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ABSTRACT Methods are presented for the estimation of a
treatment effect based on before- and after-treatment values,
where for ethical reasons all and only those patients are treat-
ed whose before-treatment values exceed a given constant.

Can one reliably estimate the effect of a treatment when
there is no comparable untreated control group? For exam-
ple, assume that the before-treatment Xi and the after-treat-
ment Zi of the ith person in a group of n are independent
normal random variables with respective means Oi and A + O6
and common variance 1, the Oi and A being unknown. If all n
persons were treated we could estimate the treatment effect
A by the average of the n differences Zi - Xi. Assume, how-
ever, that for ethical reasons all and only those persons with
Xi > a are treated, where a is a preassigned constant, so that
the value Zi is available if and only if Xi > a. The average
value of Zi - XT over all persons with Xi > a will clearly be a
downwardly biased estimator of A, and something better is
needed.
A more general problem of this nature can be modeled as

follows. Let f(x; A, 6) be a family of probability density func-
tions with respect to a a-finite measure 1(dx). Let Xi, Zi, 1 <
i < n, be independent random variables such that

Xi - f(x; c, O6), Zi - f(z; A, 6,),
where c is a known constant and A and the Oi are unknown
parameters. Assume that Zi is observed if and only if Xi is in
a set A, but that Xi is observed for each i. We are interested
in estimating A on the basis of observed values ofXi, Yi, 1 s i
< n, where

I1 if x E A
Yj = S(X,)Z,, 8(x) = I{x E A} =

10 otherwise.

(In the preceding paragraph, f(x; A, 6) = (p(x - A - 6) and c
= 0, where q is the standard normal density function.)
This estimation problem was considered by Robbins (1),

who proposed a "u,v" method for estimating A. In this note
we consider a conditional maximum likelihood method for
estimating A and compare it with the u,v estimator in two
special cases.
The Conditional Maximum Likelihood Estimator (CMLE).

The random vector (Xi, Y.) has the joint density function

f(x, y; A, 6,) = f(x; c, Oi)[f(y; A, 9,)]6(x)

with respect to the measure v(dx, dy) = p(dx)[li(dy)] 6(x). To
save notation let (X, Z) be a random vector such that (X, Z)
- f(x; c, 6)f(z; A, 6) and let Y = S(X)Z. Let i+(x, y, A) be a
function such that

+i(x, y, A)f(x, y; A, 6)P(dx, dy)

= Eqi(X, Y, A) = 0, VA, 0. [1]

A solution A(qi) of the equationV 1li(Xi, Yi, A) = 0 is called
a maximum-likelihood-type estimator (M-estimator) corre-
sponding to the influence function 4i. Under certain regulari-
ty conditions on 4i and the sequence 6j, the Taylor expansion

=
n

0 = E i(XO , Yi, A(@))

n n

= >E ir(XYi,iA) + (1 + o(1))(A( -) A) >E q(Xi, Yi, A)

and the law of large numbers and central limit theorem will
hold, so that as n -X 00

(An(whe-r)/e'n NA 1),
where

2 XI=1 E[bi(Xi, Yi, A)]2[Y.;'J)=an1 E4Y(X, Y, A)]2 [2]

See, for example, Huber (2) for details.
Andersen (3) proposed a method of finding suitable influ-

ence functions (and therefore M-estimators) for mixture
models, and his method can be applied to our case as fol-
lows. Suppose there are functions s = s(x, y, A), t(s, 6), g =
g(x, y, A) and h(s, A) such that

f = f(x, y; A, 6) = exp[t(s, 6) + g], s' = as/aA = h(s, A). [3]

Define

p(X, Y, A) = alog f/A - E[alog f/OAis]
= g'(X, Y, A) - E[g'(X, Y, A)ls(X, Y, A)], [4]

where g' = 3g/aA. The function p does not depend on the
value of 6, and

+(x, y, A)f(x, y; A, 6)v(dx, dy) = Ep(X, Y, A)

= 0, VA, 6. [51

Andersen (3) called the M-estimator An(p) the CMLE. If we
can exchange the order of differentiation a/8A and integra-
tion on the left-hand side of Eq. 5, then Ep' = -Ep2 and

on(p) = [a I(i)] 9 I(6) = Ep2(X, Y, A),

which implies by the Schwarz inequality that

E[qi(X, Y. A)ls(X, Y, A)] = 0 almost surely
> an(P) C O'n(O, [6]

Abbreviations: CMLE, conditional maximum likelihood estimator;
M-estimator, maximum-likelihood-type estimator.

3670

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. §1734 solely to indicate this fact.



Proc. NatL. Acad. Sci. USA 85 (1988) 3671

provided that the differentiation a/8A of the left-hand side of
Eq. 1 can be performed under the integral sign. Lindsay (4)
proved that the CMLE is in a sense asymptotically efficient
when the left-hand side equation in expression 6 is equiva-
lent to Eq. 1 [the "completeness" of the "sufficient statistic"
s(X, Y, A)] under a mixture setting.
The u,v Method. Let u(x) and v(x) be two functions such

that u(x) = 0 on A and

6 f u(x)f(x; c, 6)A(dx) = f v(x)f(x; c, 6),4(dx), V6. [7]

Robbins (1) used u and v to derive estimating equations for
A in the following two cases:

(i) Suppose that EZ = A + 6. Then Eu(X) Y = Eu(X)Z =
AEu(X) + Ev(X). The M-estimator

,kn(4uv= jI U(Xi)1 LI (u(X) Yi - v(Xi)) [8]

corresponding to the influence function ,(x, y, A) = u(x)
(y - A) - v(x) is called the u,v estimator, and

2 71= E[u(Xi)(Yi- A) -v(Xi)]lnl(tv) = [Y=1 Eu(Xi)]2

Let u(x) be such that u(x) = 0 for x < 0. Then Eq. 7 holds if

V(X) = xu(x) - U'(X). [14]

The u,v influence function is , = u(x)(y - A) - v(x) and
the u,v estimator is

kn(4uV) = [I U(Xi)] [2 (u(X,)(Y, - Xi) + u'(X,))1. [15]

Since (X, Z - A)IX + Z - A = S2 (W s2 - W),

E[Ou,vIs] = 8(X)E[u(X)(Z - A - X) + u'(X)18(X) = 1,

X + Z - A = s2]
= 8(X)E[u(W)(s2 - 2W) + u'(W)]/P{W . 0}

= 8(X) f[U(W)(S2 - 2w) + u'(w)]

x p((w - s2/2)V2 )dw'\/P{W > 0}

= 0 (integrating by parts),
[9]

(ii) Suppose that EZ = AO. Then Eu(X) Y = AEv(X). The
u,v influence function is " y, A) = u(x)y - Av(x), the u,v
estimator is

which implies the left-hand side equation of expression 6.
Hence, cr,,(p) CaSn(ou'v)
On the other hand, the performance of the u,v estimator 15

is not so bad either. If we choose

kn(41uv)= [I V(Xi) [I U(Xi) YiI,
-i=l i=l

u(x) = S(x)[p(O) - sp(kx)][10]

for some k 7 0, then it can be shown that there exists anM <
00 such that

2~nl v

Xl _= 1 E[u(Xi) Y -kv(Xi)]
Sn~u~v)= [Xt=1Ev(Xi)]2 11

The Normal Case. Assume as in the first paragraph of the
introduction that

f(x; A, ) =(x-A-6), c =0, A = [0, x), [12]

so that 8(x) = I{x 2 0} and

f(x, y; A, 6)
= (2)-(1+Sx))/2exp[-(x 6)2/2 8(x)(y A 6)2/2].

The condition 3 holds with s = (s1, S2) = (8(x), x + 8(x)

(y A)), s' = (0, -s1) = h(s), and g'(x, y, A) = 8(x)(y - A).
Since (X, Z - A)IX + Z - A = S2 - (W, S2 - W) with W -

N(s2/2, 1/2),

E[g'Is] = 8(X)E[Z- A8(X) = 1, X + Z- A = S2]

= 8(X)E(s2 - W)J{W 2 0}/P{W > 0}

= 6(X)s2/2 - 6(X)Mp(s2/2)/[VI (s2/V )]-

Therefore, by Eq. 4

p(x, y, A) = (x) (y- A -x)12 + 9((X + Y A)/<)]-
Since p(x, y, A) is nonincreasing in A, the CMLE An(p) is
uniquely defined by

n

E p(xi, Yi, Akn(p)) = °- [131

O'(q(u'v) < Marn(s 1***on

The Poisson Case. Consider the Poisson family

f(x; A, 6) = e-""(Aky/x!, x = 0, 1, ....

and take c = 1. The condition 3 is satisfied with s = (S1, S2) =
(A8(x), x + 8(x)y) and g' = 8(x)y/A. Since (X, Z)IX + Z = S2

(W, S2 - W) with W binomial b(s2, 1/(1 + A)),

AE[g'Is] = 8(X)E[Z18(X) = 1, X + Z = S2]

= 8(X)E(s2 - W)I{W E A}/P{W E A}

= (X)[s2 - YWEAwb(w; s2, 1/(1 + A))/
YwEAb(w; S2, 1/(1 + A))],

where b(k; n, p) = (n)pk(l - p)n-k. Therefore,

p(x, y, A) = A-8(x)[ weAwb(w; x + y, 1/(1 + A))
Y..eb(w; x + y, 1/(1 + A))

- xl.[16]

The u,v relationship 7 holds if

v(x) = xu(x - 1). [17]

The u,v influence function is u = u(x)y - Axu(x - 1) and
the u,v estimator is

An(1uv) = [i u(Xi - 1)X,1 [I u(Xi)Y,1. [18]

Consider the following two cases:

and
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(i) Let A = {x: x 2 a} for some nonnegative integer a.
Then s(X, Y, A) is a complete statistic for every fixed A and
the left-hand side of expression 6 is equivalent to 1, which
implies that the CMLE is asymptotically efficient by Lind-
say (4). Hence an(p) no(0, Aft

(it) Let A = {x : x = a} for some nonnegative integer a.
Then by Eq. 16 p = 0 and the CMLE is not defined, while the
u,v estimator is given by

Akn(41u,v)
>yi

i~snX=a
C + (a + 1)[number of i - n such that Xi = a + 1]1

with u(x) = 8(x) = I{x = a}, where C is a positive constant.
(The original u,v estimator 18 is modified here to avoid di-
viding by 0.) Incidentally, the asymptotic normality 2 holds
for the u,v estimator 19 whenever Z1;:,P{Xi = a} = Ad.
Remarks. In this section we consider the mixture model in

which the nuisance parameters Oi are treated as independent
identically distributed (iid) random variables with some un-
known distribution function G, so that (X, Y), (X1, Y1),.
are iid random vectors with common density function

f(x, y) = f(x, y; A, G) = f f(x, y; A, 6)dG(6).

We shall study the mixture model in detail elsewhere. Here,
to simplify the discussion, we consider the normal case 12
and use the notations of that section.

(i) The CMLE An(p) is not efficient for this example. De-
fine

(S= (1 -S)I{W < S2 <O}

+ Si[1 - 1(- N/2w + S2//)/((S2 A,

where s = (S1, SO = (8(x), x + S(x)(y - A)) and w < 0 is a
constant. The function q, = 1f, satisfies 1 and the influence
function p + ad is more efficient than p, where a depends on
G but can be consistently estimated. In general, the efficient
influence function can be written as

= p + * 4* = 4*(Sl, S2), f*(1, t)

= _¢-1(t/xdj)V' {*(0, x)q(V2i(x - t/2))dx, [20]

where the choice of {*(O, x) depends on G.
(it) We can also consider a doubly parametric model in

which the distribution G of the Oi is assumed to be normal
with unknown mean A and variance o- . In this case f(x, y; A,
G) is a smooth parametric family with parameters A, A, and
Co2, and we can use the maximum likelihood estimator of A.
The efficient score function here has the form

alog f/dA + aalog f/agu + fBdlog f/aod, [21]

where a and are constants, alog f/OA = 8(x){y - A -

EIOs]}, alog f/lau = E[( - ,A)/a-21s], and Olog f/ar = E[(6 -

A)2/f3 - 1/a1s]. Noting that the conditional distribution of
Ms is normal with mean [f + s2o.2]/[1 + (1 + sl)o-2] and
variance o.2/[1 + (1 + sl)o ], we find that the score function

21 does not have the form 20. Therefore, the maximum likeli-
hood (or any other efficient) estimator for this doubly para-
metric model does not have a stable performance when G is
not assumed to be normal or when the 6i are unknown con-
stants.

(iiM) Both the CMLE and the u,v estimator remain the
same under the "double truncation" case where (6(X,)X, Y.)
are observed instead of (Xi, Y.). For this case, the efficient
influence function is

4°= p + aof°, fo = (1 - S1) - S1[4r'(s2/\/) 11.

Since f[t0(s(x, y, A))]2f(x, y; A, 6)v(dx, dy) < Xo if and only if
0 > 0, the CMLE is fully efficient in the double truncation
case when G(O) > 0.

(iv) Let us replace the assumption ZIO - N(A + 0, 1) by
E[ZIO] = A + 0 and Var(ZIO) = 1 (or 5 C < 00). The u,v
estimator still works but the CMLE does not. The naive esti-
mator

n n

An = I 6(X)(Yi- Xv)/> 6I)
i=1 i=1

is inconsistent, since

A, -+ A - f(O)/[1 -F(O)],

where f(x) and F(x) are the marginal density and distribution
functions of X, respectively. To correct An for bias requires
either a knowledge of G or the use of a density estimator for
f(O) based on X1, ..., X,, under the singly parametric as-
sumption. In the doubly parametric case X is marginally a
normal random variable, so that A can be estimated by the
n-1/2 consistent estimator

An = An + p(XPG/Sn)/[Sn,(DnX/Sn)]

where Xn = n-1X>,"lX and S2 = n-'Yi;=1(X, -Tfn)2.
(v) We may also consider the case where the treatment

effect for the ith person is A, instead of a common value A,
and we are interested in estimating the average treatment
effect for treated persons

I (xij [, S(X5)Aj [22]

which is an unobservable random variable. The bias-correc-
tion method discussed in iv can be used without changing the
estimator. The CMLE method does not work here. The u,v
estimator can be used for the case where E[ZjI0,] = Ai + O0
and Eq. 7 holds for u(x) = 6(x) or for the case where E[Zij 6,]
= Aii and Eq. 7 holds for v(x) = 8(x). The u,v estimator
remains unchanged in both cases. For the normal case, the
u,v method does not apply since u(x) has to be differentiable
for Eq. 7 to hold.
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