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|. Structural model for three-way junction

We use the grooved primitive model (1) to model the A-RNA keln the grooved primitive model, each base
pair in the helix is represented by five spheres: one cermtrgeIsphere with radius 3.9 A, two phosphate spheres with
radii 2.1 A, and two neutral spheres with radii 2.1 A. For theanical A-RNA, the coordinates of phosphate spheres

S, 65, %) are given by the canonical coordinates from x-ray measenésn(2): oS = 8.8(A); 65 = 65 + 13273,
and;5 = zg + i2.81(A), wheres = 1,2 denotes the two strands ané 1, 2,...N denotes the nucleotides on each
strand. The parameterg( ;) for the initial positions are (Q 0 A) for the first strand and (153.61.88 A) for
the second strand, respectively. The neutral spheres havaate angular coordinates except they have the smaller
radial coordinates 5.8 A. The centers of the central larpersgs are on the axis of RNA helix. Each phosphate sphere
carries a point elementary chargg (electronic charge) at its center.

Using the above grooved primitive model, we can model then@ly¢ and the folded (y) structures using param-
etersdy anddy, see Fig. 7. In order for the flierent helical stems not to bump into each other, we requétix a
anddy> a+ acos60 (Figs. 7 A and B), whera ( = 11 A) is the radius of the helix. To generate the ensemble of
conformations in the folding process, we chose a line pgdkimugh point A (Figs. 7 C, D and E) and perpendicular
to the three-way junction plane as the rotate axis. We alt@ad8-bp helix to rotate in the plane about this axis. Here,
A is the middle point between corners B and C (Fig. 7 E). We uSe=2b = 4.2 A for the distance between the
coaxially-stacking 18-bp and 15-bp stems. This distantbdsaverage for the distance between nearest neighbors
(2.8 A) and the next nearest neighbors (5.6 A) for the adjabase pairs in an A-form helix. The distance is close
to a previous theoretical prediction (3). Figs. 7 C, D and &sthe rotation from the folded state to the open state.
The folded structure parametedg = ED = DF, hereDF = BD + BF = a+ b/(tan30) ~ 15 A (Fig. 7 C). We
slightly move point A so that DF in the open state is exactlyA15Ve also usal, = 17 A, so the distances between
the ends of the 15-bp stem and the 18-bp stem are equal topikdareentally measured donor-acceptor distances for
the folded state and the open state. During the rotationeol@ibp helix, we also radially and uniformly move the
15-bp helix in each step so that the helical stems do not batogeach other.

Il. Parameter sets and details of numerical computation

We assume that Naand Mg ions are hydrated and have radii of 3.5 A and 4.5 A, respdgtiv@ the test
calculations for the ion sizeflect, we also use divalent ions of radii 3.5 A and 5.5 A. Thesdiic constant is
assumed to be 20 for the helix interior and 78 (of bulk wat@5a&1C) elsewhere in the solution (4). Both the TBI and
the PB calculations require numerical solution of the moadr PB. A thin layer of the thickness of one cation radius
is added to the molecular surface to account for the excludkone layer of the cations. We also use the three-step
focusing process to obtain the detailed ion distributioarribe molecules (5). The grid size of the first run depends
on the salt concentration used. Generally, we keep it ldhgar four times of the Debye length, and the resolution of
the first run varies with the grid size in order to make theaitige process computationally feasible (1, 4, 6, 7). The
grid size (y, Ly, L) for the second and third runs are kept at (255, 204, 204) &nd, (119, 119) respectively, and
the corresponding resolutions are 1.7 A and 0.85 A per geshectively. Correspondingly, the numbers of the grid
points are 150121121 and 208141x141 for the second and third runs. Our results are robustséedt@against
different grid sizes.



[ll. Calculations with the TBI theory

The computations with the TBI theory involve the followirdgee steps (1, 4, 6, 7):
Step one.

For a given conformation of the three-way junction immersedalt solution, we solve the nonlinear Poisson-
Boltzmann equation (PB) to obtain the ion distributicin). Fromc(r) we determine the tightly bound region, which
is defined as the region where the Coulombic correlation &etwhe ions is strong, or the ions are so crowded that
they start to bump into each other (1). The tightly boundorgs usually a thin layer around RNA. We use PB to
treat the rest (weakly correlated) ions.

Step two.

For anN-nt nucleic acid helix, we divide the tightly bound regioriarN cells, each around a phosphate. To
account for the dielectric discontinuity at the Rdalvent interface, we use generalized Born model (GB) toutate
the Coulomb interactions;; for charges in the same celiindu;; for charges in dterent cells and j:

Uij = uﬁO' + U3, (1)
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whereep ande, are the dielectric constants of RNA helix interior and sntveespectivelyuf}o' is the polarization
energy, andJiOj is the Coulombic interaction energy in the uniform mediunaielectric constan¢,. The valued;; is
the distance between the two charges. The valyesida; are the Born radii for the two charggsandq; (4).

By averagingy; andu;; over all the possible positions of the tightly bound ionsdeshe respective tightly bound
cells, we compute the pairwise potential of mean force (PBK)) and®,(i, j). In the calculations fof,(i) and
D4(i, j), the excluded volumefiect between ions and between ions and the RNA are accounté&y # Lennard-
Jones potential:

V=(/ro)2-2(@/ro)®+1, forr<rg

V =0, forr > rg

wherer is the distance between the centers of the spheres thasegprihe ions and the chargeedutral groups of
the RNA, rg is the sum of the radii for the two spheres. The calculate@miatls of mean force are tabulated and
stored for the calculations of partition function.

We also use the GB model to compute the Born en€rgy) for charges inside thigh tightly bound cell, which
is calculated from an averaging of the self-energies of tiesphate i and of the ion over all the possible positions of
the ion (4).

Step three.

We discretize the ion distribution according to the numideéons in each cell. A given distribution of the tightly
bound ions is called a binding mode. We enumerate all theildedsinding modes. For each mode, we calculate
AGp, AGq andAGP:



AGp = 3 @1(i) + X D2(i]);

AGH = % @o(i);

AGa = 3 [ o Cal)Ze€lu(r) + ¢/ (N1 + kaT x [ Xolca(r)In &3 — (1) + . (0],

where the first and second integralsAiGy correspond to the enthalpic and entropic parts of the freeggnrespec-
tively. The valuey/(r) is the electrostatic potential for the system without thHfeudive salt ions.

Summation over the binding modes gives the total partitiorcfionZ, from which we can calculate the electro-
static free energy. The computationéfig@ency of the TBI model is limited by the enumeration of thedihg modes,
which scales with the number of nucleotiddsas 2 (for multivalent ions). Therefore, an exhaustive enunienat
for all modes is extremely computationally expensive. Inmnevious study (8), we developed dfi@ent algorithm
by including the low-energy modes exactly while sampling tigh-energy modes using Monte Carlo method.

IV Coulomb correlation vs. excluded volume correlation

To test the importance of the excluded volume correlatiorGmilomb correlation between the ions, we tufi o
the excluded volumefiect in the TBI model. To switchf®ion-ion excluded volume correlation, we 3ét= 0 for
bothr < rg andr > rg in the Lennard-Jones potential (s8applementary Material 111 ) and ignore the féect of
ion-ion volume exclusion for the tightly bound ions in thenfigurational integral in Eq. 6.

V. The sensitity of the electrostatic free eenrgy to the nomplanarity of the stems

To test the sensitivity of the electrostatic free energyhmrion-planarity of the three helix stems, we retain the
symmetry of the three-stem structure and rotate the hadixstdf-plane with diterent angles (see Fig. S1). Using
the diferent structures in Fig. S1 as the unfolded state, we findstinatl non-planarity does not cause significant
changes to the predicted folding stabilit (see Fig. S2).

VI. The sensitivity of the electrostatic free energy to the dentation between the 15-bp and 8-bp he-
lices

Following the experimental setup (the 8-bp helix is attactea glass surface by a biotin moiety), we rotate the
15-bp helix slightly while fixing the other helices in ordentary the orientation between the 15-bp and 8-bp helices
for the unfolded state. For the folded state, we use thetsteias shown in the Supporting Material I. We calculate
the electrostatic folding free energy to test the sengjtitd the orientation between 15-bp and 8-bp stems. We find
that the electrostatic folding free energy is quite robgstiast small variations of orientation between 15-bp argh 8-
helix (see Fig. S3).

VII. Populational distribution of the di fferent conformations

To test the validity of the two-state model for the ion cortcations used in the experiment, we investigate the
probability(P) distribution of the dierent conformations for ffierent ion concentrations. Hele = e AC/ksT ) 3. g-AGi/ksT
with AG = G(0) — Gnin, Where G¢) is the free energy landscape foffdrentd and Gy, is the minimal free energy
on the free energy landscape for the given ion concentra#anshown in Fig. S4, when the ion concentration are
very low (Na =0.05 M or Mg?*=0.000001 M), the maximally extended state is the most pagutate. For high ion



concentrations (e.g. 1M Nar 0.001M Md™), although the maximally extended (unfolded) state i(stibakly) fa-
vored electrostatically, the co-axial stacking force vaosthbilize the folded state so that the population is dotatha
by the folded state. Fig. S4 shows that for the ion conceatratused in the experiment (see Fig. 3S), the two-state
model is a valid model.
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Figure S1: (Unfolded) structures used to test the validitthe co-planarity. From left to right, the inter-axis argle
between each pair of helices are: 1{2on-planar), 116(non-planar) and 12Qplanar), respectively.
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Figure S2: The electrostatic folding free energ@ in KT as a function of the inter-axis angles between each pair of
helices. The inter-axis angles range from 12120 .
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Figure S3: The electrostatic folding free enery@ in KT as a function of inter-axis angles between the 8-bp helix
and the 15-bp helix. The inter-axis angles range fronf 163.25.
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Figure S4: The fractional population offtéirent states for éierent Neand Mg+ concentrations. The x-axig)(is the
inter-axis angles between the 18-bp helix and the 15-bg.h€&lie y-axis is the probability distributions offtérent
states. For the folded stafle= 60°, the non-electrostatic free energy (for the coaxial-stapkis added to the free
energy.
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