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Part S1:  Regions in smFRET Time Trajectories 

Recall that two-channel smFRET experiments result in two data vectors containing 
detected numbers of acceptor and donor photons in discrete time steps.  We term these numbers 
of detected photons as NA for acceptor and ND for donor.  Also recall that these vectors contain 
three distinct regions, as illustrated in Fig. S1.  The utilization of photobleaching events on both 
fluorophores involved in these measurements allows for the collection of local background 
signals for each single molecule.  Poissonian shot-noise in each of the background signals arises, 
producing a Poisson distribution around each channel’s mean number of photons.  We define the 
mean and variance of these distributions of on detection channel α as bα (α = A, D). 

Imperfect separation of donor and acceptor photons by a dichroic mirror leads to the 
observation of donor-emitted photons on the acceptor detector.  This is referred to as crosstalk, 
and we produce the crosstalk region by observing a molecule after photobleaching of the 
acceptor but before that of the donor.  Due to the absence of acceptor fluorophore emission in 
this region, photons detected above background levels on the acceptor channel are assumed to be 
emitted by the donor fluorophore.   The number of crosstalk photons is thus estimated as 
p୶ ൌ NA െ  bA.  Because the crosstalk photons are emitted by the donor but counted as acceptor 
photons, the actual number pD of donor-emitted photons in the crosstalk region is different from  

 

Figure S1.  Regions in an smFRET time trajectory.  The region to the far left shows the FRET region, the 
center region shows the crosstalk region, and to the right is the background region. 

the number of observed photons ND, and is estimated as 

pD ≡ ND െ bD +  px.                                                                          ሺS1ሻ 

The ratio of the number of crosstalk photons px to the number of photons emitted by the donor 
fluorophore pD is calculated at every time step in the region, and the mean of these values is 
taken to be the crosstalk parameter 
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 x ≡  ۃpx pD⁄  ሺS2ሻ                                                                                    .ۄ

To estimate the efficiency of energy transfer in the FRET region of an smFRET 
trajectory, again we must correct for the difference between the numbers ND and NA of detected 
photons, respectively, on the donor and the acceptor channels, and the numbers nD and nA of 
photons actually emitted by the respective fluorophores. The latter can be estimated as 

nD ≡ ND െ bD +  nx                                                                         ሺS3aሻ 

nA ≡ NA െ bA െ nx,                                                                        ሺS3bሻ 

where Nα and bα (α = A or D) are defined previously, and nx is the number of crosstalk photons 
calculated at each time step using the relation 

n୶ ൌ xnD ൌ
x

1 െ x
ሺND െ bDሻ.                                                     ሺS4ሻ 

The energy transfer efficiency, E, is calculated at each time step in the FRET region using the 
standard relationship 

 E ൌ  
nA

nA ൅  nD ,                                                                                
ሺS5ሻ 

In the context of the present discussion, we refer to the efficiency E as “observed efficiency”.  
We determined the correction factor commonly known as γ (1, 2) to be within error of unity for 
our apparatus using the fluorophores Cy3 and Cy5. 

 

Part S2:  Photoblink Removal in smFRET Time Trajectories 

Here we describe the Bayesian photoblink detection algorithm in detail.  Recall that we 
need the conditional probability distributions of the acceptor photon count NA given two 
alternatives, the “blink” hypothesis (B), and the “no blink” hypothesis (NB).  A Poisson process 
describes photon emission in each case, but their properties differ. Specifically, in the absence of 
a blink the distribution of NA can be approximated by 

PሺNA|NBሻ ൌ
1

൫2πμNB൯
ଵ
ଶ

exp ൥െ
൫NA െ μNB൯ଶ

2μNB
൩,                       ሺS6ሻ 

where μNB ൌ  is the calculated mean of detected acceptor photons for the trajectory under ۄNAۃ
consideration.  In writing Eq. S6, we have replaced the Poisson distribution by a Gaussian one 
whose mean and variance are both equal to μNB.  This approximation is valid assuming μNB >> 1, 
which is always the case for typical time steps used (~10 ms). 

Similarly, the conditional probability distribution for NA given the “blink” hypothesis can 
be written as a normal distribution. To calculate its width and its mean we note that the mean 
number of detected acceptor counts arising from such a situation will be the same that arises in 
the crosstalk region.  We express this mean as 
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μB ൌ ۄbAۃ  ൅ xۃnDۄ,                                                                        ሺS7ሻ 

where ۃbAۄ is the mean of the acceptor background signal, x is the crosstalk value as calculated 
from Eq. S2, and ۃnDۄ is the mean of donor fluorophore-emitted photons over the FRET region 
as calculated from Eq. S3a.  Again, we note that the width of this distribution is induced by shot-
noise, and thus assume the distribution’s variance to be equal to its mean, μB.  These assignments 
result in the following expression for the prior probability distribution of NA given the “blink” 
hypothesis: 

PሺNA|Bሻ ൌ
1

൫2πμB൯
ଵ
ଶ

exp ൥െ
൫NA െ  μB൯ଶ

2μB
൩.                               ሺS8ሻ 

The posterior probability of the blink hypothesis B given the observation NA is now given by 
Bayes’ theorem (3): 

 

Figure S2.  Photoblinks in an smFRET time trajectory.  a) An acceptor photon count trajectory that 
contains photoblinks on long and short time-scales.  b) The calculated posterior probability of the 
occurrence of a photoblink (4) and the absence of a photoblink (black) at each time step.  c) The prior 
probability distributions of a photoblink (black, left) and the absence of a photoblink (red, right).  d) 
The same acceptor photon trajectory with photoblinks removed. 
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PሺB|NAሻ ൌ
PሺNA|BሻPሺBሻ

PሺNA|BሻPሺBሻ ൅ PሺNA|NBሻPሺNBሻ ,                        
ሺS9ሻ 

where P(B) is the prior probability of hypothesis B and P(NB) is the prior probability of the no 
blink hypothesis NB. 

To evaluate Eq. S9 we need the probabilities P(B) and P(NB).  These probabilities 
represent the probability of the hypothesis H (= B or NB) being true prior to taking the 
observation NA into consideration.  We do not assume to know these values in advance, but 
instead obtain self-consistency through an iterative process.  Initial guesses of P(B) = 0.001 and 
P(NB) = 0.999 are input, each posterior probability is calculated at each time step, and those 
having Bayes factors – i.e., the ratio of P(B|NA) to P(NB|NA) – greater than 2 are labeled as 
blinks.  The fraction of time steps labeled as photoblinks is defined as the blink fraction, fB.  This 
value is compared with the value of P(B) at each iteration.  Unless a deviation between these 
values of less than 5% is obtained, the substitutions PሺBሻ  ൌ  fB, and PሺNBሻ ൌ  1 െ fB are made, 
and the process repeats until this condition is met. 

Fig. S2 illustrates the process of the identification and removal of photoblinks from an 
acceptor fluorophore-emitted time trajectory.  Fig. S2a depicts a trajectory that contains both 
long and short time-scale photoblinks.  Fig. S2b shows the posterior probabilities evaluated at 
each time step from the probability distribution of the blink hypothesis B.  The conditional 
probability distributions P(NA|B) and P(NA|NB) are shown in Fig. S2c.  Lastly, the acceptor 
fluorophore-emitted photon counts after removal of time steps that contain photoblinks are 
shown in Fig. 1d.  The time steps that are removed Bayes factors greater than 2, which is chosen 
because the number of data points removed becomes, to a large extent, constant for Bayes factors 
larger than 2.  Typical Bayes factors obtained for time steps containing photoblinks are on the 
order of 1010. 

Part S3:  Details of the Denoising Algorithm 

Recall that, in the context of smFRET time trajectories, the trajectory consists of two data 
vectors containing detected numbers of photons in discrete time steps.  Here we consider only 
the acceptor photon trajectory NA ( = NA(0), NA(∆t),…), in discrete time steps ∆t. We recall that 
this vector is written in the form 

Aۼ ൌ A܁ ൅ σ܈ ,                                                                               ሺS10ሻ 

where, at each time step ∆t, Z is a Gaussian white noise component, and each element of Z is 
independently and identically distributed on a normal distribution with mean 0 and variance 1, σ 
is a known noise level, and SA is the “true” signal that we wish to recover.  Similarly to the 
smoothing method described in the main text, we accomplish the recovery of the true signal SA 
in three steps:  (1) transform the observed data NA into the wavelet domain, (2) suppress the 
presumed noise component of the signal, and (3) invert the wavelet transform to obtain the 
denoised signal.  A key assumption of most denoising schemes is that the noise is additive – that 
the strength of the noise is independent of the signal.  In the case of smFRET experiments, the 
shot-noise strength is dependent on the brightness of the fluorophores.  Here however, we 
approximate the noise strength with its average value.   
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 The first step in this procedure is accomplished by the multiresolution approximation of 
Mallat (5).  It is a pyramidal algorithm that consists of multiple decomposition levels, each of 
which reduces the resolution of the signal by a factor of 2.  Transformation of the signal to the 
first decomposition level produces two components, one containing information about the low 
frequency part of the Fourier spectrum, and the other containing information about the high 
frequency part of the Fourier spectrum. 

 The bases of each orthogonal complement are built by dilating and translating a unique 
function.  In the case of the low frequency complement, this function is known as the scaling 
function, and in the case of the high frequency complement, it is known as the wavelet function.  
The digital filter transforming the signal to the low frequency basis is a low pass filter, Wlo, and 
the counterpart filter transforming the signal to the high frequency complement is a high pass 
filter, Whi.  The filters used in the Haar wavelet transform (6) are described by the vectors 

୪୭܅ ൌ ቀ ଵ
√ଶ

 , ଵ
√ଶ

, 0, … ,0ቁ                                                                  ሺS12aሻ 

୦୧܅ ൌ ቀെ ଵ
√ଶ

 , ଵ
√ଶ

, 0, … ,0ቁ.                                                              ሺS12bሻ 

By applying the low pass filter, Wlo to the time series NA, one obtains the approximation 
A1 containing the signal at a reduced resolution 

ଵۯ ൌ ሺ܅୪୭ כ  Aሻ՝ଶ.                                                                        ሺS13aሻۼ

Here, the symbol “כ” denotes a convolution, and ↓2 represents the downsampling operation, 
where alternating elements of the convolution’s output are removed.  The high frequency, or 
detail component D1 is similarly produced by the convolution of the signal with the high pass 
filter 

۲ଵ ൌ ሺ܅୦୧ כ  Aሻ՝ଶ.                                                                        ሺS13bሻۼ

The approximation and detail signals at subsequent decomposition levels are obtained by 
substituting the approximation from the previous level for the signal NA in Eqs. S13a and S13b. 

The second step in the denoising procedure is the suppression of the noise component.  
As in the example above, the noise in a discrete-time photon signal is in the high frequency part 
of the Fourier spectrum, and as such, is contained within the high frequency component of the 
wavelet decomposition, the detail signal.  The simplest way to reduce the noise is to set any 
detail component that exceeds a certain tolerance value to zero.  An improved procedure utilizes 
“soft thresholding” (7), where noise suppression is achieved by shrinking any detail component 
Y of a decomposition according to: 

 Y → sgnሺYሻmaxሺ0, |Y| െ τሻ ؠ  TሺY, τሻ.                                   ሺS14ሻ 

Here, τ is the universal threshold value given by Donoho (7)  

τ ൌ σሾ2 log nሿ
భ
మ.                                                                                ሺS15ሻ 
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where, n is the number of data points in the original time series (i.e., the dimensionality of NA).  
Given that this method is designed to remove shot-noise, we approximate the noise parameter σ 
as the fluctuation about the mean intensity induced by shot-noise.  For the acceptor photon 
trajectory NA with mean intensity μA, we have σ = [μA]1/2.  Likewise, for a donor photon 
trajectory with mean intensity μD, we have σ = [μD]1/2.  Inserting these values in Eq. 15, we 
generate thresholds τA and τD, respectively, for each of the acceptor and donor photon trajectories 

τA ൌ ሾ2µA log nሿ
భ
మ                                                                            ሺS16aሻ 

τD ൌ ሾ2µD log nሿ
భ
మ.                                                                           ሺS16bሻ 

Returning to the detail signal obtained in Eq. 13b, we now apply, element-wise with 
threshold calculated from Eq. 16a, the thresholding operation of Eq. 14, and obtain thresholded 
detail signal D1

T 

۲ଵ
T ൌ Tሺ۲ଵ, τAሻ.                                                                             ሺS17ሻ 

Thresholded details at subsequent decomposition levels are obtained by applying the 
thresholding operator with the same threshold as in Eq. 16a. 

 The denoised signal SA is obtained by inverting the decomposition procedure described 
above.  Firstly, we define the low pass and high pass reconstruction filters, Wlo

-1 and Whi
-1 

respectively, as the reverse of their decomposition counterparts (6) 

୪୭܅
ିଵ ൌ ቀ ଵ

√ଶ
 , ଵ

√ଶ
, 0, … ,0ቁ                                                              ሺS18aሻ 

୦୧܅
ିଵ ൌ ቀ ଵ

√ଶ
 , െ ଵ

√ଶ
 , 0, … ,0ቁ.                                                       ሺS18bሻ 

Next, we dyadically upsample the highest level approximation and thresholded detail 
components by inserting zeros between each element of each vector.  After upsampling, the 
approximation vector is convolved with Wlo

-1, and the detail vector with Whi
-1.  The sum of the 

output of each convolution is then the reconstructed approximation of the next resolution level.  
This reconstructed approximation is then upsampled, convolved, and combined with the next 
level’s thresholded details.  This procedure is summarized by Eq. S19 for the reconstruction of 
the denoised signal SA from a level 1 approximation and thresholded details, where the 
superscript ↑2 represents the upsampling operation 

A܁ ൌ ൫܅୪୭
ିଵ כ ሺۯଵሻ՛ଶ൯ ൅ ൫܅୦୧

ିଵ כ ሺ۲ଵ
Tሻ՛ଶ൯.                          ሺS19ሻ 

Evaluation of the mean-squared error of simulated signals decomposed to various 
resolution levels revealed that this quantity is largely minimized for signals reconstructed from 
the third resolution level.  As such, all decompositions were processed to the third level.  Due to 
the nature of the decomposition, the number of elements in the time series must be a power of 2.  
Each signal was extended with a vector containing m elements, where the value of each element 
is the mean intensity of the signal, and where m is chosen such that n ൅ m ൌ 2୨, with j being an 
integer.  The dimensionality of the signal, n, remained unchanged in Eqs. S16.  This extension 
was discarded after reconstruction of the denoised signal.  Each of the acceptor and donor photon 
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signals in a particular smFRET trajectory were decomposed separately using the digital filters in 
Eqs. S12a and S12b.  Thresholds for each signal were generated using Eqs. S16a and S16b, and 
the detail signals of each decomposition were thresholded via the soft thresholding operator in 
Eq. S14.  Each of the acceptor and donor signals were then reconstructed as in Eq. S19. 

Fig. S3 illustrates the denoising of an acceptor photon trajectory.  The fluorophore-
emitted acceptor photon signal is shown in Fig. S3a.  Convolution of the signal vector with the 
low pass filter results in the first level approximation shown in Fig. S3b after downsampling.  
The second and third level approximations are generated by convolution of the previous level’s 
approximation with the low pass filter.  The detail  coefficient vectors shown in Fig. S3c are 
similarly produced by convolution of the signal and approximation vectors with the high pass 
filter. The universal threshold as calculated from Eq. S16a is shown as dashed lines in Fig. S3c.  
Detail coefficients whose magnitudes are smaller than the threshold are set to zero, and the 
threshold is subtracted from detail coefficients having magnitudes larger than the threshold with 
retention of these coefficients’ signs.   

Fig. S3d shows the original acceptor signal in red overlaid with its denoised 
representation in black.  The denoised signal was reconstructed by upsampling the third level  

Figure S3.  Denoising an acceptor photon trajectory.  a) The original trajectory.  b) The first, second, and 
third level approximation coefficients shown left to right.  c)  The first, second, and third level detail 
coefficients shown left to right, along with the detail threshold is shown as dotted lines.  d) The original 
signal (4) overlaid with the denoised signal (black).  The standard deviation of the original signal is 
reduced by a factor of 3, illustrating that the denoising process has been a success. 
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approximation and thresholded details, convolution of the upsampled coefficients with their 
respective low or high pass reconstruction filters, and addition of the two upsampled vectors, 
producing the second level reconstruction.  This reconstruction vector was then combined with 
thresholded second level details in the same manner, and the resulting vector combined with the 
thresholded first level details to produce the reconstructed signal shown in black in Fig. S3d.  It 
is seen that, while the mean of the denoised signal remains the same as its noisy counterpart, 
comparison of the standard deviations of each trajectory shows the noise level to be reduced by 
approximately 300% for this particular photon trajectory. 

 

Part S4:  Photoblink Removal from Simulated Data 

 To compare the effects of the Bayesian photoblink detection algorithm to a more 
traditional method of photoblink removal, simulated trajectories were constructed using kinetic 
Monte Carlo simulation.  Three states were included in this simulation, the observable state with 
central efficiency of 0.15 and average lifetime of ~ 1 s, an acceptor photoblinking state, and a 
donor photoblinking state.  The lifetimes used for the photoblinking states were allowed to vary, 
producing photoblinks with lifetimes ranging from 10 ms (1 time step) to 5 seconds.  By 
inspection of the sample trajectory shown in Fig. S4a, one can clearly see that, in the case of 
these trajectories, manual photoblink removal would most likely have a negative effect on the 
data.  Human bias would arise due to the slight difference between what is actual data and what 
is a photoblink.   

Photoblinks were filtered from the simulated trajectories by 2 different methods: (1) the 
Bayesian method presented here, and (2) a simpler method that removed time steps with acceptor 
intensities below a predefined threshold τB, given by 

τB ൌ µB ൅ 2ሺµBሻ
భ
మ.                                                                          ሺS20ሻ 

where, μB is as defined in Eq. S7.   

Fig. S4 shows the results of this comparison.  A sample trajectory containing unfiltered 
acceptor (4) and donor (blue) counts is shown (Fig. S4a) to have photoblinks of both the acceptor 
and donor varieties on both long and short time scales, as well as the presence of the observable 
state with a central efficiency of 0.15.  Figs. S4b and S4c show the same trajectory after 
photoblink filtering by the thresholding method and by the Bayesian method, respectively.  It is 
clear in these trajectories that a larger fraction (~ 15% larger) of the original data is retained by 
the Bayesian operation, but it remains unclear if the remaining data is of the observable variety 
or of the photoblink variety. 

 Fig. S4d shows a distribution of the unfiltered data’s calculated efficiencies.  While we 
can see the presence of the observable state at a its central efficiency of 0.15, we also see that the 
distribution is marred by the noise arising from the presence of photoblinks.  Fig. S4e shows the 
corresponding distribution after photoblink removal using the thresholding method, and Fig. S4f 
shows the distribution after photoblink removal using the Bayesian method.   
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Figure S4.  Comparison of photoblink removal methods.  a)  A sample trajectory from the simulated data.  
b) The sample trajectory after removal of photoblinks by the thresholding method.  c)  The sample 
trajectory after removal of photoblinks by the Bayesian method.  d)  The distribution of efficiencies 
produced by the unfiltered, simulated data.  e) The efficiency distribution after photoblink removal 
using the thresholding method.  f) The efficiency distribution after photoblink removal using the 
Bayesian method. 

It is clear from the statistics shown in Fig. S4e that the thresholding method successfully 
removes photoblinks from the trajectories (with > 99% success), but it is also clear that it 
removes a large portion of the actual data as well (~ 18%).  This is a less than desirable quality, 
in that, if nearly 20% of the observable data is removed, then nearly 20% of the information 
acquired about this system is lost.  In comparison, the Bayesian method also successfully 
removes photoblinks (with ~ 93% success), and removes a much smaller fraction of the 
observable data (~ 2.3%).  While a portion of the original photoblinks remain, their contribution 
to the overall outcome is small, as is shown by the distribution in Fig. S4f.  Perhaps more 
importantly, the human element of photoblink detection, whether it be in the manual selection of 
photoblink regions, or in the selection of an intensity threshold, has been completely eliminated.       
 

Part S5:  The Performance of Bayesian Photoblink Detection in Relation to Keq 

 Given the substantial variation of equilibrium constants in various biological interactions, 
the performance of the Bayesian photoblink filter was tested on simulated, two-state equilibria 
with equilibrium constants ranging over 4 orders of magnitude.  The smFRET trajectories for 
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each equilibrium were simulated using kinetic Monte Carlo simulations with the mean number of 
total photons at each time step being 220.  Each simulated equilibrium contained over 100,000 
data points prior to photoblink removal, and consisted of two efficiency states, one with a central 
efficiency of 0.2 (state 0.2), and the other with central efficiency of 0.8 (state 0.8).  The forward 
transition is taken to be the transition from state 0.8 to state 0.2, such that a Keq < 1 corresponds  
to state 0.8 being favored in the equilibrium.  The average photoblinking lifetime was ~ 0.4 s in  

all cases, and photoblinks were removed as 
described above. 
 Fig. S5 shows the results of these 
simulations.  In Fig. S5a, the percentage of 
state 0.2 data points that were removed in 
each simulation are plotted logarithmically 
versus Keq.  It is shown by Fig. S5a that the 
percentage of state 0.2 removed never 
exceeds 6.8%, and that, as the equilibrium 
shifts toward this state, the percentage of this 
state’s data points that are removed trends 
toward zero.  Fig. S5b shows the percentage 
of photoblinks removed versus Keq, again 
plotted logarithmically.  As shown in Fig. 
S5b, the percentage of photoblinks removed 
by the Bayesian photoblink filter only begins 
to fall after state 0.2 becomes favored in the 
equilibrium.  This is simply a result of the 
mean acceptor intensity falling as the mean 
efficiency of the trajectory falls, and of the 
prior probability of a photoblink being less 
than that of the absence of a photoblink.  We 
therefore conclude that, regardless of which 
state is favored in the equilibrium, as well as 
the extent to which a that state is favored, the 
Bayesian photoblink filter performs capably 
under all tested circumstances. 
 

Part S6:  Denoising a Simulated System with Well-Defined States and Dynamics 

As a means to quantify the effects of the wavelet denoising algorithm to smFRET 
trajectories, a two state equilibrium having an equilibrium constant of 0.33 was simulated using 
kinetic Monte Carlo methods.  The states were assigned mean efficiencies of 0.2 and 0.8, 
respectively, with the state having mean efficiency of 0.8 being favored in the equilibrium.  
Acceptor and donor photon trajectories that include shot-noise were constructed from the 
simulated trajectories.  Each of the simulated trajectories was denoised by the wavelet denoising 
algorithm as well as the hidden-Markov model (HaMMy) described by McKinney, et al (8).   

 

Figure S5.  The performance of the Bayesian 
photoblink filter vs. Keq.  a)  The percentage of 
state 0.2 data points removed vs. Keq.  b)  The 
percentage of photoblinks removed vs. Keq. 
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Figure S6.  Efficiency distributions of a simulated two state system.  a) The shot-noise induced efficiency 
distribution of a simulated two state system having states with mean efficiencies of 0.2 and 0.8.  b) The 
efficiency distribution of the system after denoising.  c) The efficiency distribution as generated by the 
hidden-Markov model HaMMy (8). 

 
Fig. S6a shows the efficiency distribution generated by the simulated photon trajectories.  

Each state’s standard deviation was calculated as measurement error and found to be 
approximately 0.06 efficiency units for both states at a mean of 220 total photons per time step.  
The standard deviation of each state’s distribution was also found by least-squares regression to 
normal distributions, and these values show good agreement as the standard deviations of both 
states were again found to be approximately 0.06 efficiency units. 

Figure S6b shows the efficiency distribution produced after wavelet denoising.  The 
standard deviation of each state’s efficiency distribution was again estimated by least-squares 
regression to normal distributions.  These values were again found to be approximately equal at 
0.02 efficiency units, translating to a reduction in the width of each state’s efficiency distribution 
of 300%.  It is shown in Figure S6c that HaMMy identifies each state nicely by collapsing the 
broad efficiency distribution of each of the states nearly to a single efficiency.  Although the 
denoising algorithm does not reduce the width of each distribution as radically as HaMMy, the 
wavelet denoising algorithm is not, as is HaMMy, constructed to do so.  The comparison does 
show, however, that the denoising algorithm narrows each state’s efficiency distribution by 
300%, thereby proving its viability in the case of a system having well-defined states and 
kinetics while offering the advantage of making no a priori assumptions regarding the state’s 
thermodynamic or kinetic properties. 

Part S7:  Denoising a Single smFRET Trajectory 

Here we examine a single smFRET trajectory obtained in the aV aptamer studies 
described previously (9).  Fig. S7a depicts the fluorophore-emitted photon signals in 10 ms time 
steps, with the acceptor signal shown in red and the donor signal shown in blue.  The trajectory 
includes photoblink anomalies of both the acceptor and donor varieties on both short and long 
time-scales.  Additionally, intensity variation in of each of the signals is observed, and arises 
both from energy transfer efficiency fluctuations and shot-noise.  Fig. S7b shows the photoblink-
filtered and wavelet-denoised versions of the same acceptor and donor trajectories.  Time steps 
identified as photoblinks were removed from the acceptor (4) and donor (cyan) trajectories 
shown, and each is overlaid with its wavelet-denoised complement  (denoised acceptor in black 
and denoised donor in blue).  Fig. S7c shows the energy transfer efficiency calculated from each 
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complementary pair of signals in Fig. S7b using Eq. S5.  The observed efficiency trajectory was 
calculated at each time step using the photoblink-filtered pair of acceptor and donor signals 
shown in Fig. S7b, and this trajectory is overlaid in black by the denoised efficiency calculated at 
each time step using the wavelet-denoised acceptor and donor signals shown in Fig. S7b.  Fig. 
S7d shows a histogram of the observed efficiencies in Fig. S7c, and Fig. S7e shows that of the 
denoised efficiencies shown in Fig. S7c. 

 The method presented to detect photoblinks, as shown by Fig. S7b, proves to be quite 
discriminatory in its application to experimental data.  Not only is the method able to distinguish  
both acceptor and donor photoblinks, but making a decision at every time step allows for the 
distinction of both long and short time-scale photoblinks as well.  Additionally, given that the 
expected minimum energy transfer efficiency of a valid state of the system is larger than 
approximately 20%, the method shows the ability to distinguish a photoblink from a steep drop 
in signal intensity that arises from a conformational change. 

 

Figure S7.  Denoising an experimental smFRET trajectory.  a) The original fluorophore-emitted acceptor 
(4) and donor (blue) photon trajectories.  b) The original acceptor photons (4) are overlaid with their 
denoised counterparts (black), and the original donor photons (cyan) are overlaid with their denoised 
counterparts (blue).  c) The smFRET efficiency calculated from the original acceptor and donor photon 
counts (4) is overlaid by that calculated from the denoised acceptor and donor photon counts (black).  d) 
The efficiency histogram generated by the noisy data in b).  e) The efficiency histogram generated by 
the denoised data shown in b). 
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Also, as shown by Fig. S7b, the wavelet-denoising algorithm proves to be quite effective 
in its application to experimental data.  While fluctuations in the signals’ intensities due to 
experimental considerations such as apparatus limitations and fluorophore orientations are 
unavoidable, it is shown in the denoised signals that small fluctuations arising from quantifiable 
sources are virtually eliminated.   Of equal, or perhaps greater, importance, it is also shown that 
large intensity fluctuations that are induced by conformational changes in the system are allowed 
to remain. 

The significance of these aspects is clear, and is illustrated by the efficiency trajectories 
in Fig. S7c.  The observed trajectory of calculated efficiencies (4) fluctuates wildly from time 
step to time step due to small, insignificant changes in the signal intensity on one or both of the 
detection channels.  The denoised complement (black) to this trajectory, however, does not 
exhibit such excessive fluctuation.  We still observe major fluctuations in efficiency, and these 
are virtually unchanged from the major fluctuations we see in the observed efficiency trajectory.  
Anomalously large and fast efficiency fluctuations have been reduced, and we observe a 
smoother trajectory as well as more accurate representation of our physical system. 

Figs. S7d and S7e further validate this point by showing that, while the shape of each 
efficiency distribution is approximately the same, and their mean efficiencies are virtually 
unchanged, the denoised standard deviation is reduced by approximately 30%.  This validates 
that occurrences of anomalously large or small efficiencies have been reduced.  On the whole, 
the application of the photoblink detection and wavelet-denoising algorithms is shown by Figure 
S7 to improve the quality of this experimental smFRET trajectory. 

 

Part S8:  HIV-1 TAR DNA:  Denoising a Single State Experimental System 

Here we apply the photoblink detection and wavelet-denoising algorithms to a collection 
of smFRET trajectories.  The trajectories are collected from studies, described previously (10), 
on the transactivation response (TAR) region of HIV-1 viral DNA.  The collection contains 
nearly 16,000 data points, and was chosen to represent a predominantly single state system.  The 
secondary structure of the TAR hairpin is shown in Fig. S7a, and the depicted conformation is 
expected to yield smFRET efficiencies approaching unity. 

Application of the photoblink detection algorithm to this collection of trajectories yields,  
after computation of energy transfer efficiency at each of the individual data points, the global  
efficiency histogram that is shown in Fig. S8b.  As expected, the system does produce smFRET  
efficiencies approaching unity, and the normal distribution about the mean energy transfer 
efficiency of 0.96 signifies that we do observe a predominantly single state in this collection of 
trajectories.  The width of this distribution is small, again signifying a single state, and we 
observe this value to be 0.09 efficiency units. 

Calculating and compiling each data point’s energy transfer efficiency from wavelet-
denoised complements produces the global efficiency histogram shown in Fig. S8c.  While we 
do not observe a shift in the mean smFRET efficiency, we do observe a sizeable reduction in the 
magnitude of the distribution’s standard deviation.  The width of this distribution, while small to 
begin with, is reduced by approximately 45% by the denoising algorithm.  The significance is  



S14 
 

clear – in the characterization of a single 
state system, eliminating the artifacts of shot-
noise and photoblinks results in a more 
precise representation of the state’s structure 
and energetics. 

 

Part S9:  Acceptor Photobleaching:  
Denoising a 2-State Experimental System 

As a model two state system, 
irreversible acceptor photobleaching from a 
high efficiency state is chosen.  This 
collection of trajectories was also chosen 
from studies on the TAR region of HIV-1 
viral DNA described previously (10).  This 
system is treated as a purely two state 
system:  energy transfer is either “on”, as 
shown to the left in Fig. S9a, or “off”, as 
shown in the center of Figure S8a.  As the 
crosstalk region of this collection of 
trajectories is being considered as part of the 
FRET region, the crosstalk value x is fixed to 
a characteristic value of 0.11.  Additionally, 
given that one of the states in our model has 
an efficiency that is expected to approach 

zero, the previously discussed caveat arises.  We circumvent this caveat by simply marking the 
time step at which the acceptor photobleach occurs.  The photoblink detection method is applied 
to time steps prior to this time step as previously described, and for time steps after the 
photobleach we substitute the donor photon signal for the acceptor and proceed in the same 
manner. 

Fig. S9b shows a global efficiency histogram of approximately 18,000 blink-filtered data 
points in this collection of smFRET trajectories.  The “on” state is represented to the right, and 
shows a mean efficiency of 0.98 with a standard deviation of 0.17.  The “off” state is represented 
to the left, and this distribution shows a mean efficiency of 0.01 with equal width of 0.17.  To 
avoid bias, instead of selecting the limits of each state manually, each mean and standard 
deviation is produced by a least-squares regression to the sum of two normal distributions. 

 Figure S9c shows the wavelet-denoised complements of Figure S9b.  Again we obtain 
the characteristics of each state’s efficiency distribution by a least-squares regression, and again 
we find dramatic improvement.  While each state’s mean value has remained unchanged, their 
distributions have narrowed significantly.  In the case of the “off” state, we see that the 
distribution has narrowed by approximately 20%, and in that of the “on” state, we see a larger 
narrowing of just under 25%.  As such, we conclude that the wavelet-denoising algorithm is 
capable of removing quantifiable noise components of each state’s efficiency distribution, 
resulting in more precise description of each state. 

Figure S8.  Single state TAR DNA.  a) The 
secondary structure of TAR.  B) The efficiency 
distribution of observed and blink-filtered data 
acquired from experiments involving TAR in 2 
mM Mg2+ buffer solution.  c) The corresponding 
denoised data. 
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