Supplemental Table S1:	Oligonualaatida	primara ¹ for sit	a directed mutan	anagia of agning	DDE65
Supplemental rable S1.	Ongonucleonde	primers for sit	e-unecteu mutage	enesis of cannie	C NPEOJ

Mutant	Forward primer ²	Reverse primer ²
F61L	CTGAACCATTTTACCACCTGTTAGACGGACAAGCC	GGCTTGTCCGTCTAACAGGTGGTAAAATGGTTCAG
F61Y	ATCTGAACCATTTTACCACCTGTATGACGGACAAGC	GCTTGTCCGTCATACAGGTGGTAAAATGGTTCAGAT
F61W	GAACCATTTTACCACCTGTGGGACGGACAAGCCCTTCTGC	GCAGAAGGGCTTGTCCGTCCCACAGGTGGTAAAATGGTTC
Y275F	GTCTTTGGGGAGCCAACTTCATGGATTGTTTTGAGTC	GACTCAAAACAATCCATGAAGTTGGCTCCCCAAAGAC
Y275W	AGTCTTTGGGGAGCCAACTGGATGGATTGTTTTGAGTCCA	TGGACTCAAAACAATCCATCCAGTTGGCTCCCCAAAGACT
Y275I	GAGTCTTTGGGGGAGCCAACATCATGGATTGTTTTGAGTCC	GGACTCAAAACAATCCATGATGTTGGCTCCCCAAAGACTC
Y239W	GACCGATTCAAGCCATCGTGGGTCCATAGTTTTGGTTTGA	TCAAACCAAAACTATGGACCCACGATGGCTTGAATCGGTC
Y239F	CGATTCAAGCCATCGTTCGTCCATAGTTTTGGTTTG	CAAACCAAAACTATGGACGAACGATGGCTTGAATCG
Y239L	CGATTCAAGCCATCGCTCGTCCATAGTTTTGGTTTG	CAAACCAAAACTATGGACGAGCGATGGCTTGAATCG
Y239S	CGATTCAAGCCATCGTCCGTCCATAGTTTTGGTTTG	CAAACCAAAACTATGGACGGACGATGGCTTGAATCG
Y239T	CGATTCAAGCCATCGACCGTCCATAGTTTTGGTTTG	CAAACCAAAACTATGGACGGTCGATGGCTTGAATCG
Y239C	CGATTCAAGCCATCGTGCGTCCATAGTTTTGGTTTG	CAAACCAAAACTATGGACGCACGATGGCTTGAATCG
Y239D	CGATTCAAGCCATCGGACGTCCATAGTTTTGGTTTG	CAAACCAAAACTATGGACGTCCGATGGCTTGAATCG
W331Y	GTGGATCTCTGCTGCTACAAAGGATTTGAATTC	GAATTCAAATCCTTTGTCGCAGCAGAGATCCAC
W331F	GTGGATCTCTGCTGCTTCAAAGGATTTGAATTC	GAATTCAAATCCTTTGAAGCAGCAGAGATCCAC
W331L	GTGGATCTCTGCTGCTTGAAAGGATTTGAATTC	GAATTCAAATCCTTTCAAGCAGCAGAGATCCAC
W331Q	GTGGATCTCTGCTGCCAGAAAGGATTTGAATTC	GAATTCAAATCCTTTCTGGCAGCAGAGATCCAC
T147W	GATTACTATGCCTGCTGGGAGACCAACTTCATTAC	GTAATGAAGTTGGTCTCCCAGCAGGCATAGTAATC
T147Y	GATTACTATGCCTGCTACGAGACCAACTTCATTAC	GTAATGAAGTTGGTCTCGTAGCAGGCATAGTAATC
T147V	GGGAAGATTACTATGCCTGCGTGGAGACCAACTTCATTACAA	TTGTAATGAAGTTGGTCTCCACGCAGGCATAGTAATCTTCCC
T147A	GAAGATTACTATGCCTGCGCGGAGACCAACTTCATTA	TAATGAAGTTGGTCTCCGCGCAGGCATAGTAATCTTC
T147C	GGGGAAGATTACTATGCCTGCTGCGAGACCAACTTCATTACAAAG	CTTTGTAATGAAGTTGGTCTCGCAGCAGGCATAGTAATCTTCCCC
T147G	GGAAGATTACTATGCCTGCGGGGAGACCAACTTCATTACA	TGTAATGAAGTTGGTCTCCCCGCAGGCATAGTAATCTTCC
T147S	GATTACTATGCCTGCAGCGAGACCAACTTCATTAC	GTAATGAAGTTGGTCTCGCTGCAGGCATAGTAATC
F103W	GAGAAAAGGATCGTCATAACGGAATGGGGCACCTGTGCGT	ACGCACAGGTGCCCCATTCCGTTATGACGATCCTTTTCTC

F103YGAAAAGGATCGTCATAACGGAATATGGCACCTGTGCF103IGAAAAGGATCGTCATAACGGAAATTGGCACCTGTG

F103L GAAAAGGATCGTCATAACGGAACTTGGCACCTGTG

ACGCACAGGTGCCCCATTCCGTTATGACGATCCTTTTCTC GCACAGGTGCCATATTCCGTTATGACGATCCTTTTC CACAGGTGCCAATTTCCGTTATGACGATCCTTTTC CACAGGTGCCAAGTTCCGTTATGACGATCCTTTTC ¹Predicted by QuikChange Primer Design Program (Stratagene division of Agilent Technologies) ²Primer sequences depicted in 5'-NNNN-3' orientation

Supplemental Figure Legends

Fig. S1: MALDI-TOF analysis of retinol standards. A: All-*trans* retinol. The major mass of ~286 corresponds to intact all-*trans* retinol while the mass at ~287 is due to stochastic occurrence of ¹³C. The masses at ~269 and ~270 are due to loss of hydroxyl from the intact ~286 and ~287 masses. The masses at ~302 and ~303 are ascribed to epoxidation of the intact ~286 and ~287 masses. B: $[15^{-2}H, ^{18}O]$ -all-*trans* retinol. The major mass of ~289 corresponds to intact labeled $[15^{-2}H, ^{18}O]$ -all-*trans* retinol while the mass at ~290 is due to stochastic occurrence of ¹³C. The masses at ~270 and ~271 are due to loss of ¹⁸O-labeled hydroxyl (¹⁸OH) from the intact ~289 and ~290 masses. The extra 1 atomic mass unit, compared to masses ~269 and ~270 in A, is due to presence of ²H label, which is not lost from the retinol. The mass at ~305 is ascribed to epoxidation of the intact ~289 species. Method as described in Experimental Procedures.

Fig. S2: Structural model and alignment of RPE65 and ACO. A: Stereo-pair model of RPE65 based on ACO template. Mouse RPE65 was modeled on *Synechocystis* ACO using the Swiss-Pdb viewer with apocarotenal (yellow) mounted in the ACO substrate-binding cleft. RPE65 structure is in green, ACO in silver. The propeller structure is well-maintained in RPE65, but the loops forming the dome above the catalytic site are more extensive in RPE65 and thus cannot be modeled on this template. B: Sequence alignment of RPE65 and ACO to show residues studied (F61, F103, T147, Y239, Y275 and W331) highlighted in red. Initial alignment obtained with DeepView/Swiss-PdbViewer (v3.7) was manually adjusted to maximize both gap suppression and alignment with predicted structural features (beta sheets and alpha helices). Residues 338-375 of RPE65 are restricted to metazoan carotenoid oxygenase family members. *=identity; .=similarity.

Fig. S3: Co-production of 11-*cis* and 13-*cis* retinols by RPE65. Data from Fig. 1B of Redmond et al. (8) were re-analyzed to extract 13-*cis* isomer information. Cultures were transfected with six different combinations: 1, pVitro2/RPE65+CRALBP; 2, pVitro2/RPE65 and pVitro3/LRAT+RDH5; 3, pVitro2/RPE65+CRALBP and pVitro3/LRAT+RDH5; 4, pVitro3/LRAT+RDH5; 5, pVitro2/CRALBP and pVitro3/LRAT+RDH5; and 6, no DNA. These were incubated with 2.5 µM all-*trans* retinol, as described in (8).

Supplemental Figure S1

Supplemental Fig. S2

Β

RPE65	1	MSIQIEHPA	GGYKKLFETV	EELSSPLTAH	VTGRIPLWLT	GSLLRCGPGL
ACO	12	QRSYSP	QDWLRGYQSQ	PQEWDYWVED	VEGSIPPDLQ	GTLYRNGPGL
		*			* * ** *	*.* * ****
RPE65	50	FEVGSEPFYH	LFDGQALLHK	FDFK-EGHVT	YHRRFIRTDA	YVRAMTEKRI
ACO	58	LEIGDRPLKH	PFDGDGMVTA	FKFPGDGRVH	FQSKFVRTQG	YVEEQKAGKM
		.*.* *. *	***	* * .*.*	*.**	**
RPE65	99	VITE-FGTCA	FPDPCKNIFS	RFFSYFKGVE	VTDNALVNIY	PVGEDYYACT
ACO	108	IYRGV <mark>F</mark> GSQP	AGGWLKTIFD	LRLKNIAN	-TNIT	YWGDRLLALW
		. **.	. * **.		* **	*. *
RPE65	148	ETNFITKINP	ETLETIKQVD	LCNYISVNG-	ATAHPHIESD	GTVYNIGNCF
ACO	150	EGGQPHRLEP	SNLATIGLDD	LGGILAEGQP	LSAHPRIDPA	STFDGGQPCY
		**	* * * *	*	.***.*	. * *.
RPE65	197	GKNFTVAYNI	IKIPPLKADK	EDPINKSEVV	VQFPCSDRFK	PSYVHSFGLT
ACO	200	VTFSIKSSLS	STLTLLELDP	QGKL	LRQKTETFPG	FAFIHDFAIT
			. * *	• •		* **
RPE65	247	PNYIVFVETP	VKINLFKFLS	SWSLWGANYM	DCFESNESMG	VWLHVADKKR
ACO	244	PHYAIFLQNN	VTLNGLPYL-	-FGLRGAG	ECVQFHPDKP	AQIILVPRDG
		. .*	* .**	.*.**	.*	
RPE65	297	RKYFNNKYRT	SPFNLFHHIN	TYEDNGFLIV	DLCCWKGFEF	VYNYLYLANL
ACO	290	GEIKRIPVQ-	-AGFVFHHAN	AFEENGKIIL	DSICYNSLPQ	v
			*** *	*.** .*.	* *	*
RPE65	347	RENWEEVKRN	AMKAPQPEVR	RYVLPLTIDK	7 DTGRNLVTL	PHTTATATLR
ACO	328			D	DGDFRSTNF	DNLDPGQLWR
					* .	*
RPE65	397	SDETIWLEPE	VLFSGPRQAF	EFPQINYQKF	GGKPYTYAYG	LGLNHF
ACO	350	FTIDPAAATV	EKQLMVSRCC	EFPVVHPQQV	G-RPYRYVYM	GAAHHSTGNA
				*** *	* .** * *	*
RPE65	443	VPDKLCKMNV	KT-KEIWMWQ	EPDSYPSEPI	FVSQPDALEE	DDGVVLSVVV
ACO	399	PLQAILKVDL	ESGTETLRSF	APHGFAGEPI	FVPRPGGVAE	DDGWLLCLIY
		*	. *	****	*** *	*** .*
RPE65	492	SPGAGQKPAY	LLVLNAKDLS	EIARAEVETN	IPVTFHGLFK	RS
ACO	449	KADLHRSELV	ILDAQDITAP	AIATLKLKHH	IPYPLHGSWA	QT
		•	.* .	**	**** .	

