)|/(|R(c)| \cdot |J(g)| - 1)) \cdot \widehat{\mu_{gc}}^2$$

4. For each c

(a)
$$\alpha_c := G^{-1} \sum_g \log \widehat{\sigma_{gc}^2}$$

(b)
$$\widehat{\beta_c^2} := (G-1)^{-1} \cdot \sum_{q} \log \left[\widehat{\sigma_{gc}^2} \right]^2 - (G/(G-1)) \cdot \alpha_c^2$$

where J(g) indexes the set of probes matching transcript g, R(c) indexes the set of replicates in condition c, and G is the total number of transcripts. In step 2a, we capture the uncertainty in the true intensity of non-specific hybridisation by sampling from the GC-specific empirical distribution, $N(\widehat{\gamma_{k(j)cr}}, \widehat{\delta_{k(j)cr}^2})$. For a given GC category, the lower the value of PM_{jcr} , the more likely it is that the true H_{jcr} is located near the leftmost support of its prior distribution. The algorithm captures this property through resampling, essentially truncating $\widehat{H_{jcr}}$ to a maximum of PM_{jcr} .

All parameters other than α_c are estimated using MCMC samplers. In order to speed up convergence, we set the starting values for the samplers to the estimates $\widehat{S_{jcr}}$, $\widehat{H_{jcr}}$, $\widehat{\mu_{gc}}$, $\widehat{\sigma_{qc}^2}$ and $\widehat{\beta_c^2}$.

NOTE S1. Primers for PCR were designed in exons flanking spliced exons for Cd97, B4galt5, Clec5a, Rac1, Csf2rb2 and Slc23a2 with the following primer sequences (5'-3'):

mCD97-F	gagttacacctgcgtctgtaacc
mCD97-R2	ttccagccttgacgacagatgc
mCD97-R3	aagtagggaacggtggctcttg
${ m mB4galt5-F1}$	cat gac gt c gat cacatacct g
mB4galt5-R1	${\it cttcctcagcagagcgtacctg}$
mClec5a-F1	agaaagagatcagatccctgaatc
mClec5a-R1	agtgtggatccttgtgttgcac
mRac1-F1	ctatgggacacagctggacaag
mRac1-R1	catccctaagatcaagcttcgtc
mCsf2rb2-F1	t cag t g t c c t g t g a g c t c a g t g
mCsf2rb2-F2	a agcattg a aggtt c t g t g g c
mSlc23a2-F1	t cacta catt g ct g caga caac
mSlc23a2-R1	cttctatcagtgaggacatgatga

NOTE S2. Despite the gene-level focus of the Gene arrays, Affymetrix has assigned a small number of their probesets to alternative isoforms of the same gene. In these cases, the probe signal captures the expression of multiple alternative isoforms and should be split appropriately.

In the human arrays, a small number of probesets interrogate assemblies other than the reference genome. For example, in the human Gene 1.0 ST arrays, there are probesets that interrogate alternative haplotype assemblies of the chromosome 6 MHC region, the chromosome 22 region containing the CYP2D6 gene or the chromosome 5 region containing the SMN1 gene. In these cases, probes target different versions of the same transcript, and hence their signals should not be split. We therefore discard the probesets mapping to alternative haplotypes and focus on probing only the reference genome.

Table S1. MMBGX and Gardina workflow results for genes that tested negative for differential splicing by RT-PCR in Gardina $et\ al..$

Docitive	Collino	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	ositive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Negative	Negative	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Negative	legative	Negative	Negative	Negative	Negative
		_			T tairosacrt borothiau t via					One case incompatible, one Positive	negative.			one negative. All transcripts						L		All transcripts at year, IA								Both transcripts up in tumour, but by slightly different amounts.		one negative. All transcripts								_	incompatible, one	negative.		_	_
Incompatible	incompanies of	Incompatible	Negative	Positive	Noodi	Magaliva	0.140	Negative	Positive		Negative	Incompatible		Negative		Incompatible	Negative	Incompatible	Incompatible	Incompatible	Incompatible		Negative			Incompatible	Incompatible	Incompatible	Incompatible	Positive		Negative		Incompatible	Incompatible	Incompatible	Incompatible	Negative	Incompatible	Negative	Nogotivo	Inegalive	Negative	Negative	Negative
TOPOGLOTITICITIES	OFOR A OFFICE A CONTRACT OF THE CONTRACT OF TH	AIACCAGAGGIIGACAICIG	AGGCTTTCCCTCCTGCTTG	GCACTCTTATGTAACCGAATC	GCTCATCAATCACCTCATAG	GACTTCTGTTCTGCATCAAG	CGATATCCAGTGAGCTGAAC	GAAATGATGTACTCAGAAGTG	GAAGTAGAAGCAATCCTGTGA	TCTTGAGGTCAGTGCAGATG	CATCATCTTCAAGGCTTAATG	GTCTTTCAGGTCAATGTAGTG	GCTGACAGCTCCAGGAGT	GTCAGGTGCTCCACGTTG	GTCAGGTGCTCCACGTTG	GACGCTGCAAGTGCGTTC	GCTACATTATCCAGGACATC	GCATTACTCAACTGCTACAC	CCTCGGCTGCCTCTTGAC	ATGCTTCCAGGTGCATCAAG	GCTGAAGAGCATCAGATCTG	TCCCAGTAGTGAACTGATTC	TGGAGGCAATGCAAGTGTAG	CAATGGTCTGGATCATCTTG	GTTGGACAGGTGCTCCATG	CAAATTCACCAGTCAAATGAC	TCGCGTAAAGGCTGCCATC	TTCTGGCTTGGCAACTTGAC	GGCAGATGGTCAAACTCTGT	TCAAAGGCTTCTGTGTCTTC	AGCAGTATCTGAGCCTTTAG	AGCAGTATCTGAGCCTTTAG	CTGTCTGGTAACTTTCCATTG	TCTTGACACCTGGAATTCAC	GCAGGTTACTGGTCTTGTAG	ACTCCTCCGTGGAACGTG	TTTACTGACTGGTTCTTCATC	GTTTGATCGCAATGAAGGTAC	CTGCTCTTCAGCCTCCTTG	CTGTATCGATCGTTCTGTATC	CTTACGGCGTACGTTGTTTC	TCCTGCTTGATCAGGTTCAC	GTAGACGCGGCACATGATG	ACCAAGGAGCGTGCTCTGT	TGGTGTGTTGGAGCTCATG
GGAGGTATOLOGITACTO	O TO TO A O A O O TO	CITIGALCTIGCAGAAACATGAC	GGTGTGGAATTACCTTCACT	CATCGTGGAGCAGCTCAAG	GTCTGAAGTGCAGTCTCTGA	CCTTTACTGTGATGGAAAGTG	TTAGTGTCTATGCTCAGAATC	ATTTATGTCATTGCCCTGAAG	CTGCCTTCAGAGTCTTACTG	CAGCCACAAGTGTGTACCT	CAGACATGAAGAGGTGCTAC	TGGAGACTTCTGCATACAAG	AAATCGGCTGGACAGATGTC	TGCTGATCATCGGTGGATTC	CTTGCTGCACTCACTCTTG	TCTACAAGCACACCCATGAG	GGGAATTAGTGAAGCCAAAG	GGAGCGGTGTCCTCTTAAG	CTGAAGCACAAGTTCATCAC	CTCCATCTGGAATTGAAGATG	GCAGCAATGAACTTCATCAAG	CCTGGAAGCCACACTTCAC	CCTGGAAGCCACACTTCAC	AGACAGGATGTCAACATCAC	ACAAGTGATAAGATGCACTTC	GGCGTTTGAATTGCGCTTC	CCATGCAGCCTGTGTACAC	GTGTCTGTGGACTATAACAC	TATGGCAGGACAAATGCTTC	CAGAGGCCTACATTCTGAAC	ACAGTACTCTCAGCTTGTTG	GGAGCCGTGGTCCTCTAG	GCATTATAGTCCAGACTGTGA	GAGGGTGGCATCTATGATG	GCACTTTCCGAAAGTTTGTG	ATCCAGCTCTTGCTCAGTG	TGCTACAGAGCAGGAGTTG	GTGCAAGTGCTGCGAACCA	AGAGACGGAGCTCAAGAATG	CACCAAGGCCAGCACATAG	AGTCCATGTACCTTGAAGTG	GCATTCCAAGTGGTATGATG	TGGCGACGGCGACCATAG	CCAACCTAGTTCCACTGAAG	CGTGGAGTTCCACTGCAAG
Eve Eve	2 2	EX6	Ex4	Ex4	Ex27	Ex7	Ex34	Ex41	Ex3	Ex7	Ex19	Ex9	Ex17a-R	Ex19	Ex19	Ex9	Ex8	Ex5	Ex9	Ex7	Ex5	Ex7b	Ex 1	Ex14	Ex18	Ex3	Ex17	Ex16b	Ex5	Ex14	Ex2	Ex2	Ex7	Ex3	Ex23	Ex25	Ex7	Ex3	Ex16	Ex8	Ex14_2	Ex19	Ex6	Ex12	Ex 10
22	2 .	Ex4	EX2	Ex1	Ex26	Ex6	Ex32	Ex39	Ex1	Ex4	Ex14	Ex5	Ex15	Ex16	Ex18-Ext	Ex7	Ex3	Ex2	Ex7	Ex4					Ex15	Ex1	Ex12	Ex16	Ex2	Ex12	Ex1_1	Ex1_2	Ex5	Ex1	Ex21			Ex1	Ex14	Ex4	Ex10	Ex13	Ex1	Ex10	Exe
2844898	2001000	3838720	3795922	2887648		2797442			2437271		2413218				3232406	2676011	3590094		2607278	2727236	3252046	2907697, 2907705		2907697, 2907705			3049621		3389310	3694667	2425849, 2425850	2425849, 2425850		3901398	3604205	2712246	3458111, 3458123	3726945	3304306						
E INTR	2000	CABIN1	ENOSF1	FAM44B	FAT	FAT	FN1	FN1	GBA	LRP8	LRP8	NME2	PFKP	PFKP	PFKP	PTK9L	RAD51	SRFS2	STK25	FIP1L1	PLAU	PTK7	PTK7	PTK7	PTK7	RAN	TENS1	INS	CASP4	CDH11	COL11A1	COL11A1	COL11A1	CST2	KIAA1199	MUC4	NACA	NME1	PSD	VEGF	NCAM1	NCAM1	SIAHBP1	MST1R	FGFR3

TABLE S2. COSIE results for genes the 12 positively validated for which gels were provided and the 36 negatively validated genes in Gardina *et al.*. Transcript clusters or probesets which were filtered by the method are indicated with "NA".

				D II /EDD	D # (EDD : 0)
Gene	Told	Psld	P-value	Result (FDR <.2; alpha=0.001025257)	Result (FDR<.3); alpha=0.01245986)
ACTN1	3569814	3569830		TRUE	TRUE
ATP2B4	2375706	2375764			
VCL	3252071	3252128			
CALD1	3025545	3025632			
SLC3A2			1.67E-04	TRUE	TRUE
	3333711		4.545.05	TDUE	TOUE
COL6A3	2605321	2605386		TRUE	TRUE
CTTN	3338552	3338589		FALSE	FALSE
FN1	2598261	2598321			
TPM1	3597338	3597382	4.25E-03	FALSE	TRUE
CD44	3326635	3326711	5.11E-02	FALSE	FALSE
ITGB4	3735151	3735208	NA		
RAC1	2989050	2989068	NA		
BTNL3	2844888	2844890	2.88E-02	FALSE	FALSE
CABIN1	3939707	NA			
ENOSF1	3795866	3795922	8.05E-03	FALSE	TRUE
FAM44B	2887633	NA			
FAT	2797393	2797410	2.51E-03	FALSE	TRUE
FN1	2598261	2598328	9.28E-03	FALSE	TRUE
GBA	2437205	2437232			
LRP8	2413203				
NME2	3726960				
PFKP	3232349	3232391	2.34E-03	FALSE	TRUE
PTK9L	2676009		2.0.2.00	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
RAD51	3590086	3590096	2.72E-03	FALSE	TRUE
SFRS2	3771800		2.722 00	TALOL	11102
STK25	2607262				
FIP1L1	2727226	2727235	1.09E-02	FALSE	TRUE
PLAU	3252036	3252054			
PTK7	2907671		1.13L-03	TALOL	IIIOL
RAN	3438027	3438031	5.66E-04	TRUE	TRUE
TENS1	3049522	3049621	1.41E-03		TRUE
TNS	2599153	2599212			TRUE
CASP4	3389273	3389298		FALSE	FALSE
CDH11	3694657	3694727	5.49E-03	FALSE	TRUE
COL11A1	2425756	2425837	1.13E-03		
CST2	3901387		1.13E-03	FALSE	IRUE
KIAA1199 MUC4	3604147 2425756	NA 2425837	1.13E-03	FALSE	TRUE
			1.13E-03	FALSE	IRUE
NACA	3458097		1.655.04	F^1.0F	FALOE
NME1	3726934	3726942	1.65E-01	FALSE	FALSE
PSD	3304301				
VEGF	2908179	2908180		TRUE	
NCAM1	3349293	3349364	1.10E-02	FALSE	TRUE
SIAHBP1	3157817				
MST1R	2674919	2674958	3.62E-03	FALSE	TRUE
FGFR3	2715016	NA			

Table S3. FIRMA results for genes the 12 positively validated for which gels were provided and the 36 negatively validated genes in Gardina *et al.*. Transcript clusters or probesets which were filtered by the method are indicated with "NA".

	1			D # (500 0	D # (EDD 0)
0	T-1-1	D-1-1	D	Result (FDR <.2;	Result (FDR<.3);
Gene		Psld	P-value	alpha=4.4774e-05)	alpha= 0.003178101)
ACTN1	3569814	3569830	1.58E-04		TRUE
ATP2B4	2375706	2375766			
VCL	3252071	3252128			
CALD1	3025545	3025632	1.44E-04		
SLC3A2	3333711	3333717	8.88E-01	FALSE	
COL6A3	2605321	2605386	6.28E-03	FALSE	
CTTN	3338552	3338589	3.83E-03		
FN1	2598261	2598321	7.47E-03		
TPM1	3597338	3597382	1.20E-02	FALSE	FALSE
CD44	3326635	3326714	5.52E-02	FALSE	FALSE
ITGB4	3735151	3735208	NA		
RAC1	2989050	2989068	3.07E-02	FALSE	FALSE
BTNL3	2844888	2844898	2.87E-02	FALSE	FALSE
CABIN1	3939707	3939739	6.02E-03	FALSE	FALSE
ENOSF1	3795866	3795922	3.45E-02	FALSE	FALSE
FAM44B	2887633	2887648	1.23E-03	FALSE	TRUE
FAT	2797393	2797449	4.15E-02	FALSE	FALSE
FN1	2598261	2598330	8.82E-04	FALSE	TRUE
GBA	2437205	2437223	1.04E-01	FALSE	
LRP8	2413203	2413218		FALSE	
NME2	3726960	3726971	3.68E-02		
PFKP	3232349	3232365	5.78E-03		
PTK9L	2676009	2676018	3.10E-03		TRUE
RAD51	3590086	3590096			
SFRS2	3771800	3771810	6.05E-03		
STK25	2607262	2607278			
FIP1L1	2727226	2727235			
PLAU	3252036	3252051	2.16E-04		
PTK7	2907671	2907707	1.94E-04		TRUE
RAN	3438027	3438033			
TENS1	3049522	3049643			
TNS	2599153	2599225	6.07E-03		
CASP4	3389273	3389317	2.93E-02		
CASP4 CDH11					
-	3694657	3694703	3.98E-04		
COL11A1	2425756	2425850			
CST2	3901387	3901398			
KIAA1199	3604147	3604213	1.09E-04		
MUC4	2425756	2425850			
NACA	3458097	3458098	1.93E-02		
NME1	3726934		7.38E-03		
PSD	3304301	3304306	1.78E-03		
VEGF	2908179	2908192	1.29E-03		
NCAM1	3349293	3349296			
SIAHBP1	3157817	3157827	5.22E-03		
MST1R	2674919	2674946			
FGFR3	2715016	2715045	4.72E-02	FALSE	FALSE