SUPPLEMENTARY MATERIAL

Supplementary Figures

Figure 1. Properties of α -syn/A β_{42} chimeras. (a) Schematic illustration of the sequences tested in yeast. The A β_{42} F19S/L34P mutant does not aggregate, and was included as a control. (b) Both NACsubA β and NACsubA β mut variants decreased α -syn toxicity. When expressed independently, neither A β nor A β mut were toxic to yeast. (c) Microscopy of GFP-tagged proteins. NACsubA β formed fewer aggregates than wild-type; NACsubA β mut was cytosolic. A β formed intracellular inclusions in yeast, whereas A β mut remained dispersed throughout the cytoplasm.

Figure 2. Structural content of wild-type α -syn, NACsubA β and NACsubA β mut in 4% HFIP, determined by CD spectroscopy.

Figure 3. Microscopic images of GFP-tagged α -syn variants, arranged in order of decreasing yeast toxicity. Dup9-30 and del9-30 GFP fusions exhibited very weak fluorescence (data not shown), possibly attributable to GFP misfolding or cell lysis. The representative pictures shown were taken 48 h after induction of protein expression (growth in galactose media), using identical excitation intensity and exposure time.

Figure 4. Yeast maximum specific growth rate of GFP-tagged α -syn variants, arranged in order of increasing deletion size. GFP was included as a control.

Figure 5. CD spectra of α -syn variants, in the presence of 4% HFIP.

Figure 6. SDS PAGE gel of α -syn variants.

DNA sequences

wild-type α -syn, 420 bp

dup9-30 α-syn, 486*bp*

del9-30 α*-syn*, 354*bp*

ATGGATGTATTCATGAAAGGACTTGGAAAGACAAAAGAGGGGTGTTCTCTATGTAGGCTCC AAAACCAAGGAGGGAGTGGTGGCATGGTGGGGGACAGTGGCTGAGAAGACCAAAGAGCA AGTGACAAATGTTGGAGGAGCAGTGGTGACGGGTGTGACAGCAGTAGCCCAGAAGACAG TGGAGGGAGCAGGGAGCATTGCAGCAGCCACTGGCTTTGTCAAAAAGGACCAGTTGGGC AAGAATGAAGAAGGAGCCCCACAGGAAGGAATTCTGGAAGATATGCCTGTGGATCCTGA CAATGAGGCTTATGAAATGCCTTCTGAGGAAGGGTATCAAGACTACGAACCTGAAGCCTA A

del2 α -syn, 417bp

del2-3 α -syn, 414 bp

ATGTTCATGAAAGGACTTTCAAAGGCCAAGGAGGGAGTTGTGGCTGCTGCTGAGAAAACC AAACAGGGTGTGGCAGAAGCAGCAGGAAGACAAAGAGAGGGTGTTCTCTATGTAGGCTC CAAAACCAAGGAGGGAGTGGTGCATGGTGTGGCAACAGTGGCTGAGAAGACCAAAGAGC AAGTGACAAATGTTGGAGGAGCAGTGGTGACGGGTGTGACAGCAGTAGCCCAGAAGACA GTGGAGGGAGCAGGGAGCATTGCAGCAGCCACTGGCTTTGTCAAAAAGGACCAGTTGGG CAAGAATGAAGAAGGAGCCCCACAGGAAGGAATTCTGGAAGATATGCCTGTGGATCCTG ACAATGAAGGCTTATGAAATGCCTTCTGAGGAAGGGTATCAAGACTACGAACCTGAAGCCT AA

del2-4 α -syn, 411bp

ATGATGAAAGGACTTTCAAAGGCCAAGGAGGGAGTTGTGGCTGCTGCTGAGAAAACCAA ACAGGGTGTGGCAGAAGCAGCAGGAAGGAAAGACAAAAGAGGGTGTTCTCTATGTAGGCTCCA AAACCAAGGAGGGAGTGGTGGCATGGTGTGGCAACAGTGGCTGAGAAGACCAAAGAGCAA GTGACAAATGTTGGAAGGAGCAGTGGTGACGGGTGTGACAGCAGCAGGAAGACCAAAGAACAGT GGAGGGAGCAGGGAGCATTGCAGCAGCCACTGGCTTTGTCAAAAAGGACCAGTTGGGCA AGAATGAAGAAGGAGCCCCACAGGAAGGAATTCTGGAAGATATGCCTGTGGATCCTGAC AATGAAGGCTTATGAAATGCCTTCTGAAGGAAGGGTATCAAGACTACGAACCTGAAGCCTAA

del2-5 α -syn, 408bp

ATGAAAGGACTTTCAAAGGCCAAGGAGGGAGTTGTGGCTGCTGCTGAGAAAACCAAACA GGGTGTGGCAGAAGCAGCAGGAAAGACAAAAGAGGGTGTTCTCTATGTAGGCTCCAAAA CCAAGGAGGGAGTGGTGCATGGTGTGGCAACAGTGGCTGAGAAGACCAAAGAGCAAGTG ACAAATGTTGGAAGGAGCAGTGGTGACGGGTGTGACAGCAGTAGCCCAGAAGACAGTGGA GGGAGCAGGGAGCATTGCAGCAGCCACTGGCTTTGTCAAAAAGGACCAGTTGGGCAAGA ATGAAGAAGGAGCCCCACAGGAAGGAATTCTGGAAGATATGCCTGTGGATCCTGACAATG AGGCTTATGAAATGCCTTCTGAGGAAGGGTATCAAGACTACGAACCTGAAGCCTAA

del2-7 α-syn, 402*bp*

ATGCTTTCAAAGGCCAAGGAGGGAGTTGTGGCTGCTGCTGAGAAAACCAAACAGGGTGTG GCAGAAGCAGCAGGAAAGACAAAAGAGGGTGTTCTCTATGTAGGCTCCAAAACCAAGGA GGGAGTGGTGCATGGTGTGGCAACAGTGGCTGAGAAGACCAAAGAGCAAGTGACAAATG TTGGAGGAGCAGTGGTGACGGGTGTGACAGCAGTAGCCCAGAAGACAGTGGAGGAGCA GGGAGCATTGCAGCAGCCACTGGCTTTGTCAAAAAGGACCAGTTGGGCAAGAATGAAGA AGGAGCCCCACAGGAAGGAATTCTGGAAGATATGCCTGTGGATCCTGACAATGAGGCTTA TGAAATGCCTTCTGAGGAAGGGTATCAAGACTACGAACCTGAAGCCTAA

del2-9 α-syn, 396bp

del2-11 α*-syn*, 390*bp*

A30P α-syn, 420bp

AAGAGCAAGTGACAAATGTTGGAGGAGCAGTGGTGACGGGTGTGACAGCAGTAGCCCAG AAGACAGTGGAGGGAGCAGGGAGCATTGCAGCAGCCACTGGCTTTGTCAAAAAGGACCA GTTGGGCAAGAATGAAGAAGGAGCCCCACAGGAAGGAATTCTGGAAGATATGCCTGTGG ATCCTGACAATGAGGCTTATGAAATGCCTTCTGAGGAAGGGTATCAAGACTACGAACCTG AAGCCTAA

del2-60 α-syn, 243bp

ATGGAGCAAGTGACAAATGTTGGAGGAGCAGTGGTGACGGGTGTGACAGCAGTAGCCCA GAAGACAGTGGAGGGAGCAGGGAGCATTGCAGCAGCAGCACTGGCTTTGTCAAAAAGGACC AGTTGGGCAAGAATGAAGAAGGAGCCCCACAGGAAGGAATTCTGGAAGATATGCCTGTG GATCCTGACAATGAGGCTTATGAAATGCCTTCTGAGGAAGGGTATCAAGACTACGAACCT GAAGCCTAA

N-term, 180bp

A30P N-term, 180bp

dup61-79 α-syn, 477 *bp*

del80-95 α*-syn*, *372bp*

del61-95 α*-syn*, 315bp

GATATGCCTGTGGATCCTGACAATGAGGCTTATGAAATGCCTTCTGAGGAAGGGTATCAA GACTACGAACCTGAAGCCTAA NAC, 108bp

ATGGAGCAAGTGACAAATGTTGGAGGAGCAGTGGTGACGGGTGTGACAGCAGTAGCCCA GAAGACAGTGGAGGGAGCAGGGAGCATTGCAGCAGCCACTGGCTTTGTCTAA

dup125-410 α*-syn*, 468*bp*

del96-124 α*-syn*, *333bp*

del121-140 α*-syn*, 360 bp

del96-140 α*-syn*, 285*bp*

C-*term*, 138*bp*

NACsubA $\beta \alpha$ -syn, 441bp

NACsubA $\beta_{mut} \alpha$ -syn, 441bp

*Aβ*₄₂, 129bp

 $A\beta_{mut}$, 129bp

Protein sequences

wild-type α -syn

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKT KEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDP DNEAYEMPSEEGYQDYEPEA

dup9-30 α -syn

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAASKAKEGVVAAAEKTKQGVAEAAGKTKEGV LYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKK DQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA

del9-30 α -syn

MDVFMKGLGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKT VEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA

del2 α -syn

MVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTK EQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPD NEAYEMPSEEGYQDYEPEA

del2-3 α -syn

MFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKE QVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDN EAYEMPSEEGYQDYEPEA

del2-4 α -syn

MMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQ VTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNE AYEMPSEEGYQDYEPEA

del2-5 α -syn

MKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVT NVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAY EMPSEEGYQDYEPEA

del2-7 α -syn

MLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNV GGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEM PSEEGYQDYEPEA

del2-11 α-syn

MKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGA VVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEE GYQDYEPEA

A30P α -syn

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAPGKTKEGVLYVGSKTKEGVVHGVATVAEKT KEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDP DNEAYEMPSEEGYQDYEPEA

dup61-79 α*-syn*

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKT KEQVTNVGGAVVTGVTAVAQEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQL GKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA

del80-95 α*-syn*

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKT KEQVTNVGGAVVTGVTAVAQKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQD YEPEA

dup125-410 α*-syn*

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKT KEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDP DNEAYEMPSEEGYQDYEPEAYEMPSEEGYQDYEPEA

del96-124 α*-syn*

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKT KEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVYEMPSEEGYQDYEPEA

del121-140 α*-syn*

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKT KEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDP

NACsubA $\beta \alpha$ -syn

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKT KDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIAKKDQLGKNEEGAPQEGILE DMPVDPDNEAYEMPSEEGYQDYEPEAATATGCCTGTGGATCCTGACAATGAGGCTTATGAA ATGCCTTCTGAGGAAGGGTATCAAGACTACGAACCTGAAGCCTAA

NACsubA $\beta_{mut} \alpha$ -syn

MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKT KDAEFRHDSGYEVHHQKLVSFAEDVGSNKGAIIGPMVGGVVIAKKDQLGKNEEGAPQEGILE DMPVDPDNEAYEMPSEEGYQDYEPEA