Osteonectin cDNA sequence reveals potential binding regions for calcium and hydroxyapatite and shows homologies with both a basement membrane protein (SPARC) and a serine proteinase inhibitor (ovomucoid)

(bone/calcium-binding proteins)

Mark E. Bolander^{*†}, Marian F. Young[‡], Larry W. Fisher[‡], Yoshihiko Yamada^{*}, and John D. Termine[‡]

*Laboratory of Developmental Biology and Anomalies and [‡]Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892

Communicated by R. H. Wasserman, December 10, 1987 (received for review August 4, 1987)

ABSTRACT Osteonectin is a prominent noncollagenous protein of developing bone. A 2150-base-pair cDNA coding for osteonectin, isolated from a bovine bone cell λ gt11 expression library, was sequenced and identified by comparison with protein sequence data. The nucleotide sequence predicts that osteonectin contains 304 amino acids, including a 17-residue signal peptide. Analysis of the deduced protein sequence suggests that the secreted protein contains at least four distinct structural domains. An acidic region at the amino terminus of the protein appears to be a potential hydroxyapatite-binding site. This is followed by a second domain, rich in cysteine, that shows sequence homology with cysteine-rich domains in turkey ovomucoid and other serine proteinase inhibitors. Two sequences homologous with central calcium-binding loops of "EF hands" and thus having potential to be high-affinity calcium-binding sites are located in two other domains within the carboxyl-terminal half of the protein. Finally, the osteonectin sequence shows near identity (>90%) with another protein, SPARC (secreted protein, acidic and rich in cysteine), secreted by mouse parietal endoderm. These data suggest that osteonectin, a protein present in bone and other selected tissues, is a multifunctional protein.

Osteonectin (M_r 32,000) is one of the principal noncollagenous proteins of bone (1–3). It is not readily extracted unless the tissue is demineralized, suggesting that it is protected from dissolution by the bone mineral (1–3). Immunolocalization studies demonstrated that osteonectin is a normal component of osteoid, the newly deposited matrix of bone (1, 4, 5), and indeed, osteonectin secreted by osteoblasts in culture is incorporated into the extracellular matrix (6, 7). In vitro binding studies indicated that osteonectin has high affinity for collagen, calcium, and hydroxyapatite (1, 3, 8), suggesting that it might function in bone by linking the mineral phase to the collagen matrix (1).

Osteonectin is composed of a single polypeptide chain with several intramolecular disulfide bonds (1-3, 9). Recent studies have focused on the calcium- and hydroxyapatitebinding potential of osteonectin and shown the protein to have a high-affinity calcium-binding site ($K_d = 3 \times 10^{-7}$ M) (3). Further, the affinity of osteonectin for hydroxyapatite ($K_d = 8 \times 10^{-8}$ M) is some 6 times stronger than that of osteocalcin (the bone Gla protein), which utilizes γ carboxyglutamic (Gla) residues for binding calcium and hydroxyapatite mineral (3). While these studies imply important functions for osteonectin in bone, little is known of its structure or biological functions. A cDNA clone to osteonectin has been isolated from a bovine osteoblast library and its characteristics have been described (10). We now report the sequencing of this clone and its entire deduced amino acid sequence.[§] These studies permit tentative identification of structural and functional domains in the molecule and comparison of the osteonectin sequence with that of other proteins.

MATERIALS AND METHODS

Isolation of a Bovine cDNA for Osteonectin. Cultured bone cells were prepared from cellular outgrowths of collagenase-treated fetal bovine bone (7). Total cellular RNA was extracted with guanidine hydrochloride (11), and $poly(A)^+$ RNA was isolated by oligo(dT)-cellulose chromatography (type III; Collaborative Research, Waltham, MA). A cDNA library was constructed in $\lambda gt11$ expression vector (10). An osteonectin clone was isolated by screening with antibody to osteonectin, by a modification of the method of Young and Davis (12), and then purified and characterized as described (10).

cDNA Sequencing. The sequence of the cDNA was determined by the method of Sanger et al. (13, 14). Two EcoRI restriction fragments, 0.2 and 0.3 kilobase (kb) long (10), were sequenced from both ends. The 1.6-kb EcoRI restriction fragment was sequenced on both strands by a shotgun method (15) using a total of 95 clones. Each nucleotide was sequenced on average six times. The nucleotide sequence of certain regions of the cDNA was determined by sequencing restriction fragments subcloned in phage M13 mp18 and mp19 DNA (13, 14). Restriction fragment sequences were aligned by sequencing a 0.6-kb Kpn I restriction fragment that overlapped all three EcoRI fragments. An ambiguity in the 1.6-kb EcoRI fragment was resolved by subcloning and sequencing a Xho I-Kpn I restriction fragment. An ambiguity in the 5' 0.2-kb EcoRI fragment was resolved by subcloning and sequencing a Kpn I-EcoRI restriction fragment.

Computer Analysis. The amino acid sequence was analyzed for secondary structure by the Chou–Fasman method (16). Hydrophobicity was predicted using the method of

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. \$1734 solely to indicate this fact.

Abbreviations: EF hand, the structure denoting calcium ion-binding sites found in calmodulin and homologous calcium-binding proteins; SPARC, secreted protein, acidic and rich in cysteine.

[†]To whom reprint requests should be sent at the present address: Orthopaedic Research Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.

[§]This sequence is being deposited in the EMBL/GenBank data base (Bolt, Beranek, and Newman Laboratories, Cambridge, MA, and Eur. Mol. Biol. Lab., Heidelberg) (accession no. J03233).

5 ' 1							CGO		GGAGO	сттво	стс	ствс	ствс	ствс	стсс	САСТ	GAGG	эттс		
55	ATG	AGG	GCC	TGG	ATC	ттс	ттт	стс	стт	TGC	CTG	GCC	GGG	AGG	GCC	TTG	GCA	GCC	сст	CAA
-17	<u>M</u> et	Aτg	Ala	Ттр	Ile	Phe	Phe	Leu	Leu	Ċys	Leu	Ala	Gly	A T g	Ala	Leu	Ala	Ala	Pro	Gln
									— Signa	Peptid	e ——				,	· ·				
115 4	C A G G l n	GAA Glu	GCC	; TTG Leu	CCT Pro	GAT Asp	G A G G L u	ACA Thr	G A A G l u	GTG Val	GTG Val	GAA	GAA	ACC	GTG	GCC	GAG	Val	GCC	GAG
·	••••								- · ÷					<u>, t</u>						
175	GTA	ccc	GTO	GGA	GCC	AAC	ccc	GTC	CAG	GTG	GAA	GTA	GGA	GAA	TTC	GAT	GAT	GGT	GCT	GAG
24	Val	Pro	Vai	GIY	AIO	Asn	Pro	Vai	GIN	Vai	Giu	Val	GTy	Glu	Phe	Asp	Asp	GTy	AIG	GTU
235	GAA	ACC	GAA	GAG	GAG	GTG	GTG	GCC	GĄG	AAC	ccc	TGC	CAG	AAC	CAC	ÇAÇ	TGC	A A A	CAC	GGC
44	Glu	Thr	GΙι	I G I u	Glu	Val	Val	Ala	Glu	Asn	Ρr_o	Cys	Gln	Asn	His	His	Cys	Lys	His	Gly
295	AAG	GTG	тос	GAA	стб	GAC	GAG	AAC	AAC	ACC	ccc	ATG	TGT	GTG	TGC	CAG	GAC	000	ACC	AGC
64	Lys	Val	Суs	Glu	Leu	Asp	Glu	Aşn	Asn	Thr	Pro	Met	Cys	Val	Cys	Gln	Asp	Pro	Thr	Ser
766	TOO	0.0 T	0.00			~~~	~ • ~	A	C A C		<u>ст</u> с	TOO							T T C	C A C
84	Cys	Pro	Alc	, CCC I Pro	Ile	Gly	Glu	Phe	Glu	Lys	Val	Cys	Ser	Asn	Asp	Aşn	Lys	Thr	Phe	Asp
																À				
415	TCT	TCC		САС	TTC	TTT Phe	GCC	ACC	AAG	TGC	ACA	CTG	GAG	GGC	ACC Thr	AAG	AAG	GGC	CAC	AAA
104	561	501	<u>, , , , , , , , , , , , , , , , , , , </u>		1 11 0	1 11 0			2,3	0,0		200	010	0.)		2,5	2,5	0.)		2,0
475	стс	CAC	сто	GAC	TAC	ATC	GGG	сст	TGC	AAA	TAC	ATC	ccc	ccc	TGC	CTG	GAC	тсс	GAG	CTG
124	Leu	His	Lei	i Asp	Tyr	Ile	Gly	Pro	Cys	Lys	Tyr	Ile	Pro	Pró	Cys	Ļeu	Asp	Ser	Glu	Leu
535	ACT	GAA	тт		TTG	CGC	ATG	CGG	GAC	TGG	стт	AAG	AAC	GTC	CTG	GTC	ACG	CTG	TAC	GAG
144	Thr	Glu	Phe	e Pro	Leu	Arg	Met	Arg	Asp	Trp	Leu	Lys	Asn	۷al	Leu	۷al	Thr	Leu	<u>Tyr</u>	Glu
595	AGG	GAC	GAC	GAC	A A C	AAC	стс	СТС	ACC	GAG	AAG	CAG	AAG	CTG	CGA	GTG	AAA	AAG	ATC	CAC
164	Arg	Asp	GIU	J Asp	Asn	Asn	Leu	Leu ——H	inr vdrophili	GIU cRegio	Lys n———	GIn	Lys	Leu	Arg	vai		L Y 8	1.6	HIS
655	GAG	ΑΑΤ	GAG	G AAG	cgc	CTG	GAG	GCT	GGC	TGC	GAC	CAT	сст	GTG	GAA	CTG	CTG	GCC	CGG	GAC
184	<u>Glu</u>	Asn	Glu	L <u>y</u> s	Ara	Leu	Glu	Ala	GIV	Суs	Asp	His	Pro	Val	Glu	Leu	Leu	Ala	Arg	Asp
715	ттс	GAG	; AA(3 A A C	: ТАС	AAC	ATG	TAC	ATC	ттс	сст	GTG	CAC	TGG	CAG	ттс	GGG	CAG	CTG	GAT
204	Phe	Ġlu	Lys	s Asr	Tyr	Asn	Met	Туr	Ιle	Phe	Pro	Val	His	Trp	Gln	Phe	Gly	Gln	Leu	Asp
775		~ • •					тас	<u>ст</u> с	тот	C A C		646	CTG	666	C C A	CTG	C G C	600		стт
224	GIn	His	, Pro	b Ile	Asp	Giy	Tyr	Leu	Ser	His	Thr	Glu	Leu	Ala	Pro	Leu	Arg	Ala	Pro	Leu
835	ATC	CCC	AT(G G A A	CAC His	TGC	ACC Thr	ACC Thr	CGC Ara	TTT Phe	TTC Phe	GAĢ Glu	ACA Thr	TGT	GAC Asp	CTG Leu	G A C A s p	AAC Asn	G A C A s d	AAG Lys
2 7 7	110					<u>(,) (</u>								<u> </u>						
895	TAC	ATC	GC (с сто	GAC	GAG	TGG	GCC	GGC	TGC	TTC	GGC	ATC	AAG	GAG	AAG	GAC	ATC	GAC	AAG
264	lyr	1 i e	8 A I (o Lei	I ASP	GIU	irp	AIG	GTY	Cys	Pne	Gry	IIe	LYS	Giù	Lys	Asb	116	A S P	Lys
955	GAC	сто	GT (G ATO	. ТАА	AGC	CATG	сстс	стсс	TGCA	GAAC		ттст	стст	сттт	GACC	ттсс	ссст	сстс	тттт
284	Asp	Leı	i Va	I e																
1029	ccc	C A A 1	GTT		тстт	TGGA	тсст	ттст	тстт	ствс	стбб	GGTC	AAGG	тсст		TAGA	стта	AACG	A A T A	CATT
1108	AAC	GGTO	CTA.			ATTT	TAAC		GTÇA	CGAC	ATTC	TTAĢ	стст	AACT	CAGC	тстс	A C G G	сстс	TTGC	тсас
1187	C C A	TGA	TGG	тсссо	; T T T T	сстс	TTGC	C G C G	TGCA	сстс	CACC	CATT	GTCT	TGGT	GGÇA	CACG	GGTG	GAAC	ACTT	GATC
1266	TGC	TCG	GTC	TGCC	Г Т С А А - Т А Т А	CACA TCAC	CATT	GCAT	CTTC	AGAT	TTTC	TACT	TTTC CCTA	TGTT	GCCT	ACTA	ATAT	TCAC		AAGT
1424	ACI	AGG	CACG	а а т т Т G А Т т	 G T T G G	CAAG	GATG	сттс	TAGG	GCTA	GAGG	ATCA	GTGG	TGGG	AGAG	ACCT	GCAG	AATC	CACC	AGCC
1503	A G A	ACT	GCAG	A T A A	C G A A 1	стта	TGGT	CAGO	GGCT	GTGA	CTGA		AGGA	AACT	GAGG	CTGT	GTTC	T G A A	AGTA	C A T A
1582	***	тст		T A T A	C C C A (3 T T C T	TCAC	CATO	стссс - т с с с	стсс	TCAC	; T T T G	G C A G T	GCCA		: T T T I : G T G (TGCA	.TTAG	GCAA	TTTG TGCA
1740	CTC GGG	A G A C T G	CITT CTCC	CCTC	A G C C / C A A A (. I G G C C T A C C	 : T T T A		GATGC	 	CAGO	GAGO	CTG1		ACCA	GAAA	GACC	A A A A	TCAA	GAGC
1819	GAG	GAG	CAGA	ACGT	GGTA		GAAA	AAGO	GGCAG	GTGG		A T T G G	3 T T T 1	стт	гтссс	; T T T I	стст	TTTC		TTCA
1898	C A 1	гстс	GATG	G C T G	TCAC	CAGAG	ATCI	ттси	AGTCG	CTAG	CATO	GTTC	стсс	стто	стссо	стс	C C A C	; T T T T	TCT1	ТСТ <u>А</u>
1977	<u>TT/</u>	ATC		GAAA	T T T C	A A A A 1	CAAT		A T G G 1 C T C T 1	r C G G A T G C C A	TCTO	CACA(TGTC	GGCTO	3 A G A /	A C T C (G A C A	GTTC/	ACCTC TTTC4	; C A A G A A A A ⁻	F C A T 1	I T C A T A G T A
2135	G A /	 G	TAAA		****					/							· · · ·			
3.																				

FIG. 1. Nucleotide sequence of bovine osteonectin cDNA and deduced amino acid sequence. Nucleotides and amino acid residues are numbered at left. Possible polyadenylylation signals in the 3' untranslated sequence are underlined. The signal peptide (italics) is labeled with negative numbers. The first amino-terminal residue of the bone matrix protein is numbered 1. Two amino-terminal homologous regions are boxed with heavy lines. Potential glycosylation sites are marked by arrowheads. A 30-residue hydrophilic region is underlined. Cysteine residues are boxed. The termination codon is indicated by a black box.

Kyte and Doolittle (17). The National Biomedical Research Foundation (NBRF) protein data base[¶] was searched for sequence homologies by the method of Lippman and Pearson (18).

RESULTS

Sequencing the cDNA Isolated from the Bovine Library. We previously reported a cDNA clone, 2150 base pairs long, encoding osteonectin. This clone was isolated by antibody screening from a bovine osteoblast (10) cDNA library in the expression vector λ gt11. RNA blot analysis showed that it hybridized to a mRNA species of ≈ 2.0 kb (10). Primer-extension analysis indicated that the 5' end of the mRNA was \approx 45 bases from the 5' end of the cDNA (data not shown).

The 2150-base sequence obtained by sequencing the cDNA and the predicted amino acid sequence of the protein it encodes are illustrated in Fig. 1. A methionine codon at base 55 is followed by an open reading frame of 304 amino acids extending to a stop codon at base 967. This stop codon is followed by multiple stop codons in all three reading frames.

Analyses of the Nucleotide Sequence. A 9-base sequence surrounding the methionine codon, starting at base 49, GC ACC ATG A, fits well with the consensus sequence for eukaryotic initiation sites (19). The 5' untranslated sequence is G + C-rich, with four GCCT repeats, extending from base 14 to base 32. A polyadenylylation signal, AAAATAAAAA, begins at position 2121 (20).

Primary Structure of Osteonectin. The deduced amino acid sequence was analyzed by computer predictions of hydrophobicity and secondary structure. Amino acid residues Ala-1 through Val-31 are in agreement with the known amino-terminal sequence of bovine bone osteonectin (10). A 17-residue polypeptide preceding the known amino-terminal sequence of the secreted protein is rich in hydrophobic amino acids, as is characteristic for signal peptides (21). The remainder of the protein, 287 amino acids, can be divided into four distinctive domains (Fig. 2). The first domain (I) at the amino terminus, an acidic region extending from Ala-1 to Pro-54, is rich in glutamic and aspartic acids (18 of 54 residues) and in hydrophobic residues (valine, leucine, and phenylalanine; 13 of 54 residues). Throughout this entire region there are no positively charged amino acid residues. This osteonectin domain contains two homologous internal repeats (66% sequence identity), between the sequences from Glu-15 to Pro-25 and from Glu-43 to Pro-54 (Fig. 1).

A second domain (II) extends approximately from Cys-55 to Cys-138 and contains two potential N-glycosylation sites, at Asn-71 and Asn-99. This region, 84 amino acids in length, contains 11 of the 15 cysteine residues in osteonectin. A third distinctive region (domain III) contains a sequence of hydrophilic amino acids (43 of 56 residues) extending approximately from Leu-139 to Gly-192. Chou–Fasman (16) analysis sug-

FIG. 2. Model of osteonectin structure. The four domains are labeled I-IV. Approximate positions of the 15 cysteine residues are marked (-S); the precise locations of disulfide bonds are not known. Triangles indicate cleavage site of signal peptide (position 1) as well as potential glycosylation sites (positions 71 and 99); open boxes represent internal homologies; broken lines indicate the hydrophilic region including one of the two "EF-hand" calciumbinding loop structures (hatched boxes).

gests the presence of α -helical structure (residues Leu-139 to Arg-164 and Arg-178 to Gly-192) in this region, which contains an almost equal number of negatively and positively charged residues. The remaining 95 amino acids of the protein, from approximately Cys-193 to Ile-287, form a fourth domain (IV). This region contains the remaining four cysteine residues of osteonectin and also displays potential for α helical structure (residues Leu-243 to Cys-257 and Trp-271 to Ile-287). This domain also contains 12 of the total 25 aromatic amino acids in the 304-residue preosteonectin molecule.

Possible Calcium- and Hydroxyapatite-Binding Domains. A search of the NBRF protein data base (18) showed sequence homology between two regions of osteonectin, Asp-165 to Lys-17o in domain III and Asp-258 to Glu-269 in domain IV, and the central calcium-binding loop of "EF hand" structures found in bovine brain calmodulin (22, 23), the calcium-binding protein of muscle (24), and both the α and β chains of bovine S-100 protein (25) (Fig. 3). On the basis of crystallographic data gathered for carp muscle parvalbumin, Kretsinger (23) proposed that calcium binds in this 12 amino acid loop within an "EF hand" structure. Carbonyl-containing residues at the X, Y, Z, -Y, and -Z positions of the loop stabilize calcium binding.

Osteonectin also has a high affinity for hydroxyapatite ($K_d = 8 \times 10^{-8}$ M) and can inhibit hydroxyapatite crystal growth at very low protein concentrations (1.5×10^{-7} M) (3, 8). The amino terminus of osteonectin is completely acidic, with 15 glutamic and 3 aspartic residues in the first 54 residues of the protein. These negatively charged residues also tend to be clustered in this domain of the molecule and thus could effectively interact with the hydroxyapatite lattice (26).

Homologies with Serine Proteinase Inhibitors. The search of the NBRF protein data base also showed partial homology between osteonectin and serine proteinase inhibitors. The homology is strongest with ovomucoids (27, 28), but also includes acrosyn inhibitor (29) and pancreatic trypsin inhib-

	х		Y		z	G	-Y		-X			-Z
	1	2	3	4	5	6	7	8	9	10	11	12
Osteonectin 165-176	D	E	D	N	Ν	L	L	т	E	к	٥	ĸ
Osteonectin 258-269	D	L	D	N	D	К	Υ	\Box	Α	L	D	E
Bovine Brain Calmodulin: DI	D	к	D	G	N	G	т	11	т	т	к	E
Ca-binding Prot. of muscle: DIII	D	т	D	κ	D	R	s	Ш	D	L	N	E
Bovine S-100 alpha: Dl	G	κ	E	G	D	к	Y	к	L	s	ĸĸ	E

FIG. 3. Comparison of osteonectin sequences with EF-hand sequences in domain I of bovine brain calmodulin (22, 23), domain III of the calcium-binding protein of muscle (24), and domain I of bovine brain S-100 α chain (25). X, Y, Z, -X, and -Z denote carbonyl donor residues within the central calcium-binding loop of the EF hand (23). G denotes position of the central glycine residue in calmodulin (23). Homologous residues are boxed. Amino acid residues are represented by standard one-letter symbols.

[¶]Protein Identification Resource (1987) Protein Sequence Database (Natl. Biomed. Res. Found., Washington, DC), Release 12.0.

FIG. 4. Comparison of osteonectin sequence with sequences of serine proteinase inhibitors, including domain III of turkey ovomucoid (27), bovine acrosyn inhibitor (29), and bovine pancreatic trypsin inhibitor (30). Standard one-letter amino acid symbols are shown. Homologous residues are boxed. Alignment between cysteine residues was made by inserting spaces into the serine proteinase inhibitor sequence, indicated as dashes. Numbers above the sequence refer to residues in the osteonectin sequence; numbers below refer to positions of cysteine residues in the proteinase inhibitor sequences. Within the serine proteinase inhibitors, disulfide bonds occur between cysteines 1 and 5, 2 and 4, and 3 and 6, as indicated by solid lines. The active site in the serine proteinase inhibitors is marked by an arrowhead.

itor (30), two other members of this protein class (Fig. 4). Ovomucoids are avian egg proteins, each with three repeating domains (27, 28). Osteonectin appears to be homologous with all three domains, but the homology is strongest with the third (16 of 56 residues). Other members of this protein family have between one and seven equivalent domains (acrosyn inhibitor, ovoinhibitor, pancreatic trypsin inhibitor). The homology with osteonectin cysteine residues (6 of 7 residues) is indicated in Fig. 4. The structure of the serine proteinase inhibitors has been elucidated by NMR spectroscopy; the regions homologous to osteonectin are characterized by three disulfide bonds between six cysteine residues, forming a Kringle-type structure (31).

Homologies Between Osteonectin from Bovine and Human Bone and Two Non-bone Proteins. The amino-terminal sequence of human osteonectin, isolated from human stillborn tibia, was determined previously (9). A comparison of this sequence with that of bovine osteonectin (10) shows almost complete sequence identity in the first 36 amino acid residues (Fig. 5). Mason *et al.* (32) published a partial amino acid sequence of a protein secreted by cultured bovine endothelial cells (33, 34). The homology between this protein and osteonectin appears strong (Fig. 5), with sequence identity occurring in the first 10 amino acid residues.

The sequence of a cDNA encoding SPARC (an acronym for secreted protein, acidic and rich in cysteine), a protein secreted by mouse parietal endoderm, has been reported (32). As indicated by Mason *et al.* (32), a strong homology exists between SPARC and osteonectin, with 70% identity in the nucleotide sequences and >90% identity in the amino acid sequences. The amino acid sequence differences are concentrated in the amino-terminal region of the molecule (16 of 22 differences are located in domain I, Fig. 2). The most notable of the six amino acid differences between SPARC and osteonectin found outside domain I is the deletion of Cys-193 from the mouse SPARC sequence. Another difference, between Ser-70 (SPARC) and Asn-71 (osteonectin), generates a second potential glycosylation site.

DISCUSSION

The data presented here predict the amino acid sequence of bovine bone osteonectin, a protein of 287 amino acids ($M_r =$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Osteonectin (Bovine-ON)	Ala	Pro	Gln	Gln	Glu	Ala	Leu	Pro	Asp	Ġlu	Thr	Glu	Val	Val	Glu	Glu	Thr	Val	Ala	Glu
Osteonectin (Human-ON)	Ala	Pro	Gln	Gln	Glu	Ala	Leu	Pro	Asp	Glu	Thr	Glu	Val	Val	Gļu	Glu	Thr	Val	Ala	Glu
Endothelial Cell Culture Shock Protein (Bovine)	Ala	Pro	Gln	Gin	Glu	Ala	Leu	Pro	Asp	Glu	Cys	XXX	Val	Vai						
SPARC (Mouse)	Ala	Pro	Gin	Gin	Thr	Giu	Vat	Ala	Glu	Glu	lle.	XXX	Val	Glu	Ģlu	Glu	Thr	Val	Val	Glu
	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Bovine-ON	Val	Ala	Glu	Val	Pro	Val	Gly	Ala	Asn	Pro	Val	Gin	Val	Glu	Val	Gly	Glu	Phe	Asp	Asp
Human-ON	Val	Thr	Głu	Val	Pro	Thr	Gły	Ala	Asn	Pro	Val	Gln	Vai	Glu	Val	Gly				
SPARC	Glu	Thr	Gly	Val	Pro	Val	Gly	Ala	Asn	Pro	Val	Gln	Val	Glu	Met	Gly	Glu	Phe	Glu	Asp

32,782). The protein appears to have four distinct domains: domain I, a 54-residue amino-terminal sequence rich in acidic and carboxyl-containing amino acid residues; domain II, an 84-residue sequence containing two potential Nglycosylation sites and 11 cysteine residues; domain III, a 54-residue hydrophilic region containing a potential calciumbinding loop sequence; and domain IV, a 95 amino acid sequence at the carboxyl terminus of the protein containing four cysteine residues, almost half of the total protein aromatic amino acid content, and a second calcium-binding loop homologous sequence. Domains III and IV also contain regions of α -helical secondary structure.

Particularly notable in osteonectin are distinct regions likely to have high affinity for binding both calcium and hydroxyapatite. These include two sequences homologous to the central calcium-binding loops in "EF hands" (23) of calmodulin and other intracellular calcium-binding proteins. Osteonectin sequences show partial homology with EF-hand calcium-binding loops at four of five calcium binding coordinates (23), with differences occurring at either the -X or -Z coordinates of the loop (Fig. 3). In addition, there is substitution of either Leu-170 or Lys-263 for the central glycine residue of the loop. These substitutions might suggest different orientation of some residues serving as binding ligands within the loop. However, as seen in the calciumbinding protein of muscle (24) and in bovine S-100 protein (25), such substitutions are still consistent with calcium binding. In calmodulin and other EF-hand structures, calcium-binding loops are stabilized by adjacent α -helices (23). Accordingly, the two homologous sequences in osteonectin are bracketed by regions of potential α -helices. Calciumbinding loops stabilized by structures other than α -helices have been demonstrated recently as well (35). In this regard, Mann et al. (36) found that in SPARC, the second calciumbinding loop is stabilized by a disulfide bond between Cys-257 and Cys-273. Finally, osteonectin was reported to have at least one high-affinity calcium-binding site (3). Based on fluorescence data, Romberg et al. (3) postulated that calcium binding occurs very near a tyrosine or tryptophan residue. We predict a tryptophan residue (Trp-270) at the carboxyl terminus of one EF-hand-homologous domain (Asp-258 to Glu-269), as well as a tyrosine residue (Tyr-264) in the seventh position of the loop proper.

> FIG. 5. Amino-terminal sequence of bovine osteonectin (10), human osteonectin (9), bovine endothelial cell culture shock protein (32), and mouse SPARC (32). Amino acid residues are numbered starting with 1 at the known or presumed amino terminus. Divergent residues are printed in reverse font.

The acidic amino-terminal region of osteonectin could well provide a potential low-affinity calcium-binding site and/or the hydroxyapatite-binding site of osteonectin. The clustering of carboxylate residues in this region provides a suitable environment for apatite binding (26). Moreover, the studies of Romberg et al. (3) indicated that the inhibitory activity of osteonectin on hydroxyapatite crystal growth did not correlate with high-affinity calcium binding (3, 8), suggesting that different sites are involved in these two actions of the protein.

Based on our analysis of the amino acid sequence, we propose a possible model for osteonectin structure (Fig. 2). The signal peptide and the four principal domains are labeled, as are the two N-glycosylation sites, the internal homologies, and the EF-hand calcium-binding loop structures. The cysteine-rich regions are indicated, and the approximate positions of the cysteine residues are denoted (-S). Homologies with the positions of cysteine residues in serine proteinase inhibitors suggest potential disulfide bonding between the six cysteine residues indicated in Fig. 4. Positions of other disulfide bonds cannot currently be predicted, although preliminary data may suggest locations of two of them (36). While proteinase inhibitor activity for osteonectin has not been demonstrated (34), this possibility may merit further investigation based on these new data. However, the osteonectin sequence contains inserted residues, not contained in serine proteinase inhibitors, in the region of the active site.

Previous studies have shown that osteonectin is a major noncollagenous protein in developing bone and that it occurs in greater amounts in bone than in other tissues so far examined (1-5, 8, 37, 38). Additionally, since osteonectin has a high affinity for collagen and hydroxyapatite, it was suggested that osteonectin could be involved in linking both matrix and mineral in bone (1). However, osteonectin has been shown to be present in human platelets (39). Other studies have shown that parietal endoderm and related cells produce SPARC, an osteonectin homologue (32, 40), whereas cultured fibroblasts (39) and endothelial cells (33, 34) synthesize the protein in vitro. Further, SPARC (40) and osteonectin (10) mRNA appear to be widely distributed. The degree of homology noted above between mouse SPARC and bovine osteonectin sequences is most remarkable (>90% sequence identity). Endodermal and endothelial cells also produce an extracellular matrix that appears in vitro to include osteonectin (33, 34, 37). Other studies have suggested that the assembly of basement membranes may require calcium (41) and that a protein similar to osteonectin, called BM40, is present in this de novo matrix (42). Preliminary sequence evaluation of BM40 shows strong homology to both osteonectin and SPARC, indicating that these are identical proteins (36). It may be possible, then, that the deposition of many collagenous matrices is calciumdependent and could involve osteonectin-like proteins to help regulate matrix assembly.

Note. While this paper was under review, a more detailed description of the calcium-binding properties of the mouse protein was published (43).

We thank I. Mason and B. Hogan for information on the nucleotide sequence of SPARC prior to publication. We thank M. Sasaki (National Institute of Dental Research, National Institutes of Health) for assistance with DNA sequencing, M. Kanehisa (Kyoto University, Japan) for the IDEAS program, D. Lippman (National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, National Institutes of Health) for the FAST program, R. Staden (The Medical Research Council, England) for the STADEN-2 program, and S. Taylor (National Institute of Dental Research) for assistance with the computer programs. This work was partially

supported by a grant to M.E.B. from the American Academy of Orthopaedic Surgeons, The Journal of Bone and Joint Surgery, and the Orthopaedic Research and Education Foundation.

- Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., Mc-Garvey, M. L. & Martin, G. R. (1981) Cell 26, 99-105.
- Termine, J. D., Belcourt, A. B., Conn, K. M. & Kleinman, H. K. (1981) J. Biol. Chem. 256, 10403-10408. Romberg, R. W., Werness, P. G., Lollar, P., Riggs, B. L. & Mann,
- 3. K. G. (1985) J. Biol. Chem. 260, 2728-2736.
- Bianco, P., Hayashi, Y., Silvestrini, G., Termine, J. D. & Bonucci, E. (1985) Calcif. Tissue Int. 37, 684-686.
- Jundt, G., Berghauser, K.-H., Termine, J. D. & Schulz, A. (1987) Cell 5. Tissue Res. 248, 409-415.
- Gehron-Robey, P., Kirshner, J. A., Conn, K. M. & Termine, J. D. 6. (1985) in Current Advances in Skeletogenesis, eds. Ornoy, A., Harell, A. & Sela, J. (Elsevier, Amsterdam), pp. 461-466.
- Gehron-Robey, P. & Termine, J. D. (1985) Calcif. Tissue Int. 37, 7. 453-458.
- Romberg, R. W., Werness, P. G., Riggs, B. L. & Mann, K. G. (1986) Biochemistry 25, 1176-1180.
- Fisher, L. W., Hawkins, G. R., Tuross, N. & Termine, J. D. (1987) J. Biol. Chem. 262, 9702-9708.
- Young, M. F., Bolander, M. E., Day, A. A., Ramis, C. I., Robey, 10. P. G., Yamada, Y. & Termine, J. D. (1986) Nucleic Acids Res. 14, 4483-4497.
- Adams, S. L., Sobel, M. E., Howard, B. H., Olden, K., Yamada, K. M., de Crombrugghe, B. & Pastan, I. (1977) Proc. Natl. Acad. Sci. USA 74, 3399-3403.
- 12. Young, R. A. & Davis, R. W. (1983) Proc. Natl. Acad. Sci. USA 80, 1194-1198.
- Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467. 13.
- 14. Sanger, F., Coulson, A. R., Bartell, B. G., Smith, A. J. A. & Roc, B. A. (1980) J. Mol. Biol. 143, 161-178.
- 15. Deininger, P. G. (1983) Anal. Biochem. 129, 216-223
- Chou, P. Y. & Fasman, G. P. (1977) J. Mol. Biol. 115, 135-175. 16.
- 17. Kyte, J. & Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132.
- Lippman, D. J. & Pearson, W. R. (1985) Science 227, 1435-1441. 18.
- Kozak, M. (1984) Nucleic Acids Res. 12, 857-872 19.
- 20. Proudfoot, N. T. & Brownlee, G. G. (1976) Nature (London) 263, 211-214.
- 21. Von Heijne, G. (1985) J. Mol. Biol. 184, 99-105.
- Kakiuchi, S. & Yamazaki, R. (1970) Biochem. Biophys. Res. Commun. 22. 41, 1104-1110.
- Kretsinger, R. H. (1980) CRC Crit. Rev. Biochem. 8, 119-174. 23.
- Cox, J. A., Wnuk, W. & Stein, E. A. (1976) Biochemistry 15, 2613-2618. 24.
- 25. Calissano, P., Alema, S. & Fasella, P. (1975) Proc. FEBS Meet. 41, 207-215
- Peckauskas, R. A., Termine, J. D. & Pullman, I. (1976) Biopolymers 15, 26. 569-581.
- 27. Kato, I., Schrode, J., Kohie, W. J. & Laskowski, M., Jr. (1987) Biochemistry 26, 193-201.
- 28. Laskowski, M., Jr., Kato, I., Ardelt, W., Cook, J., Denton, A., Empie, M. W., Kohr, W. J., Park, S. J., Parks, K., Schatzley, B. L., Schoenberger, O. L., Tashiro, M., Vichot, G., Whatley, H. E., Wieczorek, A. & Wieczorek, M. (1987) *Biochemistry* **26**, 202–221.
- Meloun, B., Cechova, D. & Jonakova, V. (1983) Hoppe-Seylers Z. Physiol. Chem. 364, 1665-1670. 29.
- Greene, L. J. & Bartelt, D. C. (1969) J. Biol. Chem. 244, 2646-2657. 30
- 31. Guy, O., Shapanica, R. & Greene, L. J. (1971) J. Biol. Chem. 246, 7740-7747.
- 32. Mason, I. J., Taylor, A., Williams, J. G., Sage, H. & Hogan, B. L. M. (1986) EMBO J. 5, 1465-1472.
- 33. Sage, H. (1985) Biochemistry 24, 7430-7440.
- 34. Sage, H., Johnson, C. & Bornstein, P. (1984) J. Biol. Chem. 259, 3993-4007
- 35. Vyas, N. K., Vyas, M. N. & Quiocho, F. A. (1987) Nature (London) 327, 635-638.
- Mann, K., Deutzmann, R., Paulsson, M. & Timpl, R. (1987) FEBS Lett. 36. 218, 167-172.
- Gehron-Robey, P., Fisher, L. W., Stubbs, J. T. & Termine, J. D. (1987) 37. in Development and Diseases of Cartilage and Bone Matrix, UCLA Symposia on Molecular Biology, New Series, eds. Sen, A. & Thornhill, T. (Liss, New York), Vol. 46, pp. 115–126. Stenner, D. D., Rombert, R. W., Tracy, R. P., Katzman, J. A., Riggs,
- 38. B. L. & Mann, K. G. (1984) Proc. Natl. Acad. Sci USA 81, 2868-2872.
- 39. Stenner, D. D., Tracy, R. P., Riggs, B. L. & Mann, K. G. (1986) Proc.
- Natl. Acad. Sci. USA 83, 6892-6896. Mason, I. J., Murphy, D., Munke, M., Francke, U., Elliott, R. W. & 40. Hogan, B. L. M. (1986) EMBO J. 5, 1831-1837.
- Yurchenco, P. O., Tsilibary, E. C., Charonis, A. S. & Furthmayr, H. 41. (1985) J. Biol. Chem. 260, 7636-7644.
- Dziadek, M., Paulson, M., Aumailley, M. & Timpl, R. (1986) Eur. J. 42. Biochem. 161, 455-464.
- Engel, J., Taylor, W., Paulsson, M., Sage, H. & Hogan, B. (1987) 43. Biochemistry 26, 6958-6965.