An Arabidopsis flavonoid transporter is required for anther dehiscence

and pollen development

Elinor P. Thompson, Christopher Wilkins, Vadim Demidchik¹, Julia M. Davies

and Beverley J. Glover*

Supplementary information

Alignment of FFT and related sequences

FFT SlAnthPerm At4g00350 OSXP At3g26590 At5g38030 At1g47530 Q96FL8	LLTHGGEVEEDYAPARSWTDVKRVLSTESAK <u>LWMIAAPVGFNIICQYGVSSVT</u> NIFVGHI ERNDLIGADGDYRPAKSTKDWWAIFCVETLKLWRIGGPIAFNIICQYGVNSLTNIFVGHL TLLGETTGDADFPPIQSFRDAKLVCVVETSKLWEIAAPIAFNILCNYGVNSFTSIFVGHI 	66 73 120 6 77 77 67 67 66
FFT SlAnthPerm At4g00350 OsXP At3g26590 At5g38030 At1g47530 Q96FL8	GEVELSAV <u>SISLSVIGTFSFGFLLGMGSALE</u> TLCGQAYGAGQVNMLGVYMQRSWIILFVS GNVELSAISIAQTVISTFSFGFMMGMGSALETLCGQAYGAGQVHMLGVYMQRSVIILLAT GDLELSAVAIALSVVSNFSFGFLLGMASALETLCGQAFGAGQVSMLGVYQRSWLILLGT GNLPLAASVGLSVFATFALGFLLGMGSALETLCGQAFGAGQVSMLGVYLQRSWIILLGA STIALAAVSVENSVVAGFSFGIMLGMGSALETLCGQAFGAGKLSMLGVYLQRSWVILNVT STIALAAVSVENSVIAGFSFGVMLGMGSALETLCGQAFGAGKLSMLGVYLQRSWVILNVT GELELAAVSVENSVISGLAFGVMLGMGSALETLCGQAFGAGKLSMLGVYLQRSWVILNVT GKLELDAVTLAIAVINVTGVSVGFGLSSACDTLISQTYGSQNLKHVGVILQRSALVLLLC . : * * :: :* :*:.** :** .*::*: :: :*** :**	126 133 180 66 137 137 127 126
FFT SlAnthPerm At4g00350 OsXP At3g26590 At5g38030 At1g47530 Q96FL8	CFFLLPIYIFATPVLRLLGQAEEIAVPAGOFTLLTIPOLFSLAFNFPTSKFLQAQSKVVACVFLLPIYLFTTPLLVLLGQETAIADLSGRYTMLLIPQLFSLAINFPTSKFLQAQSKVDVSVCLLPLYIYATPLLILLGQEPEIAEISGKFTTQIIPQMFALAINFPTQKFLQSQSKVGITVLMVPVYVLAEPLLLLVGQDPEVARAAGRFTLYILPGAFAFAVNFPSGKFLQAQSKVGVALILSLLYIFAAPILASIGQTAAISSAAGIFSIYMIPQIFAYAINFPTAKFLQSQSKIMVAVILSLLYIFAAPILAFIGQTPAISSATGIFSIYMIPQIFAYAVNYPTAKFLQSQSKIMVALFLLPVYIWAPPILSFFGEAPHISKAAGKFALWMIPQLFAYAANFPIQKFLQSQRKVLVCFPCWALFLNTQHILLFRQDPDVSRLTQTYVTIFIPALPATFLYMLQVKYLLNQGIVLP.:::::::::::::::::::::::::::::::::	186 193 240 126 197 197 187 186
FFT SlAnthPerm At4g00350 OSXP At3g26590 At5g38030 At1g47530 Q96FL8	IAWIGFVALSLHVIMLWLFIIEFGWGTNGAALAFNITNWGTAIAQUVYVIG-WCNEG-WTLAGIGFAAVLVHALFLWLFIYTLEWGTNGAAIAFDLTNWLTAMAQLAYVVG-WCKDG-WKMAWIGFFALTLHIFILYLFINVFKWGLNGAAAAFDVSAWGIAIAQVVYVG-WCKDG-WKLAWIGVAGLAFHVGITYLAVSVLGWGLPGAAAAYDVSQWASSLAQVAYIMG-WCREG-WRMAVISAVALVIHVPLTWFVIVKLQWGMPGLAVVLNASWCFIDMAQLVYIFSGTCGEA-WSMAAISAVALVLHVLLTWFVIEGLQWGTAGLAVVLNASWWFIVVAQLVYIFSGTCGEA-WSMAWISGVVLVIHAVFSWLFILYFKWGLVGAAITLNTSWWLIVIGQLLYILITKSDGA-WTQIVTGVAANLVNALANYLFLHQLHLGVIGSALANLISQYTLALLLFLYILGKKLHQATWG	244 251 298 184 256 256 246 246
FFT At4g00350 OSXP At3g26590 At5g38030 At1g47530 Q96FL8	GLSWLAFKEIWAFVRLSIASAVMLCLEIWYMMSIIVLTGRLDNAVIAVDSLSICMNINGL GLSWSAFNEIWAFVRLSIASAVMLCLEIWYMMSIILLVGHLNNAVIAVGSISICMNINGW GLSWLAFQDVWPFLKLSFASAVMLCLEIWYLGLITVLTGHLEDPVIAVGSLSICMNINGW GWSMAAFHDLAAFLRLSIESAVMLCLEIWYLGLITVLTGDLDDAQMAVDSLGICMNINGY GFSWEAFHNLWSFVRLSLASAVMLCLEVWYFMAIILFAGYLKNAEISVAALSICMNILGW GFSWLAFHNLWSFVRLSLASAVMLCLEVWYLMAVILFAGYLKNAEISVAALSICMNILGW GFSMLAFRDLYGFVKLSLASALMLCLEFWYLMVLVVTGLLPNPLIPVDAISICMNIEGW GWSLECLQDWASFLRLAIPSMLMLCMEWWAYEVGSFLSGILGMVELGAQSIVYELAII * * .:. *::*:: *:**:* * * * :::.*	304 311 358 244 316 316 306 304
FFT SlAnthPerm At4g00350 OsXP At3g26590 At5g38030	EAMLFIGINAAISVRVSNELGLGRPRAAKYSVYVTVFQSLLIGLVFMVAIIIARDHFAII ESMLFIGINAAISIRVSNELGQGHPRATKYSVYITVFQSLLIGILCMVIVLVARDHLAII EGMLFIGINAAISVRVSNELGSGHPRAAKYSVIVTVIESLVIGVVCAIVILITRDDFAVI EGMIFIGLNAAISVRVSNELGSGRPRAAMHAVVVVVAESLLIGLLCMALVLAFSDKLALV TAMIAIGMNTAVSVRVSNELGANHPRTAKFSLLVAVITSTLIGFIVSMILLIFRDQYPSL TAMIAIGMNAAVSVRVSNELGAKHPRTAKFSLLVAVITSTVIGLAISIALLIFRDKYPSL	364 371 418 304 376 376

At1g47530 Q96FL8	TAMISIGFNAAISVRVSNELGAGNAALAKFSVIVVSITSTLIGIVCMIVVLATKDSFPYLVYMVPAGFSVAASVRVGNALGAGDMEQARKSSTVSLLITVLFAVAFSVLLLSCKDHVGYI*:*:**::: <td::< td="">::<td:< th=""><th>366 364</th></td:<></td::<>	366 364				
FFT SlAnthPerm At4g00350 OsXP At3g26590 At5g38030 At1g47530 Q96FL8	FTSSKVLQRAVSKLAYLLGITMVLNSVQPVVSGVAVGGGWQGLVAYINLGCYYIFGLPFG FSNSKEMQEAVADLAYLLGITMVLNSVQPVISGVAVGGGWQALVAYINLGCYYVFGLPLG FTESEEMRKAVADLAYLLGITMILNSLQPVISGVAVGGGWQAVVAYINLFCYYAFGLPLG YTSDAHLLRAVSRIAGLLGVTMVLNSVQPVLSGVAVGGGWQAVVAYINLACYYLFGLPVG FVKDEKVIILVKELTPILALSIVINNVQPVLSGVAVGAGWQAVVAYVNIACYYVFGIPFG FVGDEEVIIVVKDLTPILAVSIVINNVQPVLSGVAVGAGWQAVVAYVNIVCYYVFGIPFG FTSSEAVAAETTRIAVLLGFTVLLNSLQPVLSGVAVGAGWQALVAYVNIACYYIGLPAG FTTDRDIINLVAQVVPIYAVSHLFEALACTSGGVLRGSGNQKVGAIVNTIGYYVGLPIG : . : . : . : . : . : ** * * * * * * * *	424 431 478 364 436 436 426 424				
FFT SlAnthPerm At4g00350 OsXP At3g26590 At5g38030 At1g47530 Q96FL8	YLLGYIANFGVMGLWSGMIAGTALQTLLLLIVLYKTNWNKEVEETMERMKKWGGSE YLLGYVAKLGTKGLWLGMIAGAALQTLLLLIILYKTNWNKEVNDTTERMRKWGGQDFETQ FLLGYKTSLGVQGIWIGMICGTSLQTLILLYMIYITNWNKEVEQASERMKQWGAGYEKLE YLLGYYFNLGVGGVWGGMLCGVALQTLILLFVVWRTDWKAEAAQASARVHKWGGTDETKP LLLGYKLNYGVMGIWCGMLTGTVVQTIVLTWMICKTNWDTEASMAEDRIREWGGEVSEIK LLLGYKLNFGVMGIWCGMLTGTVVQTIVLTWMICRTNWDTEAAMAEGRIREWGGEVSD LVLGFTLDLGVQGIWGGMVAGICLQTLILIGIIYFTNWNKEAEQAESRVQRWGGTAQE IALMFATTLGVMGLWSGIIICTVFQAVCFLGFIIQLNWKKACQQAQVHANLKVNNVPRSG *: *.*:**::::::::::::::::::::::::::::::	480 491 538 424 496 494 484 484				
FFT						

- Q96FL8

Supp.1. CLUSTALW alignment (N and C termini omitted to save space) and phylogram of FFT and three most similar *Arabidopsis* MATE proteins with tomato putative anthocyanin permease (SIAnthP) and rice ripening protein (OsXP). Human MATE1 sequence (Q96FL8) included to show invariant glutamate (boxed) in seventh transmembrane domain (Matsumoto *et al.*, 2008). Twelve putative transmembrane domains (TMPred) underlined.

At1g47530

Supp.2. Tissue or stress-induced transcription of FFT-1. RTPCR conducted according to Materials and methods. Sil, Silique (green, >1cm); YS, young silique (green, <0.5cm); IS, immature silique (green, <1cm); ISP, IS with senescing petals attached; Pet, petals; Bud, unopened bud; BS, bolt stem; CL, cauline leaf; ML, mature rosette leaf; SL, senescent anthocyanin-pigmented leaf; d2/d5, day2 or d5 seedling; LS, rosette leaf of plant grown with 1% sucrose; Pt, petioles; FI, plates flooded 25ml sterile water 36h; H2, 1mM H₂O₂ added to root tips 3h; 4C, plates incubated 4°C with light for 24h; *P. syringae* infiltrated into leaf as follows: M4, *P.s.* maculicola M4 (pathogenic), RW, *P.s.* phaseolica RW60 (nonpathogenic), Hrp, *P.s.* DC300 HrpA- (nonpathogenic).

Supp.3. Southern blot with kanamycin probe showing one T-DNA band in genomic DNA from *fft*-1 (N604224) mutant and position of T-DNA insertion.

fft-1 mutant: Southern and position of T-DNA insertion

Complemented mutant

RTPCR for null mutant

Supp.4. RT-PCR in inflorescence tissues (top panel, FFT transcript; lower panel, actin8). From seven transformed mutants (lines A–G), lines D, F and G were investigated fully.

Supp.5. Cryo-SEM of inflorescence tissue from WT (top panel, Col0-1), *fft-1* mutant (middle panel; Ab-1) and complemented mutant (lower panel, F-1). Mutant has non-dehisced anthers but receptive papillae on the stigma, whereas WT and complemented mutant have dehisced anthers and pollen germinating on stigma papillae.

Supp.6. SEM of WT (Col0) and *fft-1* mutant pollen and anthers, showing how a proportion of pollen and anthers are defective in the mutant.

Supp.7. Photosynthetic parameters. Since flavonoids may help to protect plants from u.v. light, it seemed prudent to ensure that the mutant plants were not suffering from a generalised inability to thrive, unlikely though this seemed from their appearance and increased rates of root growth. Basic photosynthetic parameters were checked, namely, Fv/Fm and chlorophyll content (*a*, *b* and *a*:*b*), to ensure no difference in photosynthetic efficiency between WT and mutant, and we also determined that there was no effect of different light intensities (10–250 μ mol/m²/s) on the pollen phenotypes.

(b)

Compound and		fft-1 mutant mean ±	
sample	Col0 mean ± SEM	SEM	P*
kGG bud	$273 \times 10^{3} \pm 67 \times 10^{3}$	$141 \times 10^{3} \pm 29 \times 10^{3}$	0.018
RkG bud	$869 \times 10^3 \pm 225 \times 10^3$	$535 \times 10^{3} \pm 85 \times 10^{3}$	0.18
RkG IS	$1070 \times 10^3 \pm 564 \times 10^3$	$796 \times 10^3 \pm 389 \times 10^3$	0.48
qRGR bud	$217 \times 10^{3} \pm 104 \times 10^{3}$	$339 \times 10^3 \pm 102 \times 10^3$	0.19
qRG bud	$690 \times 10^3 \pm 285 \times 10^3$	$428 \times 10^3 \pm 113 \times 10^3$	0.13
qRG IS	$515 \times 10^3 \pm 303 \times 10^3$	$189 \times 10^3 \pm 67 \times 10^3$	0.23

*5 d.f.

Supp.8. (a) Example of LCMS runs for kGG in buds and immature siliques. Mutant, left (red); wild-type, right (cross-hatched, green). (b) Mean values from which Table 1 proportions are derived. k, Kaempferol; R, rhamnoside; G, glucoside; IS, immature silique; q, quercitin.

(a)